diaodiao commited on
Commit
3aed964
·
verified ·
1 Parent(s): c9e02ab

Upload 50 files

Browse files
Files changed (50) hide show
  1. DrawBridgeAPI/__init__.py +0 -0
  2. DrawBridgeAPI/api_server.py +440 -0
  3. DrawBridgeAPI/app.py +105 -0
  4. DrawBridgeAPI/backend/FLUX_falai.py +100 -0
  5. DrawBridgeAPI/backend/FLUX_replicate.py +112 -0
  6. DrawBridgeAPI/backend/SD_A1111_webui.py +88 -0
  7. DrawBridgeAPI/backend/SD_civitai_API.py +108 -0
  8. DrawBridgeAPI/backend/__init__.py +909 -0
  9. DrawBridgeAPI/backend/base.py +984 -0
  10. DrawBridgeAPI/backend/comfyui.py +423 -0
  11. DrawBridgeAPI/backend/liblibai.py +205 -0
  12. DrawBridgeAPI/backend/midjourney.py +175 -0
  13. DrawBridgeAPI/backend/novelai.py +161 -0
  14. DrawBridgeAPI/backend/seaart.py +139 -0
  15. DrawBridgeAPI/backend/tusiart.py +166 -0
  16. DrawBridgeAPI/backend/yunjie.py +133 -0
  17. DrawBridgeAPI/base_config.py +334 -0
  18. DrawBridgeAPI/comfyui_workflows/diaopony-hr.json +213 -0
  19. DrawBridgeAPI/comfyui_workflows/diaopony-hr_reflex.json +7 -0
  20. DrawBridgeAPI/comfyui_workflows/diaopony-tipo.json +132 -0
  21. DrawBridgeAPI/comfyui_workflows/diaopony-tipo_reflex.json +6 -0
  22. DrawBridgeAPI/comfyui_workflows/flux-dev.json +94 -0
  23. DrawBridgeAPI/comfyui_workflows/flux-dev_reflex.json +6 -0
  24. DrawBridgeAPI/comfyui_workflows/flux-schnell.json +94 -0
  25. DrawBridgeAPI/comfyui_workflows/flux-schnell_reflex.json +6 -0
  26. DrawBridgeAPI/comfyui_workflows/flux修手.json +254 -0
  27. DrawBridgeAPI/comfyui_workflows/flux修手_reflex.json +5 -0
  28. DrawBridgeAPI/comfyui_workflows/sd3.5_txt2img.json +187 -0
  29. DrawBridgeAPI/comfyui_workflows/sd3.5_txt2img_reflex.json +7 -0
  30. DrawBridgeAPI/comfyui_workflows/sdbase_img2img.json +122 -0
  31. DrawBridgeAPI/comfyui_workflows/sdbase_img2img_reflex.json +9 -0
  32. DrawBridgeAPI/comfyui_workflows/sdbase_txt2img.json +107 -0
  33. DrawBridgeAPI/comfyui_workflows/sdbase_txt2img_hr_fix.json +266 -0
  34. DrawBridgeAPI/comfyui_workflows/sdbase_txt2img_hr_fix_reflex.json +13 -0
  35. DrawBridgeAPI/comfyui_workflows/sdbase_txt2img_reflex.json +8 -0
  36. DrawBridgeAPI/comfyui_workflows/创意融字 工作流Jianan_创意融字海报.json +1789 -0
  37. DrawBridgeAPI/config_example.yaml +208 -0
  38. DrawBridgeAPI/locales/__init__.py +10 -0
  39. DrawBridgeAPI/locales/zh/LC_MESSAGES/messages.po +122 -0
  40. DrawBridgeAPI/ui/__init__.py +0 -0
  41. DrawBridgeAPI/utils/__init__.py +91 -0
  42. DrawBridgeAPI/utils/custom_class.py +28 -0
  43. DrawBridgeAPI/utils/exceptions.py +15 -0
  44. DrawBridgeAPI/utils/llm_caption_requirements.txt +9 -0
  45. DrawBridgeAPI/utils/llm_captions.py +236 -0
  46. DrawBridgeAPI/utils/request_model.py +153 -0
  47. DrawBridgeAPI/utils/shared.py +5 -0
  48. DrawBridgeAPI/utils/tagger-requirements.txt +5 -0
  49. DrawBridgeAPI/utils/tagger.py +272 -0
  50. DrawBridgeAPI/utils/topaz.py +66 -0
DrawBridgeAPI/__init__.py ADDED
File without changes
DrawBridgeAPI/api_server.py ADDED
@@ -0,0 +1,440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import os
3
+ import httpx
4
+ import asyncio
5
+ import time
6
+ import traceback
7
+ import json
8
+ import itertools
9
+ import argparse
10
+ import uvicorn
11
+ import logging
12
+ import warnings
13
+ import uuid
14
+ import aiofiles
15
+ import gradio
16
+ import threading
17
+
18
+ os.environ['CIVITAI_API_TOKEN'] = 'kunkun'
19
+ os.environ['FAL_KEY'] = 'Daisuki'
20
+ path_env = os.getenv("CONF_PATH")
21
+
22
+ from .utils import request_model, topaz, run_later
23
+ from .base_config import setup_logger, init_instance
24
+
25
+ from fastapi import FastAPI, Request
26
+ from fastapi.responses import JSONResponse, RedirectResponse
27
+ from fastapi.exceptions import HTTPException
28
+ from pathlib import Path
29
+
30
+ from .locales import _
31
+
32
+ app = FastAPI()
33
+
34
+ parser = argparse.ArgumentParser(description='Run the FastAPI application.')
35
+ parser.add_argument('--host', type=str, default='0.0.0.0',
36
+ help='The host IP address to listen on (default: 0.0.0.0).')
37
+ parser.add_argument('--port', type=int, default=8000,
38
+ help='The port number to listen on (default: 8000).')
39
+ parser.add_argument('--conf', '-c', type=str, default='./config.yaml',
40
+ help='配置文件路径', dest='conf')
41
+
42
+ args = parser.parse_args()
43
+ port = args.port
44
+ host = args.host
45
+ config_file_path = path_env or args.conf
46
+
47
+ init_instance.init(config_file_path)
48
+ config = init_instance.config
49
+ redis_client = init_instance.redis_client
50
+
51
+ from .backend import TaskHandler, Backend, StaticHandler
52
+
53
+ warnings.filterwarnings("ignore", category=DeprecationWarning)
54
+
55
+ logger = setup_logger("[API]")
56
+ logging.getLogger("uvicorn.access").disabled = True
57
+ logging.getLogger("uvicorn.error").disabled = True
58
+ logging.getLogger("fastapi").disabled = True
59
+
60
+
61
+ class Api:
62
+ def __init__(self):
63
+ self.app = app
64
+ self.backend_instance = Backend()
65
+
66
+ self.add_api_route(
67
+ "/sdapi/v1/txt2img",
68
+ self.txt2img_api,
69
+ methods=["POST"],
70
+ # response_model=request_model.Txt2ImgRequest
71
+ )
72
+ self.add_api_route(
73
+ "/sdapi/v1/img2img",
74
+ self.img2img_api,
75
+ methods=["POST"],
76
+ # response_model=request_model.Img2ImgRequest
77
+ )
78
+ self.add_api_route(
79
+ "/sdapi/v1/sd-models",
80
+ self.get_sd_models,
81
+ methods=["GET"]
82
+ )
83
+ self.add_api_route(
84
+ "/sdapi/v1/progress",
85
+ self.get_progress,
86
+ methods=["GET"]
87
+ )
88
+ self.add_api_route(
89
+ "/sdapi/v1/memory",
90
+ self.get_memory,
91
+ methods=["GET"]
92
+ )
93
+ self.add_api_route(
94
+ "/sdapi/v1/options",
95
+ self.get_options,
96
+ methods=["GET"]
97
+ )
98
+ self.add_api_route(
99
+ "/sdapi/v1/options",
100
+ self.set_options,
101
+ methods=["POST"]
102
+ )
103
+ self.add_api_route(
104
+ "/sdapi/v1/prompt-styles",
105
+ self.get_prompt_styles,
106
+ methods=["GET"]
107
+ )
108
+
109
+ if config.server_settings['build_in_tagger']:
110
+
111
+ from .utils.tagger import wd_tagger_handler, wd_logger
112
+ self.add_api_route(
113
+ "/tagger/v1/interrogate",
114
+ self.tagger,
115
+ methods=["POST"],
116
+ response_model=request_model.TaggerRequest
117
+ )
118
+
119
+ if config.server_settings['llm_caption']['enable']:
120
+ from .utils.llm_captions import llm_logger, joy_caption_handler
121
+ self.add_api_route(
122
+ "/llm/caption",
123
+ self.llm_caption,
124
+ methods=["POST"],
125
+ response_model=request_model.TaggerRequest
126
+ )
127
+
128
+ if config.server_settings['build_in_photoai']['exec_path']:
129
+ self.add_api_route(
130
+ "/topazai/image",
131
+ self.topaz_ai,
132
+ methods=["POST"]
133
+ )
134
+
135
+ def add_api_route(self, path: str, endpoint, **kwargs):
136
+ return self.app.add_api_route(path, endpoint, **kwargs)
137
+
138
+ @staticmethod
139
+ async def generate_handle(data) -> TaskHandler:
140
+
141
+ model_to_backend = None
142
+ if data['override_settings'].get("sd_model_checkpoint", None):
143
+ model_to_backend = data['override_settings'].get("sd_model_checkpoint", None)
144
+
145
+ styles = data.get('styles', [])
146
+ selected_style = []
147
+ selected_comfyui_style = []
148
+
149
+ logger.error(styles)
150
+
151
+ if styles:
152
+ api_styles = StaticHandler.get_prompt_style()
153
+
154
+ for index, i in enumerate(api_styles):
155
+ for style in styles:
156
+ if style in i['name']:
157
+ if 'comfyui' in i['name']:
158
+ logger.info(f"{_('Selected ComfyUI style')} - {i['name']}")
159
+ selected_comfyui_style.append(i['name'])
160
+ else:
161
+ selected_style.append(i['name'])
162
+
163
+ if selected_style:
164
+ for i in selected_style:
165
+ data['prompt'] = data.get('prompt', '') + i['prompt']
166
+ data['negative_prompt'] = data.get('negative_prompt', '') + i['negative_prompt']
167
+
168
+ task_handler = TaskHandler(
169
+ data,
170
+ model_to_backend=model_to_backend,
171
+ comfyui_json=selected_comfyui_style[0].replace('comfyui-work-flows-', '') if selected_comfyui_style else None
172
+ )
173
+
174
+ return task_handler
175
+
176
+ @staticmethod
177
+ async def txt2img_api(request: request_model.Txt2ImgRequest, api: Request):
178
+
179
+ data = request.model_dump()
180
+ client_host = api.client.host
181
+
182
+ task_handler = await Api.generate_handle(data)
183
+
184
+ try:
185
+ logger.info(f"{_('Exec TXT2IMG')} - {client_host}")
186
+ result = await task_handler.txt2img()
187
+ except Exception as e:
188
+ logger.error(traceback.format_exc())
189
+ raise HTTPException(status_code=500, detail=str(e))
190
+
191
+ if result is None:
192
+ raise HTTPException(500, detail='Result not found')
193
+
194
+ return result
195
+
196
+ @staticmethod
197
+ async def img2img_api(request: request_model.Img2ImgRequest, api: Request):
198
+ data = request.model_dump()
199
+ client_host = api.client.host
200
+
201
+ if len(data['init_images']) == 0:
202
+ raise HTTPException(status_code=400, detail=_('IMG2IMG Requires image to start'))
203
+
204
+ task_handler = await Api.generate_handle(data)
205
+
206
+ try:
207
+ logger.info(f"{_('Exec IMG2IMG')} - {client_host}")
208
+ result = await task_handler.img2img()
209
+ except Exception as e:
210
+ logger.error(traceback.format_exc())
211
+ raise HTTPException(status_code=500, detail=str(e))
212
+
213
+ if result is None:
214
+ raise HTTPException(500, detail='Result not found')
215
+
216
+ return result
217
+
218
+ @staticmethod
219
+ async def get_sd_models():
220
+
221
+ task_list = []
222
+ path = '/sdapi/v1/sd-models'
