# /// script # requires-python = ">=3.12,<3.13" # Required for vllm==0.10.1+gptoss # dependencies = [ # "datasets", # "huggingface-hub[hf_transfer]", # "torch", # "openai-harmony", # Official OpenAI harmony library # "vllm==0.10.1+gptoss", # Specific version for GPT OSS models # "tqdm", # ] # # [[tool.uv.index]] # url = "https://wheels.vllm.ai/gpt-oss/" # # [[tool.uv.index]] # url = "https://download.pytorch.org/whl/nightly/cu128" # # [tool.uv] # index-strategy = "unsafe-best-match" # /// """ Generate responses with transparent reasoning using OpenAI GPT OSS models with harmony format. This script uses the official openai_harmony library for proper message formatting and channel parsing, as recommended in the OpenAI cookbook. Example usage: # Generate haiku with reasoning uv run gpt_oss_vllm_harmony.py \\ --input-dataset davanstrien/haiku_dpo \\ --output-dataset username/haiku-reasoning \\ --prompt-column question # Any prompt dataset with custom settings uv run gpt_oss_vllm_harmony.py \\ --input-dataset username/prompts \\ --output-dataset username/responses-with-reasoning \\ --prompt-column prompt \\ --reasoning-level high \\ --max-samples 100 # HF Jobs execution hf jobs uv run --flavor a10g-small \\ https://huggingface.co/datasets/uv-scripts/openai-reasoning/raw/main/gpt_oss_vllm_harmony.py \\ --input-dataset username/prompts \\ --output-dataset username/responses-with-reasoning """ import argparse import json import logging import os import sys import time from datetime import datetime from typing import Dict, List, Optional from datasets import Dataset, load_dataset from huggingface_hub import DatasetCard, get_token, login from openai_harmony import ( HarmonyEncodingName, load_harmony_encoding, Conversation, Message, Role, SystemContent, DeveloperContent, ) from torch import cuda from tqdm.auto import tqdm from vllm import LLM, SamplingParams # Enable HF Transfer for faster downloads os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # TODO: Change logging level back to INFO after initial testing logging.basicConfig( level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(__name__) def check_gpu_availability() -> int: """Check if CUDA is available and return the number of GPUs.""" if not cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") logger.error( "Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor." ) sys.exit(1) num_gpus = cuda.device_count() for i in range(num_gpus): gpu_name = cuda.get_device_name(i) gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3 logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory") return num_gpus def parse_harmony_messages(entries: List, prompt: str) -> Dict[str, str]: """ Parse harmony message entries into think/content structure. The harmony format produces structured messages with different channels: - analysis: Chain of thought reasoning - final: User-facing response - commentary: Tool calls (if any) """ think = "" content = "" # Log what we received for debugging logger.debug(f"[VERBOSE] Parsing {len(entries)} harmony entries") for i, entry in enumerate(entries): entry_dict = entry.to_dict() logger.debug(f"[VERBOSE] Entry {i}: {json.dumps(entry_dict, indent=2)}") # Extract content based on the message structure if "content" in entry_dict: if isinstance(entry_dict["content"], list): for content_item in entry_dict["content"]: if content_item.get("type") == "text": text = content_item.get("text", "") # Determine channel based on content or metadata # This is a simplified approach - adjust based on actual harmony output if "analysis" in str(entry_dict).lower() or i == 0: think += text + "\n" else: content += text + "\n" elif isinstance(entry_dict["content"], str): # Simple string content if i == 0: # First message is often reasoning think = entry_dict["content"] else: content = entry_dict["content"] # Clean up whitespace think = think.strip() content = content.strip() # If we didn't parse anything, use the first entry as content if not think and not content and entries: content = str(entries[0].to_dict()) return { "prompt": prompt, "think": think, "content": content, "raw_output": json.dumps([e.to_dict() for e in entries], indent=2) } def create_dataset_card( input_dataset: str, model_id: str, prompt_column: str, reasoning_level: str, num_examples: int, generation_time: str, tensor_parallel_size: int, temperature: float, max_tokens: int, ) -> str: """Create a dataset card documenting the generation process.""" return f"""--- tags: - generated - synthetic - reasoning - openai-gpt-oss - harmony-format --- # Generated Responses with Reasoning (Harmony Format) This dataset contains AI-generated responses with transparent chain-of-thought reasoning using OpenAI GPT OSS models and the official harmony format. ## Generation Details - **Source Dataset**: [{input_dataset}](https://huggingface.co/datasets/{input_dataset}) - **Model**: [{model_id}](https://huggingface.co/{model_id}) - **Reasoning Level**: {reasoning_level} - **Number of Examples**: {num_examples:,} - **Generation Date**: {generation_time} - **Format**: Official OpenAI Harmony format ## Dataset Structure Each example contains: - `prompt`: The input prompt from the source dataset - `think`: The model's internal reasoning process (analysis channel) - `content`: The final response (final channel) - `raw_output`: Complete harmony format output - `reasoning_level`: The reasoning effort level used - `model`: Model identifier ## Generation Script Generated using [uv-scripts/openai-reasoning](https://huggingface.co/datasets/uv-scripts/openai-reasoning) with official harmony format. To reproduce: ```bash uv run gpt_oss_vllm_harmony.py \\ --input-dataset {input_dataset} \\ --output-dataset \\ --prompt-column {prompt_column} \\ --model-id {model_id} \\ --reasoning-level {reasoning_level} ``` """ def main( input_dataset: str, output_dataset_hub_id: str, prompt_column: str = "prompt", model_id: str = "openai/gpt-oss-20b", reasoning_level: str = "high", max_samples: Optional[int] = None, temperature: float = 0.7, max_tokens: int = 512, gpu_memory_utilization: float = 0.90, tensor_parallel_size: Optional[int] = None, hf_token: Optional[str] = None, ): """ Main generation pipeline using official harmony format. Args: input_dataset: Source dataset on Hugging Face Hub output_dataset_hub_id: Where to save results on Hugging Face Hub prompt_column: Column containing the prompts model_id: OpenAI GPT OSS model to use reasoning_level: Reasoning effort level (high/medium/low) max_samples: Maximum number of samples to process temperature: Sampling temperature max_tokens: Maximum tokens to generate gpu_memory_utilization: GPU memory utilization factor tensor_parallel_size: Number of GPUs to use (auto-detect if None) hf_token: Hugging Face authentication token """ generation_start_time = datetime.now().isoformat() # GPU check and configuration num_gpus = check_gpu_availability() if tensor_parallel_size is None: tensor_parallel_size = num_gpus logger.info( f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}" ) # Authentication HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token() if not HF_TOKEN: logger.error("No HuggingFace token found. Please provide token via:") logger.error(" 1. --hf-token argument") logger.error(" 2. HF_TOKEN environment variable") logger.error(" 3. Run 'huggingface-cli login'") sys.exit(1) logger.info("HuggingFace token found, authenticating...") login(token=HF_TOKEN) # Initialize harmony encoding logger.info("Loading harmony encoding...") encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS) # Get stop tokens from harmony stop_token_ids = encoding.stop_tokens_for_assistant_actions() # Note: plural "actions" logger.info(f"[VERBOSE] Harmony stop token IDs: {stop_token_ids}") # Initialize vLLM logger.info(f"Loading model: {model_id}") logger.info("Note: vLLM will handle batching automatically for optimal throughput") try: llm = LLM( model=model_id, tensor_parallel_size=tensor_parallel_size, gpu_memory_utilization=gpu_memory_utilization, trust_remote_code=True, dtype="bfloat16", ) logger.info("[VERBOSE] Model loaded successfully") except Exception as e: logger.error(f"Failed to load model with vLLM: {e}") if "mxfp4" in str(e).lower(): logger.error("This appears to be a quantization format issue.") logger.error("The model uses mxfp4 quantization which requires specific support.") sys.exit(1) # Create sampling parameters sampling_params = SamplingParams( temperature=temperature, max_tokens=max_tokens, stop_token_ids=stop_token_ids, ) logger.info(f"[VERBOSE] Sampling params: temp={temperature}, max_tokens={max_tokens}") # Load dataset logger.info(f"Loading dataset: {input_dataset}") dataset = load_dataset(input_dataset, split="train") # Validate prompt column if prompt_column not in dataset.column_names: logger.error( f"Column '{prompt_column}' not found. Available columns: {dataset.column_names}" ) sys.exit(1) # Limit samples if requested if max_samples: dataset = dataset.select(range(min(max_samples, len(dataset)))) total_examples = len(dataset) logger.info(f"Processing {total_examples:,} examples") # Prepare prompts using harmony format logger.info(f"Preparing prompts with harmony format and reasoning_level={reasoning_level}...") prefill_ids_list = [] prompts = [] for i, example in enumerate(tqdm(dataset, desc="Preparing prompts")): prompt_text = example[prompt_column] prompts.append(prompt_text) # Create harmony conversation # Inject reasoning level into developer message developer_content = DeveloperContent.new() if reasoning_level: developer_content = developer_content.with_instructions( f"Reasoning: {reasoning_level}" ) convo = Conversation.from_messages([ Message.from_role_and_content(Role.SYSTEM, SystemContent.new()), Message.from_role_and_content(Role.DEVELOPER, developer_content), Message.from_role_and_content(Role.USER, prompt_text), ]) # Render to token IDs prefill_ids = encoding.render_conversation_for_completion(convo, Role.ASSISTANT) prefill_ids_list.append(prefill_ids) # Log first few examples if i < 10: logger.info(f"[VERBOSE] Example {i} original text: {prompt_text[:200]}...") logger.info(f"[VERBOSE] Example {i} prefill length: {len(prefill_ids)} tokens") # Generate responses with vLLM logger.info(f"Starting generation for {len(prefill_ids_list):,} prompts...") logger.info("[VERBOSE] Using prompt_token_ids for generation") start_time = time.time() outputs = llm.generate( prompt_token_ids=prefill_ids_list, sampling_params=sampling_params, ) end_time = time.time() generation_time = end_time - start_time logger.info(f"\n[VERBOSE] Generation Performance Metrics:") logger.info(f"[VERBOSE] - Total time: {generation_time:.2f} seconds") logger.info(f"[VERBOSE] - Throughput: {len(outputs) / generation_time:.2f} prompts/second") logger.info(f"[VERBOSE] - Average time per prompt: {generation_time / len(outputs):.2f} seconds") # Parse outputs using harmony format logger.info("Parsing generated outputs with harmony format...") results = [] # Track statistics parse_stats = {"success": 0, "empty": 0, "error": 0} for i, output in enumerate(tqdm(outputs, desc="Parsing outputs")): gen = output.outputs[0] text = gen.text output_tokens = gen.token_ids logger.debug(f"[VERBOSE] Output {i}: {len(output_tokens)} tokens, {len(text)} chars") try: # Parse with harmony entries = encoding.parse_messages_from_completion_tokens(output_tokens, Role.ASSISTANT) # Convert to our format parsed = parse_harmony_messages(entries, prompts[i]) if parsed["think"] or parsed["content"]: parse_stats["success"] += 1 else: parse_stats["empty"] += 1 # Verbose logging for first 10 examples if i < 10: logger.info(f"\n[VERBOSE] ========== Example {i} Output ==========") logger.info(f"[VERBOSE] Original prompt: {prompts[i][:200]}...") logger.info(f"[VERBOSE] Raw text output: {text}") logger.info(f"[VERBOSE] Harmony entries: {len(entries)}") for j, entry in enumerate(entries): logger.info(f"[VERBOSE] Entry {j}: {json.dumps(entry.to_dict(), indent=2)}") logger.info(f"[VERBOSE] Parsed think ({len(parsed['think'])} chars): {parsed['think'][:500]}...") logger.info(f"[VERBOSE] Parsed content ({len(parsed['content'])} chars): {parsed['content'][:500]}...") logger.info(f"[VERBOSE] ====================================\n") except Exception as e: logger.error(f"[VERBOSE] Error parsing output {i}: {e}") parse_stats["error"] += 1 # Fallback: use raw text parsed = { "prompt": prompts[i], "think": "", "content": text, "raw_output": text } result = { "prompt": parsed["prompt"], "think": parsed["think"], "content": parsed["content"], "raw_output": parsed["raw_output"], "reasoning_level": reasoning_level, "model": model_id, } results.append(result) # Log parsing statistics logger.info(f"\n[VERBOSE] Parsing Statistics:") logger.info(f"[VERBOSE] - Successfully parsed: {parse_stats['success']} ({parse_stats['success']/len(outputs)*100:.1f}%)") logger.info(f"[VERBOSE] - Empty results: {parse_stats['empty']} ({parse_stats['empty']/len(outputs)*100:.1f}%)") logger.info(f"[VERBOSE] - Parse errors: {parse_stats['error']} ({parse_stats['error']/len(outputs)*100:.1f}%)") # Create dataset logger.info("Creating output dataset...") output_dataset = Dataset.from_list(results) # Create dataset card logger.info("Creating dataset card...") card_content = create_dataset_card( input_dataset=input_dataset, model_id=model_id, prompt_column=prompt_column, reasoning_level=reasoning_level, num_examples=total_examples, generation_time=generation_start_time, tensor_parallel_size=tensor_parallel_size, temperature=temperature, max_tokens=max_tokens, ) # Push