223
+
224
+ task_handler = TaskHandler({}, None, path, reutrn_instance=True, override_model_select=True)
225
+ instance_list: list[Backend] = await task_handler.txt2img()
226
+
227
+ for i in instance_list:
228
+ task_list.append(i.get_models())
229
+ resp = await asyncio.gather(*task_list)
230
+
231
+ models_dict = {}
232
+ api_respond = []
233
+ for i in resp:
234
+ models_dict = models_dict | i
235
+ api_respond = api_respond + list(i.values())
236
+
237
+ api_respond = list(itertools.chain.from_iterable(api_respond))
238
+
239
+ redis_resp: bytes = redis_client.get('models')
240
+ redis_resp: dict = json.loads(redis_resp.decode('utf-8'))
241
+ redis_resp.update(models_dict)
242
+ redis_client.set('models', json.dumps(redis_resp))
243
+ return api_respond
244
+
245
+ async def tagger(self, request: request_model.TaggerRequest):
246
+ from .utils.tagger import wd_tagger_handler, wd_logger
247
+
248
+ data = request.model_dump()
249
+ base64_image = await self.download_img_from_url(data)
250
+ caption = await wd_tagger_handler.tagger_main(base64_image, data['threshold'], data['exclude_tags'])
251
+ resp = {}
252
+
253
+ resp['caption'] = caption
254
+ wd_logger.info(f"{_('Caption Successful')}, {caption}")
255
+ return JSONResponse(resp)
256
+
257
+ async def llm_caption(self, request: request_model.TaggerRequest):
258
+
259
+ from .utils.llm_captions import llm_logger, joy_caption_handler
260
+ from .utils.tagger import wd_tagger_handler, wd_logger
261
+
262
+ data = request.model_dump()
263
+ base64_image = await self.download_img_from_url(data)
264
+
265
+ try:
266
+ caption = await joy_caption_handler.get_caption(base64_image, data['exclude_tags'])
267
+ except Exception as e:
268
+ traceback.print_exc()
269
+ raise HTTPException(status_code=500, detail=str(e))
270
+
271
+ resp = {}
272
+
273
+ resp['llm'] = caption
274
+ llm_logger.info(f"{_('Caption Successful')}, {caption}")
275
+ # caption = await wd_tagger_handler.tagger_main(
276
+ # base64_image,
277
+ # data['threshold'],
278
+ # data['exclude_tags']
279
+ # )
280
+ #
281
+ # resp['caption'] = caption
282
+ # wd_logger.info(f"打标成功,{caption}")
283
+ return JSONResponse(resp)
284
+
285
+ async def get_progress(self):
286
+ return JSONResponse(self.backend_instance.format_progress_api_resp(0.0, time.time()))
287
+
288
+ async def get_memory(self):
289
+ return JSONResponse(self.backend_instance.format_vram_api_resp())
290
+
291
+ @staticmethod
292
+ async def get_options():
293
+ return JSONResponse(StaticHandler.get_backend_options())
294
+
295
+ @staticmethod
296
+ async def set_options(request: request_model.SetConfigRequest):
297
+
298
+ data = request.model_dump()
299
+ if data.get('sd_model_checkpoint', None):
300
+ logger.info(_("Lock to backend has configured"))
301
+ StaticHandler.set_lock_to_backend(data.get('sd_model_checkpoint'))
302
+
303
+ return
304
+
305
+ @staticmethod
306
+ async def topaz_ai(request: request_model.TopazAiRequest):
307
+ data = request.model_dump()
308
+
309
+ unique_id = str(uuid.uuid4())
310
+ save_dir = Path("saved_images") / unique_id
311
+ processed_dir = save_dir / 'processed'
312
+ save_dir.mkdir(parents=True, exist_ok=True)
313
+ del data['output_folder']
314
+
315
+ try:
316
+
317
+ if data['image']:
318
+ base64_image = data['image']
319
+ input_image_path = save_dir / f"{unique_id}_image.png"
320
+ async with aiofiles.open(input_image_path, "wb") as image_file:
321
+ await image_file.write(base64.b64decode(base64_image))
322
+ output, error, return_code = await asyncio.get_running_loop().run_in_executor(
323
+ None, topaz.run_tpai(
324
+ input_folder=str(save_dir.resolve()),
325
+ output_folder=str(processed_dir.resolve()),
326
+ **data
327
+ )
328
+ )
329
+ elif data['input_folder']:
330
+ output, error, return_code = await asyncio.get_running_loop().run_in_executor(
331
+ None, topaz.run_tpai(
332
+ output_folder=str(processed_dir.resolve()),
333
+ **data
334
+ )
335
+ )
336
+ except:
337
+ traceback.print_exc()
338
+ raise HTTPException(status_code=500, detail="Error occurred while processing the image.")
339
+
340
+ if return_code == 0:
341
+ files = list(processed_dir.glob("*"))
342
+
343
+ processed_image_path = files[0]
344
+ if processed_image_path.exists():
345
+ async with aiofiles.open(processed_image_path, "rb") as img_file:
346
+ encoded_image = base64.b64encode(await img_file.read()).decode('utf-8')
347
+ processed_dir.rmdir()
348
+ return {"status": "success", "image": encoded_image}
349
+ else:
350
+ raise HTTPException(status_code=500, detail="Processed image not found.")
351
+ else:
352
+ raise HTTPException(status_code=500, detail=f"Error: {error}")
353
+
354
+ async def download_img_from_url(self, data):
355
+
356
+ base64_image = data['image']
357
+
358
+ if data['image'].startswith("http"):
359
+ image_url = data['image']
360
+ logger.info(f"{_('URL detected')}: {image_url}")
361
+ response = await self.backend_instance.http_request(
362
+ "GET",
363
+ image_url,
364
+ format=False
365
+ )
366
+
367
+ if response.status_code != 200:
368
+ logger.warning(_("Image download failed!"))
369
+
370
+ base64_image = base64.b64encode(response.read())
371
+
372
+ return base64_image
373
+
374
+ @staticmethod
375
+ async def get_prompt_styles():
376
+
377
+ task_list = []
378
+ path = '/sdapi/v1/prompt-styles'
379
+
380
+ task_handler = TaskHandler({}, None, path, reutrn_instance=True, override_model_select=True)
381
+ instance_list: list[Backend] = await task_handler.txt2img()
382
+
383
+ for i in instance_list:
384
+ task_list.append(i.get_all_prompt_style())
385
+ resp = await asyncio.gather(*task_list)
386
+
387
+ api_respond = []
388
+ for i in resp:
389
+ api_respond += i
390
+
391
+ StaticHandler.set_prompt_style(api_respond)
392
+
393
+ return api_respond
394
+
395
+ async def init_api(self):
396
+ await self.get_sd_models()
397
+ await self.get_prompt_styles()
398
+
399
+
400
+ api_instance = Api()
401
+
402
+
403
+ @app.api_route("/{path:path}", methods=["GET", "POST", "PUT", "DELETE", "PATCH"])
404
+ async def proxy(path: str, request: Request):
405
+ client_host = request.client.host
406
+
407
+ task_handler = TaskHandler({}, request, path)
408
+
409
+ try:
410
+ logger.info(f"{_('Exec forwarding')} - {client_host}")
411
+ result = await task_handler.sd_api()
412
+ except Exception as e:
413
+ logger.error(traceback.format_exc())
414
+ raise HTTPException(500, detail=str(e))
415
+
416
+ if result is None:
417
+ raise HTTPException(500, detail='Result not found')
418
+
419
+ return result
420
+
421
+
422
+ @app.get("/backend-control")
423
+ async def get_backend_control(backend: str, key: str, value: bool):
424
+ pass
425
+
426
+
427
+ @app.on_event("startup")
428
+ async def startup_event():
429
+ logger.info(_('Waiting for API initialization'))
430
+ await api_instance.init_api()
431
+ logger.info(_('API initialization completed'))
432
+
433
+
434
+ if __name__ == "__main__":
435
+
436
+ # if config.server_settings['start_gradio']:
437
+ # demo = create_gradio_interface(host, port)
438
+ # app = gradio.mount_gradio_app(api_instance.app, demo, path="/")
439
+
440
+ uvicorn.run(api_instance.app, host=host, port=port)
DrawBridgeAPI/app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import asyncio
3
+ import gradio as gr
4
+ import os
5
+ os.environ['CIVITAI_API_TOKEN'] = 'kunkun'
6
+ os.environ['FAL_KEY'] = 'Daisuki'
7
+ os.environ['CONF_PATH'] = './config.yaml'
8
+ from PIL import Image
9
+
10
+ import io
11
+ import base64
12
+ import httpx
13
+ from .base_config import init_instance
14
+ from .backend import TaskHandler
15
+ from .locales import _
16
+
17
+
18
+ class Gradio:
19
+ def __init__(self, host, port):
20
+ self.host = '127.0.0.1' if host == '0.0.0.0' else host
21
+ self.port = port
22
+
23
+ def get_caption(self, image):
24
+ caption = httpx.post(
25
+ f"http://{self.host}:{self.port}/tagger/v1/interrogate",
26
+ json=json.loads({"image": image}), timeout=600).json()
27
+ return caption
28
+
29
+
30
+ def format_caption_output(caption_result):
31
+ llm_text = caption_result.get("llm", '')
32
+ word_scores = "\n".join([f"{word}: {score}" for word, score in caption_result["caption"].items()])
33
+ word_ = ",".join([f"{word}" for word in caption_result["caption"].keys()])
34
+ return llm_text, word_scores, word_
35
+
36
+
37
+ async def create_gradio_interface(host, port):
38
+
39
+ gradio_api = Gradio(host, port)
40
+ from .api_server import api_instance
41
+ all_models = [i['title'] for i in await api_instance.get_sd_models()]
42
+ init_instance.logger.info(f"{_('Server is ready!')} Listen on {host}:{port}")
43
+
44
+ async def get_image(model, prompt, negative_prompt, width, height, cfg_scale, steps):
45
+
46
+ payload = {
47
+ "prompt": prompt,
48
+ "negative_prompt": negative_prompt,
49
+ "width": width,
50
+ "height": height,
51
+ "steps": steps,
52
+ "cfg_scale": cfg_scale
53
+ }
54
+
55
+ task_handler = TaskHandler(payload, model_to_backend=model)
56
+ result = await task_handler.txt2img()
57
+ image_data = result.get("images")[0]
58
+ image = Image.open(io.BytesIO(base64.b64decode(image_data)))
59
+ return image
60
+
61
+ with gr.Blocks() as demo:
62
+ with gr.Tab("txt2img"):
63
+ with gr.Row():
64
+ with gr.Column():
65
+ model = gr.Dropdown(label="Model", choices=all_models)
66
+ prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
67
+ negative_prompt = gr.Textbox(label="Negative Prompt",
68
+ placeholder="Enter your negative prompt here...")
69
+ width = gr.Slider(label="Width", minimum=64, maximum=2048, step=1, value=512)
70
+ height = gr.Slider(label="Height", minimum=64, maximum=2048, step=1, value=512)
71
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=30, step=0.1, value=7.5)
72
+ steps = gr.Slider(label="Steps", minimum=1, maximum=200, step=1, value=20)
73
+ generate_button = gr.Button("Generate Image")
74
+
75
+ with gr.Column():
76
+ output_image = gr.Image(label="Generated Image")
77
+
78
+ generate_button.click(get_image, [model, prompt, negative_prompt, width, height, cfg_scale, steps],
79
+ output_image)
80
+
81
+ with gr.Tab("Caption"):
82
+ with gr.Row():
83
+ with gr.Column():
84
+ input_image = gr.Image(label="Input Image")
85
+ caption_button = gr.Button("Get Caption")
86
+
87
+ with gr.Column():
88
+ llm_output = gr.Textbox(label="Natural Language Description")
89
+ word_output_ = gr.Textbox(label="Keywords", lines=6)
90
+ word_output = gr.Textbox(label="Keywords with Scores", lines=6)
91
+
92
+ caption_button.click(
93
+ lambda image: format_caption_output(gradio_api.get_caption(image)),
94
+ inputs=[input_image],
95
+ outputs=[llm_output, word_output, word_output_]
96
+ )
97
+
98
+ return demo
99
+
100
+
101
+ async def run_gradio(host, port):
102
+ interface = await create_gradio_interface(host, port)
103
+ interface.launch(server_name=host, server_port=port+1)
104
+
105
+ asyncio.run(run_gradio("127.0.0.1", 5421))
DrawBridgeAPI/backend/FLUX_falai.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import traceback
2
+ import piexif
3
+ import fal_client
4
+ import os
5
+
6
+ from io import BytesIO
7
+ from .base import Backend
8
+
9
+
10
+ class AIDRAW(Backend):
11
+
12
+ def __init__(self, count, payload, **kwargs):
13
+ super().__init__(count=count, payload=payload, **kwargs)
14
+
15
+ self.model = "Fal-AI - FLUX.1 [schnell]"
16
+ self.model_hash = "c7352c5d2f"
17
+ self.logger = self.setup_logger('[FLUX-FalAI]')
18
+
19
+ token = self.config.fal_ai[self.count]
20
+ self.token = token
21
+ self.backend_name = self.config.backend_name_list[2]
22
+ self.workload_name = f"{self.backend_name}-{token}"
23
+
24
+ async def get_shape(self):
25
+
26
+ aspect_ratio = self.width / self.height
27
+ tolerance = 0.05
28
+
29
+ def is_close_to_ratio(ratio):
30
+ return abs(aspect_ratio - ratio) < tolerance
31
+
32
+ if self.width == self.height:
33
+ return "square"
34
+ elif is_close_to_ratio(4 / 3):
35
+ return "portrait_4_3" if self.height > self.width else "landscape_4_3"
36
+ elif is_close_to_ratio(16 / 9):
37
+ return "portrait_16_9" if self.height > self.width else "landscape_16_9"
38
+ else:
39
+ return "portrait_4_3"
40
+
41
+ async def update_progress(self):
42
+ # 覆写函数
43
+ pass
44
+
45
+ async def get_img_comment(self):
46
+
47
+ image_data = self.img_btyes[0]
48
+ image_file = BytesIO(image_data)
49
+ image_bytes = image_file.getvalue()
50
+ exif_dict = piexif.load(image_bytes)
51
+ try:
52
+ user_comment = exif_dict['Exif'].get(piexif.ExifIFD.UserComment)
53
+ except Exception:
54
+ return 'No Raw Data'
55
+
56
+ return user_comment.decode('utf-8', errors='ignore')
57
+
58
+ async def check_backend_usability(self):
59
+ pass
60
+
61
+ async def err_formating_to_sd_style(self):
62
+
63
+ await self.download_img()
64
+
65
+ self.format_api_respond()
66
+
67
+ self.result = self.build_respond
68
+
69
+ async def posting(self):
70
+
71
+ os.environ['FAL_KEY'] = self.token
72
+ image_shape = await self.get_shape()
73
+ self.steps = int(self.steps / 3)
74
+
75
+ handler = await fal_client.submit_async(
76
+ "fal-ai/flux/schnell",
77
+ arguments={
78
+ "prompt": self.tags,
79
+ "image_size": image_shape,
80
+ "seed": self.seed,
81
+ "num_inference_steps": self.steps, # FLUX不需要很高的步数
82
+ "num_images": self.total_img_count,
83
+ "enable_safety_checker": True
84
+ },
85
+ )
86
+
87
+ response = await handler.get()
88
+
89
+ try:
90
+ if response['images']:
91
+ images_list = response['images']
92
+ for i in images_list:
93
+ self.img_url.append(i['url'])
94
+ else:
95
+ raise ValueError("图片没有被生成,可能是图片没有完成或者结果不可用")
96
+ except Exception as e:
97
+ self.fail_on_requesting = True
98
+ self.logger.error(f"请求API失败: {e}\n{traceback.format_exc()}")
99
+
100
+ await self.err_formating_to_sd_style()
DrawBridgeAPI/backend/FLUX_replicate.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import traceback
2
+ import piexif
3
+ import os
4
+ import replicate
5
+
6
+ from io import BytesIO
7
+
8
+ from .base import Backend
9
+
10
+
11
+ class AIDRAW(Backend):
12
+
13
+ def __init__(self, count, payload, **kwargs):
14
+ super().__init__(count=count, payload=payload, **kwargs)
15
+
16
+ self.model = "Replicate - FLUX.1 [schnell]"
17
+ self.model_hash = "c7352c5d2f"
18
+ self.logger = self.setup_logger('[FLUX-Replicate]')
19
+
20
+ token = self.config.replicate[self.count]
21
+ self.token = token
22
+ self.backend_name = self.config.backend_name_list[3]
23
+ self.workload_name = f"{self.backend_name}-{token}"
24
+
25
+ async def get_shape(self):
26
+
27
+ aspect_ratio = self.width / self.height
28
+ tolerance = 0.05
29
+
30
+ def is_close_to_ratio(ratio):
31
+ return abs(aspect_ratio - ratio) < tolerance
32
+
33
+ if self.width == self.height:
34
+ return "1:1"
35
+ elif is_close_to_ratio(16 / 9):
36
+ return "16:9"
37
+ elif is_close_to_ratio(21 / 9):
38
+ return "21:9"
39
+ elif is_close_to_ratio(2 / 3):
40
+ return "2:3"
41
+ elif is_close_to_ratio(3 / 2):
42
+ return "3:2"
43
+ elif is_close_to_ratio(4 / 5):
44
+ return "4:5"
45
+ elif is_close_to_ratio(5 / 4):
46
+ return "5:4"
47
+ elif is_close_to_ratio(9 / 16):
48
+ return "9:16"
49
+ elif is_close_to_ratio(9 / 21):
50
+ return "9:21"
51
+ else:
52
+ return "2:3"
53
+
54
+ async def update_progress(self):
55
+ # 覆写函数
56
+ pass
57
+
58
+ async def get_img_comment(self):
59
+
60
+ image_data = self.img_btyes[0]
61
+ image_file = BytesIO(image_data)
62
+ image_bytes = image_file.getvalue()
63
+ exif_dict = piexif.load(image_bytes)
64
+ try:
65
+ user_comment = exif_dict['Exif'].get(piexif.ExifIFD.UserComment)
66
+ except Exception:
67
+ return 'No Raw Data'
68
+
69
+ return user_comment.decode('utf-8', errors='ignore')
70
+
71
+ async def check_backend_usability(self):
72
+ pass
73
+
74
+ async def err_formating_to_sd_style(self):
75
+
76
+ await self.download_img()
77
+
78
+ self.format_api_respond()
79
+
80
+ self.result = self.build_respond
81
+
82
+ async def posting(self):
83
+
84
+ os.environ['REPLICATE_API_TOKEN'] = self.token
85
+ image_shape = await self.get_shape()
86
+
87
+ input_ = {
88
+ "prompt": self.tags,
89
+ "seed": self.seed,
90
+ "num_outputs": self.total_img_count,
91
+ "aspect_ratio": image_shape,
92
+ "output_format": 'png',
93
+ "output_quality": 90
94
+ }
95
+
96
+ output = await replicate.async_run(
97
+ "black-forest-labs/flux-schnell",
98
+ input=input_
99
+ )
100
+
101
+ try:
102
+ if output:
103
+ for i in output:
104
+ self.img_url.append(i)
105
+ else:
106
+ raise ValueError("图片没有被生成,可能是图片没有完成或者结果不可用")
107
+ except Exception as e:
108
+ self.fail_on_requesting = True
109
+ self.logger.error(f"请求API失败: {e}\n{traceback.format_exc()}")
110
+
111
+ await self.err_formating_to_sd_style()
112
+
DrawBridgeAPI/backend/SD_A1111_webui.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from urllib.parse import urlencode
2
+
3
+ from .base import Backend
4
+
5
+
6
+ class AIDRAW(Backend):
7
+
8
+ def __init__(self, count, payload, **kwargs):
9
+ super().__init__(count=count, payload=payload, **kwargs)
10
+
11
+ self.model = "StableDiffusion"
12
+ self.model_hash = "c7352c5d2f"
13
+ self.logger = self.setup_logger('[SD-A1111]')
14
+ self.current_config: dict = self.config.a1111webui_setting
15
+
16
+ self.backend_url = self.current_config['backend_url'][self.count]
17
+ name = self.current_config['name'][self.count]
18
+ self.backend_name = self.config.backend_name_list[1]
19
+ self.workload_name = f"{self.backend_name}-{name}"
20
+
21
+ async def exec_login(self):
22
+ login_data = {
23
+ 'username': self.current_config['username'][self.count],
24
+ 'password': self.current_config['password'][self.count]
25
+ }
26
+ encoded_data = urlencode(login_data)
27
+
28
+ response = await self.http_request(
29
+ method="POST",
30
+ target_url=f"{self.backend_url}/login",
31
+ headers={
32
+ "Content-Type": "application/x-www-form-urlencoded",
33
+ "accept": "application/json"
34
+ },
35
+ content=encoded_data,
36
+ )
37
+ if response.get('error') == "error":
38
+ self.logger.warning(f"后端{self.backend_name}登录失败")
39