to hub logger.info(f"Pushing dataset to: {output_dataset_hub_id}") output_dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN) # Push dataset card card = DatasetCard(card_content) card.push_to_hub(output_dataset_hub_id, token=HF_TOKEN) logger.info("✅ Generation complete!") logger.info( f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}" ) # Final summary logger.info(f"\n[VERBOSE] ========== FINAL SUMMARY ==========") logger.info(f"[VERBOSE] Model: {model_id}") logger.info(f"[VERBOSE] Reasoning level: {reasoning_level}") logger.info(f"[VERBOSE] Examples processed: {total_examples}") logger.info(f"[VERBOSE] Temperature: {temperature}") logger.info(f"[VERBOSE] Max tokens: {max_tokens}") logger.info(f"[VERBOSE] GPU config: {tensor_parallel_size} GPU(s)") logger.info(f"[VERBOSE] ====================================") if __name__ == "__main__": if len(sys.argv) > 1: parser = argparse.ArgumentParser( description="Generate responses with reasoning using OpenAI GPT OSS models (Harmony format)", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: # Generate haiku with reasoning uv run gpt_oss_vllm_harmony.py \\ --input-dataset davanstrien/haiku_dpo \\ --output-dataset username/haiku-reasoning \\ --prompt-column question # Any prompt dataset uv run gpt_oss_vllm_harmony.py \\ --input-dataset username/prompts \\ --output-dataset username/responses-reasoning \\ --reasoning-level high \\ --max-samples 100 # Use larger 120B model (requires 4x L40S GPUs) uv run gpt_oss_vllm_harmony.py \\ --input-dataset username/prompts \\ --output-dataset username/responses-reasoning \\ --model-id openai/gpt-oss-120b \\ --tensor-parallel-size 4 """, ) parser.add_argument( "--input-dataset", type=str, required=True, help="Input dataset on Hugging Face Hub", ) parser.add_argument( "--output-dataset", type=str, required=True, help="Output dataset name on Hugging Face Hub", ) parser.add_argument( "--prompt-column", type=str, default="prompt", help="Column containing prompts (default: prompt)", ) parser.add_argument( "--model-id", type=str, default="openai/gpt-oss-20b", help="Model to use (default: openai/gpt-oss-20b)", ) parser.add_argument( "--reasoning-level", type=str, choices=["high", "medium", "low"], default="high", help="Reasoning effort level (default: high)", ) parser.add_argument( "--max-samples", type=int, help="Maximum number of samples to process" ) parser.add_argument( "--temperature", type=float, default=0.7, help="Sampling temperature (default: 0.7)", ) parser.add_argument( "--max-tokens", type=int, default=512, help="Maximum tokens to generate (default: 512)", ) parser.add_argument( "--gpu-memory-utilization", type=float, default=0.90, help="GPU memory utilization (default: 0.90)", ) parser.add_argument( "--tensor-parallel-size", type=int, help="Number of GPUs to use (default: auto-detect)", ) parser.add_argument( "--hf-token", type=str, help="Hugging Face token (can also use HF_TOKEN env var)", ) args = parser.parse_args() main( input_dataset=args.input_dataset, output_dataset_hub_id=args.output_dataset, prompt_column=args.prompt_column, model_id=args.model_id, reasoning_level=args.reasoning_level, max_samples=args.max_samples, temperature=args.temperature, max_tokens=args.max_tokens, gpu_memory_utilization=args.gpu_memory_utilization, tensor_parallel_size=args.tensor_parallel_size, hf_token=args.hf_token, ) else: # Show HF Jobs example when run without arguments print(""" OpenAI GPT OSS Reasoning Generation Script (Harmony Format) ========================================================== This script requires arguments. For usage information: uv run gpt_oss_vllm_harmony.py --help Example HF Jobs command for 20B model: hf jobs uv run \\ --flavor a10g-large \\ # 20B model requires ~40GB memory https://huggingface.co/datasets/uv-scripts/openai-reasoning/raw/main/gpt_oss_vllm_harmony.py \\ --input-dataset davanstrien/haiku_dpo \\ --output-dataset username/haiku-reasoning \\ --prompt-column question \\ --reasoning-level high Example HF Jobs command for 120B model: hf jobs uv run \\ --flavor l40s-4x \\ # 120B model requires ~240GB memory https://huggingface.co/datasets/uv-scripts/openai-reasoning/raw/main/gpt_oss_vllm_harmony.py \\ --input-dataset username/prompts \\ --output-dataset username/responses-reasoning \\ --model-id openai/gpt-oss-120b \\ --reasoning-level high """)