+ self.fail_on_login = True
40
+ return False, 500
41
+ else:
42
+ self.logger.info(f"后端{self.backend_name}登录成功")
43
+ return True, 200
44
+
45
+ async def check_backend_usability(self):
46
+
47
+ if self.login:
48
+ resp = await self.exec_login()
49
+ if resp[0] is None:
50
+ self.fail_on_login = True
51
+ self.logger.warning(f"后端{self.backend_name}登陆失败")
52
+ return False, resp
53
+
54
+ async def get_backend_working_progress(self):
55
+ """
56
+ 获取后端工作进度, 默认A1111
57
+ :return:
58
+ """
59
+ self.get_backend_id()
60
+ respond = await self.http_request(
61
+ "GET",
62
+ f"{self.backend_url}/sdapi/v1/options",
63
+ verify=False,
64
+ proxy=False,
65
+ use_aiohttp=False
66
+ )
67
+
68
+ print(respond)
69
+
70
+ self.model = respond['sd_model_checkpoint']
71
+ self.model_hash = respond
72
+
73
+ if self.current_config['auth'][self.count]:
74
+ self.login = True
75
+ await self.exec_login()
76
+
77
+ api_url = f"{self.backend_url}/sdapi/v1/progress"
78
+
79
+ resp = await self.http_request(
80
+ method="GET",
81
+ target_url=api_url,
82
+ format=False
83
+ )
84
+
85
+ resp_json = resp.json()
86
+ return resp_json, resp.status_code, self.backend_url, resp.status_code
87
+
88
+
DrawBridgeAPI/backend/SD_civitai_API.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import traceback
2
+ import piexif
3
+ import os
4
+ import civitai
5
+
6
+ from io import BytesIO
7
+
8
+ from .base import Backend
9
+
10
+ class AIDRAW(Backend):
11
+
12
+ def __init__(self, count, payload, **kwargs):
13
+ super().__init__(count=count, payload=payload, **kwargs)
14
+
15
+ self.model = "Civitai - urn:air:sd1:checkpoint:civitai:4201@130072"
16
+ self.model_hash = "c7352c5d2f"
17
+ self.logger = self.setup_logger('[Civitai]')
18
+
19
+ token = self.config.civitai[self.count]
20
+ self.token = token
21
+ self.backend_name = self.config.backend_name_list[0]
22
+ self.workload_name = f"{self.backend_name}-{token}"
23
+
24
+
25
+ async def update_progress(self):
26
+ # 覆写函数
27
+ pass
28
+
29
+ async def get_img_comment(self):
30
+
31
+ image_data = self.img_btyes[0]
32
+ image_file = BytesIO(image_data)
33
+ image_bytes = image_file.getvalue()
34
+ exif_dict = piexif.load(image_bytes)
35
+ try:
36
+ user_comment = exif_dict['Exif'].get(piexif.ExifIFD.UserComment)
37
+ except KeyError:
38
+ return 'No Raw Data'
39
+
40
+ return user_comment.decode('utf-8', errors='ignore')
41
+
42
+ async def check_backend_usability(self):
43
+
44
+ self.headers['Authorization'] = f"Bearer {self.token}"
45
+ response = await self.http_request(
46
+ method="GET",
47
+ target_url='https://civitai.com/api/v1/models',
48
+ headers=self.headers,
49
+ params=None,
50
+ format=True
51
+ )
52
+
53
+ if isinstance(response, dict) and 'error' in response:
54
+ self.fail_on_login = True
55
+ return False
56
+ else:
57
+ resp_json = response
58
+ return True, (resp_json, 200)
59
+
60
+ async def err_formating_to_sd_style(self):
61
+
62
+ await self.download_img()
63
+ self.format_api_respond()
64
+ self.result = self.build_respond
65
+
66
+ async def posting(self):
67
+
68
+ self.logger.info(f"开始使用{self.token}获取图片")
69
+
70
+ os.environ['CIVITAI_API_TOKEN'] = self.token
71
+ os.environ['HTTP_PROXY'] = self.config.civitai_setting['proxy'][self.count]
72
+ os.environ['HTTPS_PROXY'] = self.config.civitai_setting['proxy'][self.count]
73
+ await self.check_backend_usability()
74
+
75
+ input_ = {
76
+ "model": "urn:air:sd1:checkpoint:civitai:4201@130072",
77
+ "params": {
78
+ "prompt": self.tags,
79
+ "negativePrompt": self.ntags,
80
+ "scheduler": self.sampler,
81
+ "steps": self.steps,
82
+ "cfgScale": self.scale,
83
+ "width": self.width,
84
+ "height": self.height,
85
+ "clipSkip": 2,
86
+ "seed": self.seed
87
+ }
88
+ }
89
+
90
+ self.logger.info(f"任务已经发送!本次生图{self.total_img_count}张")
91
+
92
+ for i in range(self.total_img_count):
93
+
94
+ try:
95
+ response = await civitai.image.create(input_, wait=True)
96
+ if response['jobs'][0]['result'].get('available'):
97
+ self.img_url.append(response['jobs'][0]['result'].get('blobUrl'))
98
+ else:
99
+ raise ValueError("图片没有被生成,可能是图片没有完成或者结果不可用")
100
+ except Exception as e:
101
+ self.fail_on_requesting = True
102
+ self.logger.error(f"请求API失败: {e}\n{traceback.format_exc()}")
103
+
104
+ await self.err_formating_to_sd_style()
105
+
106
+
107
+
108
+
DrawBridgeAPI/backend/__init__.py ADDED
@@ -0,0 +1,909 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import random
3
+ import json
4
+ import time
5
+
6
+ import aiofiles
7
+
8
+ from tqdm import tqdm
9
+ from pathlib import Path
10
+ from fastapi import Request
11
+ from fastapi.responses import JSONResponse
12
+ from typing import Union
13
+ from colorama import Fore, Style
14
+ from colorama import init
15
+ init()
16
+
17
+ from ..base_config import setup_logger, init_instance
18
+ from .SD_civitai_API import AIDRAW
19
+ from .SD_A1111_webui import AIDRAW as AIDRAW2
20
+ from .FLUX_falai import AIDRAW as AIDRAW3
21
+ from .FLUX_replicate import AIDRAW as AIDRAW4
22
+ from .liblibai import AIDRAW as AIDRAW5
23
+ from .tusiart import AIDRAW as AIDRAW6
24
+ from .seaart import AIDRAW as AIDRAW7
25
+ from .yunjie import AIDRAW as AIDRAW8
26
+ from .comfyui import AIDRAW as AIDRAW9
27
+ from .novelai import AIDRAW as AIDRAW10
28
+ from .midjourney import AIDRAW as AIDRAW11
29
+ from .base import Backend
30
+
31
+ from DrawBridgeAPI.locales import _ as i18n
32
+
33
+ class BaseHandler:
34
+
35
+ def __init__(
36
+ self,
37
+ payload,
38
+ request: Request = None,
39
+ path: str = None,
40
+ comfyui_task=None,
41
+ ):
42
+ self.task_list = []
43
+ self.instance_list: list[Backend] = []
44
+ self.payload = payload
45
+ self.request = request
46
+ self.path = path
47
+ self.config = init_instance.config
48
+ self.all_task_list = list(range(len(list(self.config.name_url[0].keys()))))
49
+ self.enable_backend: dict = {}
50
+ self.comfyui_task: str = comfyui_task
51
+
52
+ async def get_enable_task(
53
+ self,
54
+ enable_task
55
+ ):
56
+ """
57
+ 此函数的作用是获取示例并且只保留选择了的后端
58
+ :param enable_task:
59
+ :return:
60
+ """
61
+ tasks = [
62
+ self.get_civitai_task(),
63
+ self.get_a1111_task(),
64
+ self.get_falai_task(),
65
+ self.get_replicate_task(),
66
+ self.get_liblibai_task(),
67
+ self.get_tusiart_task(),
68
+ self.get_seaart_task(),
69
+ self.get_yunjie_task(),
70
+ self.get_comfyui_task(),
71
+ self.get_novelai_task(),
72
+ self.get_midjourney_task()
73
+ ]
74
+
75
+ all_backend_instance = await asyncio.gather(*tasks)
76
+ all_backend_instance_list = [item for sublist in all_backend_instance for item in sublist]
77
+
78
+ # 获取启动的后端字典
79
+ all_backend_dict: dict = self.config.name_url[0]
80
+ items = list(all_backend_dict.items())
81
+ self.enable_backend = dict([items[i] for i in enable_task])
82
+
83
+ self.instance_list = [all_backend_instance_list[i] for i in enable_task]
84
+
85
+ async def get_civitai_task(self):
86
+ instance_list = []
87
+ counter = 0
88
+ for i in self.config.civitai:
89
+ if i is not None:
90
+ aidraw_instance = AIDRAW(count=counter, payload=self.payload)
91
+ counter += 1
92
+ instance_list.append(aidraw_instance)
93
+
94
+ return instance_list
95
+
96
+ async def get_a1111_task(self):
97
+
98
+ instance_list = []
99
+ counter = 0
100
+ for i in self.config.a1111webui['name']:
101
+ aidraw_instance = AIDRAW2(
102
+ count=counter,
103
+ payload=self.payload,
104
+ request=self.request,
105
+ path=self.path
106
+ )
107
+ counter += 1
108
+ instance_list.append(aidraw_instance)
109
+
110
+ return instance_list
111
+
112
+ async def get_falai_task(self):
113
+
114
+ instance_list = []
115
+ counter = 0
116
+ for i in self.config.fal_ai:
117
+ if i is not None:
118
+ aidraw_instance = AIDRAW3(count=counter, payload=self.payload)
119
+ counter += 1
120
+ instance_list.append(aidraw_instance)
121
+
122
+ return instance_list
123
+
124
+ async def get_replicate_task(self):
125
+
126
+ instance_list = []
127
+ counter = 0
128
+ for i in self.config.replicate:
129
+ if i is not None:
130
+ aidraw_instance = AIDRAW4(count=counter, payload=self.payload)
131
+ counter += 1
132
+ instance_list.append(aidraw_instance)
133
+
134
+ return instance_list
135
+
136
+ async def get_liblibai_task(self):
137
+ instance_list = []
138
+ counter = 0
139
+ for i in self.config.liblibai:
140
+ if i is not None:
141
+ aidraw_instance = AIDRAW5(count=counter, payload=self.payload)
142
+ counter += 1
143
+ instance_list.append(aidraw_instance)
144
+
145
+ return instance_list
146
+
147
+ async def get_tusiart_task(self):
148
+ instance_list = []
149
+ counter = 0
150
+ for i in self.config.tusiart:
151
+ if i is not None:
152
+ aidraw_instance = AIDRAW6(count=counter, payload=self.payload)
153
+ counter += 1
154
+ instance_list.append(aidraw_instance)
155
+
156
+ return instance_list
157
+
158
+ async def get_seaart_task(self):
159
+ instance_list = []
160
+ counter = 0
161
+ for i in self.config.seaart:
162
+ if i is not None:
163
+ aidraw_instance = AIDRAW7(count=counter, payload=self.payload)
164
+ counter += 1
165
+ instance_list.append(aidraw_instance)
166
+
167
+ return instance_list
168
+
169
+ async def get_yunjie_task(self):
170
+ instance_list = []
171
+ counter = 0
172
+ for i in self.config.yunjie:
173
+ if i is not None:
174
+ aidraw_instance = AIDRAW8(count=counter, payload=self.payload)
175
+ counter += 1
176
+ instance_list.append(aidraw_instance)
177
+
178
+ return instance_list
179
+
180
+ async def get_comfyui_task(self):
181
+
182
+ instance_list = []
183
+ counter = 0
184
+
185
+ hr_mode = self.payload.get('enable_hr', None)
186
+
187
+ for i in self.config.comfyui['name']:
188
+
189
+ try:
190
+ selected_task = (
191
+ "sdbase_txt2img_hr_fix" if hr_mode
192
+ else self.config.comfyui.get('default_workflows', ['sdbase_txt2img'])[counter]
193
+ )
194
+ except IndexError:
195
+ selected_task = "sdbase_txt2img"
196
+
197
+ img2img = self.payload.get("init_images", [])
198
+ if img2img:
199
+ selected_task = "sdbase_img2img"
200
+
201
+ aidraw_instance = AIDRAW9(
202
+ count=counter,
203
+ payload=self.payload,
204
+ request=self.request,
205
+ path=self.path,
206
+ comfyui_api_json=self.comfyui_task or selected_task
207
+ )
208
+ counter += 1
209
+ instance_list.append(aidraw_instance)
210
+
211
+ return instance_list
212
+
213
+ async def get_novelai_task(self):
214
+
215
+ instance_list = []
216
+ counter = 0
217
+ for i in self.config.novelai:
218
+ aidraw_instance = AIDRAW10(
219
+ count=counter,
220
+ payload=self.payload
221
+ )
222
+ counter += 1
223
+ instance_list.append(aidraw_instance)
224
+
225
+ return instance_list
226
+
227
+ async def get_midjourney_task(self):
228
+
229
+ instance_list = []
230
+ counter = 0
231
+
232
+ for i in self.config.midjourney['name']:
233
+
234
+ aidraw_instance = AIDRAW11(
235
+ count=counter,
236
+ payload=self.payload
237
+ )
238
+ counter += 1
239
+ instance_list.append(aidraw_instance)
240
+
241
+ return instance_list
242
+
243
+
244
+ class TXT2IMGHandler(BaseHandler):
245
+
246
+ def __init__(self, payload=None, comfyui_task: str = None):
247
+ super().__init__(comfyui_task=comfyui_task, payload=payload)
248
+
249
+ async def get_all_instance(self) -> tuple[list[Backend], dict]:
250
+ # 手动选择启动的后端
251
+ man_enable_task = self.config.server_settings['enable_txt2img_backends']
252
+ if len(man_enable_task) != 0:
253
+ man_enable_task = man_enable_task
254
+ else:
255
+ man_enable_task = self.all_task_list
256
+
257
+ await self.get_enable_task(man_enable_task)
258
+
259
+ return self.instance_list, self.enable_backend
260
+
261
+
262
+ class IMG2IMGHandler(BaseHandler):
263
+
264
+ def __init__(self, payload=None, comfyui_task: str = None):
265
+ super().__init__(comfyui_task=comfyui_task, payload=payload)
266
+
267
+ async def get_all_instance(self) -> tuple[list[Backend], dict]:
268
+ # 手动选择启动的后端
269
+ man_enable_task = self.config.server_settings['enable_img2img_backends']
270
+ if len(man_enable_task) != 0:
271
+ man_enable_task = man_enable_task
272
+ else:
273
+ man_enable_task = self.all_task_list
274
+
275
+ await self.get_enable_task(man_enable_task)
276
+
277
+ return self.instance_list, self.enable_backend
278
+
279
+
280
+ class A1111WebuiHandler(BaseHandler):
281
+
282
+ async def get_all_instance(self) -> tuple[list[Backend], dict]:
283
+
284
+ await self.get_enable_task([1])
285
+
286
+ return self.instance_list, self.enable_backend
287
+
288
+
289
+ class A1111WebuiHandlerAPI(BaseHandler):
290
+ async def get_all_instance(self) -> tuple[list[Backend], dict]:
291
+
292
+ man_enable_task = self.config.server_settings['enable_sdapi_backends']
293
+ if len(man_enable_task) != 0:
294
+ man_enable_task = man_enable_task
295
+ else:
296
+ man_enable_task = self.all_task_list
297
+
298
+ await self.get_enable_task(man_enable_task)
299
+
300
+ return self.instance_list, self.enable_backend
301
+
302
+ #
303
+ # class ComfyuiHandler(BaseHandler):
304
+ #
305
+ # async def get_all_instance(self) -> tuple[list[Backend], dict]:
306
+ #
307
+ # await self.get_enable_task([1])
308
+ #
309
+ # return self.instance_list, self.enable_backend
310
+
311
+
312
+ class StaticHandler:
313
+ lock_to_backend = None
314
+ prompt_style: list = None
315
+
316
+ @classmethod
317
+ def set_lock_to_backend(cls, selected_model: str):
318
+ cls.lock_to_backend = selected_model
319
+
320
+ @classmethod
321
+ def get_lock_to_backend(cls):
322
+ return cls.lock_to_backend
323
+
324
+ @classmethod
325
+ def get_prompt_style(cls):
326
+ return cls.prompt_style
327
+
328
+ @classmethod
329
+ def set_prompt_style(cls, prompt_style: list):
330
+ cls.prompt_style = prompt_style
331
+
332
+ @classmethod
333
+ def get_backend_options(cls):
334
+ build_resp = {
335
+ "samples_save": True,
336
+ "samples_format": "png",
337
+ "samples_filename_pattern": "",
338
+ "save_images_add_number": True,
339
+ "grid_save": True,
340
+ "grid_format": "png",
341
+ "grid_extended_filename": False,
342
+ "grid_only_if_multiple": True,
343
+ "grid_prevent_empty_spots": False,
344
+ "grid_zip_filename_pattern": "",
345
+ "n_rows": -1.0,
346
+ "font": "",
347
+ "grid_text_active_color": "#000000",
348
+ "grid_text_inactive_color": "#999999",
349
+ "grid_background_color": "#ffffff",
350
+ "enable_pnginfo": True,
351
+ "save_txt": False,
352
+ "save_images_before_face_restoration": False,
353
+ "save_images_before_highres_fix": False,
354
+ "save_images_before_color_correction": False,
355
+ "save_mask": False,
356
+ "save_mask_composite": False,
357
+ "jpeg_quality": 80.0,
358
+ "webp_lossless": False,
359
+ "export_for_4chan": True,
360
+ "img_downscale_threshold": 4.0,
361
+ "target_side_length": 4000.0,
362
+ "img_max_size_mp": 200.0,
363
+ "use_original_name_batch": True,
364
+ "use_upscaler_name_as_suffix": False,
365
+ "save_selected_only": True,
366
+ "save_init_img": False,
367
+ "temp_dir": "",
368
+ "clean_temp_dir_at_start": False,
369
+ "save_incomplete_images": False,
370
+ "outdir_samples": "",
371
+ "outdir_txt2img_samples": "outputs/txt2img-images",
372
+ "outdir_img2img_samples": "outputs/img2img-images",
373
+ "outdir_extras_samples": "outputs/extras-images",
374
+ "outdir_grids": "",
375
+ "outdir_txt2img_grids": "outputs/txt2img-grids",
376
+ "outdir_img2img_grids": "outputs/img2img-grids",
377
+ "outdir_save": "log/images",
378
+ "outdir_init_images": "outputs/init-images",
379
+ "save_to_dirs": True,
380
+ "grid_save_to_dirs": True,
381
+ "use_save_to_dirs_for_ui": False,
382
+ "directories_filename_pattern": "[date]",
383
+ "directories_max_prompt_words": 8.0,
384
+ "ESRGAN_tile": 192.0,
385
+ "ESRGAN_tile_overlap": 8.0,
386
+ "realesrgan_enabled_models": [
387
+ "R-ESRGAN 4x+",
388
+ "R-ESRGAN 4x+ Anime6B"
389
+ ],
390
+ "upscaler_for_img2img": None,
391
+ "face_restoration": False,
392
+ "face_restoration_model": "CodeFormer",
393
+ "code_former_weight": 0.5,
394
+ "face_restoration_unload": False,
395
+ "auto_launch_browser": "Local",
396
+ "show_warnings": False,
397
+ "show_gradio_deprecation_warnings": True,
398
+ "memmon_poll_rate": 8.0,
399
+ "samples_log_stdout": False,
400
+ "multiple_tqdm": True,
401
+ "print_hypernet_extra": False,
402
+ "list_hidden_files": True,
403
+ "disable_mmap_load_safetensors": False,
404
+ "hide_ldm_prints": True,
405
+ "api_enable_requests": True,
406
+ "api_forbid_local_requests": True,
407
+ "api_useragent": "",
408
+ "unload_models_when_training": False,
409
+ "pin_memory": False,
410
+ "save_optimizer_state": False,
411
+ "save_training_settings_to_txt": True,
412
+ "dataset_filename_word_regex": "",
413
+ "dataset_filename_join_string": " ",
414
+ "training_image_repeats_per_epoch": 1.0,
415
+ "training_write_csv_every": 500.0,
416
+ "training_xattention_optimizations": False,
417
+ "training_enable_tensorboard": False,
418
+ "training_tensorboard_save_images": False,
419
+ "training_tensorboard_flush_every": 120.0,
420
+ "sd_model_checkpoint": cls.lock_to_backend if cls.lock_to_backend else 'DrawBridgeAPI-Auto-Select',
421
+ "sd_checkpoints_limit": 1.0,
422
+ "sd_checkpoints_keep_in_cpu": True,
423
+ "sd_checkpoint_cache": 3,
424
+ "sd_unet": "None",
425
+ "enable_quantization": False,
426
+ "enable_emphasis": True,
427
+ "enable_batch_seeds": True,
428
+ "comma_padding_backtrack": 20.0,
429
+ "CLIP_stop_at_last_layers": 3.0,
430
+ "upcast_attn": False,
431
+ "randn_source": "GPU",
432
+ "tiling": False,
433
+ "hires_fix_refiner_pass": "second pass",
434
+ "sdxl_crop_top": 0.0,
435
+ "sdxl_crop_left": 0.0,
436
+ "sdxl_refiner_low_aesthetic_score": 2.5,
437
+ "sdxl_refiner_high_aesthetic_score": 6.0,
438
+ "sd_vae_explanation": "<abbr title='Variational autoencoder'>VAE</abbr> is a neural network that transforms a standard <abbr title='red/green/blue'>RGB</abbr>\nimage into latent space representation and back. Latent space representation is what stable diffusion is working on during sampling\n(i.e. when the progress bar is between empty and full). For txt2img, VAE is used to create a resulting image after the sampling is finished.\nFor img2img, VAE is used to process user's input image before the sampling, and to create an image after sampling.",
439
+ "sd_vae_checkpoint_cache": 0,
440
+ "sd_vae": "None",
441
+ "sd_vae_overrides_per_model_preferences": False,
442
+ "auto_vae_precision": True,
443
+ "sd_vae_encode_method": "Full",
444
+ "sd_vae_decode_method": "Full",
445
+ "inpainting_mask_weight": 1.0,
446
+ "initial_noise_multiplier": 1.0,
447
+ "img2img_extra_noise": 0,
448
+ "img2img_color_correction": False,
449
+ "img2img_fix_steps": False,
450
+ "img2img_background_color": "#ffffff",
451
+ "img2img_editor_height": 720.0,
452
+ "img2img_sketch_default_brush_color": "#ffffff",
453
+ "img2img_inpaint_mask_brush_color": "#ffffff",
454
+ "img2img_inpaint_sketch_default_brush_color": "#ffffff",
455
+ "return_mask": False,
456
+ "return_mask_composite": False,
457
+ "cross_attention_optimization": "Automatic",
458
+ "s_min_uncond": 0.0,
459
+ "token_merging_ratio": 0.0,
460
+ "token_merging_ratio_img2img": 0.0,
461
+ "token_merging_ratio_hr": 0.0,
462
+ "pad_cond_uncond": False,
463
+ "persistent_cond_cache": True,
464
+ "batch_cond_uncond": True,
465
+ "use_old_emphasis_implementation": False,
466
+ "use_old_karras_scheduler_sigmas": False,
467
+ "no_dpmpp_sde_batch_determinism": False,
468
+ "use_old_hires_fix_width_height": False,
469
+ "dont_fix_second_order_samplers_schedule": False,
470
+ "hires_fix_use_firstpass_conds": False,
471
+ "use_old_scheduling": False,
472
+ "interrogate_keep_models_in_memory": False,
473
+ "interrogate_return_ranks": False,
474
+ "interrogate_clip_num_beams": 1.0,
475
+ "interrogate_clip_min_length": 24.0,
476
+ "interrogate_clip_max_length": 48.0,
477
+ "interrogate_clip_dict_limit": 1500.0,
478
+ "interrogate_clip_skip_categories": [],
479
+ "interrogate_deepbooru_score_threshold": 0.5,
480
+ "deepbooru_sort_alpha": True,
481
+ "deepbooru_use_spaces": True,
482
+ "deepbooru_escape": True,
483
+ "deepbooru_filter_tags": "",
484
+ "extra_networks_show_hidden_directories": True,
485
+ "extra_networks_hidden_models": "When searched",
486
+ "extra_networks_default_multiplier": 1.0,
487
+ "extra_networks_card_width": 0,
488
+ "extra_networks_card_height": 0,
489
+ "extra_networks_card_text_scale": 1.0,
490
+ "extra_networks_card_show_desc": True,
491
+ "extra_networks_add_text_separator": " ",
492
+ "ui_extra_networks_tab_reorder": "",
493
+ "textual_inversion_print_at_load": False,
494
+ "textual_inversion_add_hashes_to_infotext": True,
495
+ "sd_hypernetwork": "None",
496
+ "localization": "None",
497
+ "gradio_theme": "Default",
498
+ "gradio_themes_cache": True,
499
+ "gallery_height": "",
500
+ "return_grid": True,
501
+ "do_not_show_images": False,
502
+ "send_seed": True,
503
+ "send_size": True,
504
+ "js_modal_lightbox": True,
505
+ "js_modal_lightbox_initially_zoomed": True,
506
+ "js_modal_lightbox_gamepad": False,
507
+ "js_modal_lightbox_gamepad_repeat": 250.0,
508
+ "show_progress_in_title": True,
509
+ "samplers_in_dropdown": True,
510
+ "dimensions_and_batch_together": True,
511
+ "keyedit_precision_attention": 0.1,
512
+ "keyedit_precision_extra": 0.05,
513
+ "keyedit_delimiters": ".,\\/!?%^*;:{}=`~()",
514
+ "keyedit_move": True,
515
+ "quicksettings_list": [
516
+ "sd_model_checkpoint",
517
+ "sd_unet",
518
+ "sd_vae",
519
+ "CLIP_stop_at_last_layers"
520
+ ],
521
+ "ui_tab_order": [],
522
+ "hidden_tabs": [],
523
+ "ui_reorder_list": [],
524
+ "hires_fix_show_sampler": False,
525
+ "hires_fix_show_prompts": False,
526
+ "disable_token_counters": False,
527
+ "add_model_hash_to_info": True,
528
+ "add_model_name_to_info": True,
529
+ "add_user_name_to_info": False,
530
+ "add_version_to_infotext": True,
531
+ "disable_weights_auto_swap": True,
532
+ "infotext_styles": "Apply if any",
533
+ "show_progressbar": True,
534
+ "live_previews_enable": True,
535
+ "live_previews_image_format": "png",
536
+ "show_progress_grid": True,
537
+ "show_progress_every_n_steps": 10.0,
538
+ "show_progress_type": "Approx NN",
539
+ "live_preview_allow_lowvram_full": False,
540
+ "live_preview_content": "Prompt",
541
+ "live_preview_refresh_period": 1000.0,
542
+ "live_preview_fast_interrupt": False,
543
+ "hide_samplers": [],
544
+ "eta_ddim": 0.0,
545
+ "eta_ancestral": 1.0,
546
+ "ddim_discretize": "uniform",
547
+ "s_churn": 0.0,
548
+ "s_tmin": 0.0,
549
+ "s_tmax": 0,
550
+ "s_noise": 1.0,
551
+ "k_sched_type": "Automatic",
552
+ "sigma_min": 0.0,
553
+ "sigma_max": 0.0,
554
+ "rho": 0.0,
555
+ "eta_noise_seed_delta": 0,
556
+ "always_discard_next_to_last_sigma": False,
557
+ "sgm_noise_multiplier": False,
558
+ "uni_pc_variant": "bh1",
559
+ "uni_pc_skip_type": "time_uniform",
560
+ "uni_pc_order": 3.0,
561
+ "uni_pc_lower_order_final": True,
562
+ "postprocessing_enable_in_main_ui": [],
563
+ "postprocessing_operation_order": [],
564
+ "upscaling_max_images_in_cache": 5.0,
565
+ "disabled_extensions": [],
566
+ "disable_all_extensions": "none",
567
+ "restore_config_state_file": "",
568
+ "sd_checkpoint_hash": "91e0f7cbaf70676153810c231e8703bf26b3208c116a3d1f2481cbc666905471"
569
+ }
570
+
571
+ return build_resp
572
+
573
+
574
+ class TaskHandler(StaticHandler):
575
+
576
+ backend_avg_dict: dict = {}
577
+ write_count: dict = {}
578
+ backend_images: dict = {}
579
+
580
+ backend_site_list = None
581
+ load_balance_logger = setup_logger('[AvgTimeCalculator]')
582
+ load_balance_sample = 10
583
+
584
+ redis_client = None
585
+ backend_status = None
586
+
587
+ @classmethod
588
+ def update_backend_status(cls):
589
+ cls.backend_status = json.loads(cls.redis_client.get("workload"))
590
+
591
+ @classmethod
592
+ def get_redis_client(cls):
593
+ cls.redis_client = init_instance.redis_client
594
+
595
+ @classmethod
596
+ async def get_backend_avg_work_time(cls) -> dict:
597
+ backend_sites = cls.backend_site_list
598
+
599
+ avg_time_key = ""
600
+
601
+ avg_time_data = cls.redis_client.get("backend_avg_time")
602
+ if avg_time_data is None:
603
+ cls.redis_client.set(avg_time_key, json.dumps(cls.backend_avg_dict))
604
+ else:
605
+ new_data = json.loads(avg_time_data)
606
+ for key, values in new_data.items():
607
+ if key in cls.backend_avg_dict:
608
+ cls.backend_avg_dict[key].extend(
609
+ values[-cls.load_balance_sample:] if len(values) >= cls.load_balance_sample else
610
+ values
611
+ )
612
+ else:
613
+ cls.backend_avg_dict[key] = (values[-cls.load_balance_sample:] if
614
+ len(values) >= cls.load_balance_sample else values)
615
+
616
+ cls.backend_avg_dict[key] = cls.backend_avg_dict[key][-10:]
617
+
618
+ avg_time_dict = {}
619
+ for backend_site in backend_sites:
620
+ spend_time_list = cls.backend_avg_dict.get(backend_site, [])
621
+ if spend_time_list and len(spend_time_list) >= cls.load_balance_sample:
622
+ sorted_list = sorted(spend_time_list)
623
+ trimmed_list = sorted_list[1:-1]
624
+ avg_time = sum(trimmed_list) / len(trimmed_list) if trimmed_list else None
625
+ avg_time_dict[backend_site] = avg_time
626
+ else:
627
+ avg_time_dict[backend_site] = None
628
+
629
+ return avg_time_dict
630
+
631
+ @classmethod
632
+ async def set_backend_work_time(cls, spend_time, backend_site, total_images=1):
633
+ spend_time_list = cls.backend_avg_dict.get(backend_site, [])
634
+ spend_time_list.append(int(spend_time/total_images))
635
+
636
+ if len(spend_time_list) >= cls.load_balance_sample:
637
+ spend_time_list = spend_time_list[-cls.load_balance_sample:]
638
+
639
+ cls.backend_avg_dict[backend_site] = spend_time_list
640
+
641
+ cls.write_count[backend_site] = cls.write_count.get(backend_site, 0) + 1
642
+
643
+ if cls.write_count.get(backend_site, 0) >= cls.load_balance_sample:
644
+ cls.redis_client.set("backend_avg_time", json.dumps(cls.backend_avg_dict))
645
+ cls.write_count[backend_site] = 0
646
+
647
+ # info_str = ''
648
+
649
+ # for key, values in cls.backend_avg_dict.items():
650
+ # info_str += f"{key}: 最近10次生成时间{values}\n"
651
+ #
652
+ # cls.load_balance_logger.info(info_str)
653
+
654
+ @classmethod
655
+ def set_backend_image(cls, num=0, backend_site=None, get=False) -> Union[None, dict]:
656
+ all_backend_dict = {}
657
+
658
+ if backend_site:
659
+ working_images = cls.backend_images.get(backend_site, 1)
660
+ working_images += num
661
+ cls.backend_images[backend_site] = working_images
662
+
663
+ if get:
664
+ for site in cls.backend_site_list:
665
+ all_backend_dict[site] = cls.backend_images.get(site, 1)
666
+ return all_backend_dict
667
+
668
+ @classmethod
669
+ def set_backend_list(cls, backend_dict):
670
+ cls.backend_site_list = list(backend_dict.values())
671
+
672
+ def __init__(
673
+ self,
674
+ payload=None,
675
+ request: Request = None,
676
+ path: str = None,
677
+ select_backend: int = None,
678
+ reutrn_instance: bool = False,
679
+ model_to_backend: str = None,
680
+ disable_loadbalance: bool = False,
681
+ comfyui_json: str = "",
682
+ override_model_select: bool = False,
683
+ ):
684
+ self.payload = payload
685
+ self.instance_list = []
686
+ self.result = None
687
+ self.request = request
688
+ self.path = path
689
+ self.enable_backend = None
690
+ self.reutrn_instance = reutrn_instance
691
+ self.select_backend = select_backend
692
+ self.model_to_backend = model_to_backend # 模型的名称
693
+ self.disable_loadbalance = disable_loadbalance
694
+ self.lock_to_backend = self.get_lock_to_backend() if override_model_select is False else None
695
+ self.comfyui_json: str = comfyui_json
696
+
697
+ self.total_images = (self.payload.get("batch_size", 1) * self.payload.get("n_iter", 1)) or 1
698
+
699
+ self.ava_backend_url = None
700
+ self.ava_backend_index = None
701
+
702
+ @staticmethod
703
+ def get_backend_name(model_name) -> str:
704
+ all_model: bytes = init_instance.redis_client.get('models')
705
+ all_model: dict = json.loads(all_model.decode('utf-8'))
706
+ for key, models in all_model.items():
707
+ if isinstance(models, list):
708
+ for model in models:
709
+ if model.get("title") == model_name or model.get("model_name") == model_name:
710
+ return key
711
+
712
+ @staticmethod
713
+ def get_backend_index(mapping_dict, key_to_find) -> int:
714
+ keys = list(mapping_dict.keys())
715
+ if key_to_find in keys:
716
+ return keys.index(key_to_find)
717
+ return None
718
+
719
+ async def txt2img(self):
720
+
721
+ self.instance_list, self.enable_backend = await TXT2IMGHandler(
722
+ self.payload,
723
+ comfyui_task=self.comfyui_json
724
+ ).get_all_instance()
725
+
726
+ await self.choice_backend()
727
+ return self.result
728
+
729
+ async def img2img(self):
730
+
731
+ self.instance_list, self.enable_backend = await IMG2IMGHandler(
732
+ self.payload,
733
+ comfyui_task=self.comfyui_json
734
+ ).get_all_instance()
735
+
736
+ await self.choice_backend()
737
+ return self.result
738
+
739
+ async def sd_api(self) -> JSONResponse or list[Backend]:
740
+
741
+ self.instance_list, self.enable_backend = await A1111WebuiHandlerAPI(
742
+ self.payload,
743
+ self.request,
744
+ self.path
745
+ ).get_all_instance()
746
+
747
+ await self.choice_backend()
748
+ return self.result
749
+
750
+
751
+ async def choice_backend(self):
752
+
753
+ from DrawBridgeAPI.locales import _ as i18n
754
+
755
+ if self.disable_loadbalance:
756
+ return
757
+ backend_url_dict = self.enable_backend
758
+ self.set_backend_list(backend_url_dict)
759
+ self.get_redis_client()
760
+ reverse_dict = {value: key for key, value in backend_url_dict.items()}
761
+
762
+ tasks = []
763
+ is_avaiable = 0
764
+ status_dict = {}
765
+ ava_url = None
766
+ n = -1
767
+ e = -1
768
+ normal_backend = None
769
+ idle_backend = []
770
+
771
+ logger = setup_logger(custom_prefix='[LOAD_BALANCE]')
772
+
773
+ if self.reutrn_instance:
774
+ self.result = self.instance_list
775
+ return
776
+ for i in self.instance_list:
777
+ task = i.get_backend_working_progress()
778
+ tasks.append(task)
779
+ # 获取api队列状态
780
+ key = self.get_backend_name(self.model_to_backend or self.lock_to_backend)
781
+ if self.model_to_backend and key is not None:
782
+
783
+ backend_index = self.get_backend_index(backend_url_dict, key)
784
+ logger.info(f"{i18n('Manually select model')}: {self.model_to_backend}, {i18n('Backend select')}{key[:24]}")
785
+
786
+ self.ava_backend_url = backend_url_dict[key]
787
+ self.ava_backend_index = backend_index
788
+
789
+ await self.exec_generate()
790
+
791
+ elif self.lock_to_backend:
792
+ if self.lock_to_backend and key is not None:
793
+ backend_index = self.get_backend_index(backend_url_dict, key)
794
+ logger.info(f"{i18n('Backend locked')}: {key[:24]}")
795
+
796
+ self.ava_backend_url = backend_url_dict[key]
797
+ self.ava_backend_index = backend_index
798
+
799
+ await self.exec_generate()
800
+
801
+ else:
802
+ all_resp = await asyncio.gather(*tasks, return_exceptions=True)
803
+ logger.info(i18n('Starting backend selection'))
804
+ for resp_tuple in all_resp:
805
+ e += 1
806
+ if isinstance(resp_tuple, None or Exception):
807
+ logger.warning(i18n('Backend %s is down') % self.instance_list[e].workload_name[:24])
808
+ else:
809
+ try:
810
+ if resp_tuple[3] in [200, 201]:
811
+ n += 1
812
+ status_dict[resp_tuple[2]] = resp_tuple[0]["eta_relative"]
813
+ normal_backend = (list(status_dict.keys()))
814
+ else:
815
+ raise RuntimeError
816
+ except RuntimeError or TypeError:
817
+ logger.warning(i18n('Backend %s is failed or locked') % self.instance_list[e].workload_name[:24])
818
+ continue
819
+ else:
820
+ # 更改判断逻辑
821
+ if resp_tuple[0]["progress"] in [0, 0.0]:
822
+ is_avaiable += 1
823
+ idle_backend.append(normal_backend[n])
824
+ else:
825
+ pass
826
+ # 显示进度
827
+ total = 100
828
+ progress = int(resp_tuple[0]["progress"] * 100)
829
+ show_str = f"{list(backend_url_dict.keys())[e][:24]}"
830
+ show_str = show_str.ljust(50, "-")
831
+
832
+ bar_format = f"{Fore.CYAN}[Progress] {{l_bar}}{{bar}}|{Style.RESET_ALL}"
833
+
834
+ with tqdm(
835
+ total=total,
836
+ desc=show_str + "-->",
837
+ bar_format=bar_format
838
+ ) as pbar:
839
+ pbar.update(progress)
840
+ if len(normal_backend) == 0:
841
+ logger.error(i18n('No available backend'))
842
+ raise RuntimeError(i18n('No available backend'))
843
+
844
+ backend_total_work_time = {}
845
+ avg_time_dict = await self.get_backend_avg_work_time()
846
+ backend_image = self.set_backend_image(get=True)
847
+
848
+ eta = 0
849
+
850
+ for (site, time_), (_, image_count) in zip(avg_time_dict.items(), backend_image.items()):
851
+ self.load_balance_logger.info(
852
+ i18n('Backend: %s Average work time: %s seconds, Current tasks: %s') % (site, time_, image_count - 1)
853
+ )
854
+ if site in normal_backend:
855
+ self.update_backend_status()
856
+ for key in self.backend_status:
857
+ if site in key:
858
+ end_time = self.backend_status[key].get('end_time', None)
859
+ start_time = self.backend_status[key].get('start_time', None)
860
+ if start_time:
861
+ if end_time:
862
+ eta = 0
863
+ else:
864
+ current_time = time.time()
865
+ eta = int(current_time - start_time)
866
+
867
+ effective_time = 1 if time_ is None else time_
868
+ total_work_time = effective_time * int(image_count)
869
+
870
+ eta = eta if time_ else 0
871
+ self.load_balance_logger.info(f"{i18n('Extra time weight')}{eta}")
872
+
873
+ backend_total_work_time[site] = total_work_time - eta if (total_work_time - eta) >= 0 else total_work_time
874
+
875
+ total_time_dict = list(backend_total_work_time.values())
876
+ rev_dict = {}
877
+ for key, value in backend_total_work_time.items():
878
+ if value in rev_dict:
879
+ rev_dict[(value, key)] = value
880
+ else:
881
+ rev_dict[value] = key
882
+
883
+ sorted_list = sorted(total_time_dict)
884
+ fastest_backend = sorted_list[0]
885
+ ava_url = rev_dict[fastest_backend]
886
+ self.load_balance_logger.info(i18n('Backend %s is the fastest, has been selected') % ava_url[:24])
887
+ ava_url_index = list(backend_url_dict.values()).index(ava_url)
888
+
889
+ self.ava_backend_url = ava_url
890
+ self.ava_backend_index = ava_url_index
891
+
892
+ await self.exec_generate()
893
+ # ava_url_tuple = (ava_url, reverse_dict[ava_url], all_resp, len(normal_backend), vram_dict[ava_url])
894
+
895
+ async def exec_generate(self):
896
+ self.set_backend_image(self.total_images, self.ava_backend_url)
897
+ fifo = None
898
+ try:
899
+ fifo = await self.instance_list[self.ava_backend_index].send_result_to_api()
900
+ except:
901
+ pass
902
+ finally:
903
+ self.set_backend_image(-self.total_images, self.ava_backend_url)
904
+ self.result = fifo.result if fifo is not None else None
905
+ await self.set_backend_work_time(fifo.spend_time, self.ava_backend_url, fifo.total_img_count)
906
+
907
+
908
+
909
+
DrawBridgeAPI/backend/base.py ADDED
@@ -0,0 +1,984 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import uuid
3
+
4
+ import aiofiles
5
+ import aiohttp
6
+ import json
7
+ import asyncio
8
+ import traceback
9
+ import time
10
+ import httpx
11
+
12
+ from tqdm import tqdm
13
+ from fastapi import Request
14
+ from fastapi.responses import JSONResponse
15
+ from pathlib import Path
16
+ from datetime import datetime
17
+ from typing import Union
18
+
19
+ from ..base_config import setup_logger
20
+ from ..base_config import init_instance
21
+ from ..utils import exceptions
22
+ from ..locales import _
23
+
24
+ import base64
25
+ from io import BytesIO
26
+ from PIL import Image, ImageDraw, ImageFont
27
+ from ..utils.shared import PATH_TO_COMFYUI_WORKFLOWS
28
+
29
+
30
+ class Backend:
31
+
32
+ queues = {}
33
+ locks = {}
34
+ task_count = 0
35
+ queue_logger = setup_logger('[QueueManager]')
36
+
37
+ @classmethod
38
+ def get_queue(cls, token):
39
+ if token not in cls.queues:
40
+ cls.queues[token] = asyncio.Queue()
41
+ return cls.queues[token]
42
+
43
+ @classmethod
44
+ def get_lock(cls, token):
45
+ if token not in cls.locks:
46
+ cls.locks[token] = asyncio.Lock()
47
+ return cls.locks[token]
48
+
49
+ @classmethod
50
+ async def add_to_queue(cls, token, request_func, *args, **kwargs):
51
+ queue = cls.get_queue(token)
52
+ future = asyncio.get_event_loop().create_future()
53
+
54
+ await queue.put((request_func, args, kwargs, future))
55
+
56
+ lock = cls.get_lock(token)
57
+
58
+ if not lock.locked():
59
+ asyncio.create_task(cls.process_queue(token))
60
+
61
+ return await future
62
+
63
+ @classmethod
64
+ async def process_queue(cls, token):
65
+ queue = cls.get_queue(token)
66
+ lock = cls.get_lock(token)
67
+
68
+ async with lock:
69
+ while not queue.empty():
70
+
71
+ request_func, args, kwargs, future = await queue.get()
72
+ try:
73
+ result = await request_func(*args, **kwargs)
74
+ if not future.done():
75
+ future.set_result(result)
76
+ cls.queue_logger.info(f"Token: {token}, {_('Task completed successfully')}")
77
+ except Exception as e:
78
+ if not future.done():
79
+ future.set_exception(e)
80
+ cls.queue_logger.info(f"Token: {token}, {_('Task failed')}: {e}")
81
+ finally:
82
+ queue.task_done()
83
+
84
+ cls.queue_logger.info(f"Token: {token}, {_('Remaining tasks in the queue')}")
85
+ cls.queue_logger.info(f"Token: {token}, {_('No remaining tasks in the queue')}")
86
+
87
+ def __init__(
88
+ self,
89
+ login: bool = False,
90
+ backend_url: str = None,
91
+ token: str = "",
92
+ count: int = None,
93
+ payload: dict = {},
94
+ input_img: str = None,
95
+ request: Request = None,
96
+ path: str = None,
97
+ comfyui_api_json: str = None,
98
+ **kwargs,
99
+ ):
100
+
101
+
102
+ self.tags: str = payload.get('prompt', '1girl')
103
+ self.ntags: str = payload.get('negative_prompt', '')
104
+ self.seed: int = payload.get('seed', random.randint(0, 4294967295))
105
+ self.seed_list: list[int] = [self.seed]
106
+ self.steps: int = payload.get('steps', 20)
107
+ self.scale: float = payload.get('cfg_scale', 7.0)
108
+ self.width: int = payload.get('width', 512)
109
+ self.height: int = payload.get('height', 512)
110
+ self.sampler: str = payload.get('sampler_name', "Euler")
111
+ self.restore_faces: bool = payload.get('restore_faces', False)
112
+ self.scheduler: str = payload.get('scheduler', 'Normal')
113
+
114
+ self.batch_size: int = payload.get('batch_size', 1)
115
+ self.batch_count: int = payload.get('n_iter', 1)
116
+ self.total_img_count: int = self.batch_size * self.batch_count
117
+
118
+ self.enable_hr: bool = payload.get('enable_hr', False)
119
+ self.hr_scale: float = payload.get('hr_scale', 1.5)
120
+ self.hr_second_pass_steps: int = payload.get('hr_second_pass_steps', self.steps)
121
+ self.hr_upscaler: str = payload.get('hr_upscaler', "")
122
+ self.denoising_strength: float = payload.get('denoising_strength', 1.0)
123
+ self.hr_resize_x: int = payload.get('hr_resize_x', 0)
124
+ self.hr_resize_y: int = payload.get('hr_resize_y', 0)
125
+ self.hr_sampiler: str = payload.get('hr_sampler_name', "Euler")
126
+ self.hr_scheduler: str = payload.get('hr_scheduler', 'Normal')
127
+ self.hr_prompt: str = payload.get('hr_prompt', '')
128
+ self.hr_negative_prompt: str = payload.get('hr_negative_prompt', '')
129
+ self.hr_distilled_cfg: float = payload.get('hr_distilled_cfg', 3.5)
130
+
131
+ self.init_images: list = payload.get('init_images', [])
132
+
133
+ self.xl = False
134
+ self.flux = False
135
+ self.clip_skip = 2
136
+ self.final_width = None
137
+ self.final_height = None
138
+ self.model = "DiaoDaia"
139
+ self.model_id = '20204'
140
+ self.model_hash = "c7352c5d2f"
141
+ self.model_list: list = []
142
+ self.model_path = "models\\1053-S.ckpt"
143
+ self.client_id = uuid.uuid4().hex
144
+
145
+ self.comfyui_api_json = comfyui_api_json
146
+ self.comfyui_api_json_reflex = None
147
+
148
+ self.result: list = []
149
+ self.time = time.strftime("%Y-%m-%d %H:%M:%S")
150
+
151
+ self.backend_url = backend_url # 后端url
152
+ self.backend_id = None # 用于区别后端, token或者ulr
153
+ self.headers = {
154
+ "Content-Type": "application/json",
155
+ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0",
156
+ } # 后端headers
157
+ self.login = login # 是否需要登录后端
158
+ self.token = token # 后端token
159
+ self.count = count # 适用于后端的负载均衡中遍历的后端编号
160
+ self.config = init_instance.config # 配置文件
161
+ self.backend_name = '' # 后端名称
162
+ self.current_config = None # 当前后端的配置
163
+
164
+ self.fail_on_login = None
165
+ self.fail_on_requesting = None
166
+
167
+ self.result = None # api返回的结果
168
+ self.img = [] # 返回的图片
169
+ self.img_url = []
170
+ self.img_btyes = []
171
+ self.input_img = input_img
172
+
173
+ self.payload = payload # post时使用的负载
174
+ self.request = request
175
+ self.path = path
176
+
177
+ self.logger = None
178
+ self.setup_logger = setup_logger
179
+ self.redis_client = init_instance.redis_client
180
+
181
+ self.parameters = None # 图片元数据
182
+ self.post_event = None
183
+ self.task_id = uuid.uuid4().hex
184
+ self.task_type = 'txt2img'
185
+ self.workload_name = None
186
+ self.current_date = datetime.now().strftime('%Y%m%d')
187
+ self.save_path = ''
188
+
189
+ self.start_time = None
190
+ self.end_time = None
191
+ self.spend_time = None
192
+ self.comment = None
193
+
194
+ self.current_process = None
195
+
196
+ self.build_info: dict = None
197
+ self.build_respond: dict = None
198
+
199
+ self.nsfw_detected = False
200
+ self.DBAPIExceptions = exceptions.DrawBridgeAPIException
201
+
202
+ self.reflex_dict = {}
203
+
204
+ def format_api_respond(self):
205
+
206
+ self.build_info = {
207
+ "prompt": self.tags,
208
+ "all_prompts": self.repeat(self.tags)
209
+ ,
210
+ "negative_prompt": self.ntags,
211
+ "all_negative_prompts": self.repeat(self.ntags)
212
+ ,
213
+ "seed": self.seed_list,
214
+ "all_seeds": self.seed_list,
215
+ "subseed": self.seed,
216
+ "all_subseeds": self.seed_list,
217
+ "subseed_strength": 0,
218
+ "width": self.width,
219
+ "height": self.height,
220
+ "sampler_name": self.sampler,
221
+ "cfg_scale": self.scale,
222
+ "steps": self.steps,
223
+ "batch_size": 1,
224
+ "restore_faces": False,
225
+ "face_restoration_model": None,
226
+ "sd_model_name": self.model,
227
+ "sd_model_hash": self.model_hash,
228
+ "sd_vae_name": 'no vae',
229
+ "sd_vae_hash": self.model_hash,
230
+ "seed_resize_from_w": -1,
231
+ "seed_resize_from_h": -1,
232
+ "denoising_strength": self.denoising_strength,
233
+ "extra_generation_params": {
234
+
235
+ },
236
+ "index_of_first_image": 0,
237
+ "infotexts": self.repeat(
238
+ f"{self.tags}\\nNegative prompt: {self.ntags}\\nSteps: {self.steps}, Sampler: {self.sampler}, CFG scale: {self.scale}, Seed: {self.seed_list}, Size: {self.final_width}x{self.final_height}, Model hash: c7352c5d2f, Model: {self.model}, Denoising strength: {self.denoising_strength}, Clip skip: {self.clip_skip}, Version: 1.1.4"
239
+ )
240
+ ,
241
+ "styles": [
242
+
243
+ ],
244
+ "job_timestamp": "0",
245
+ "clip_skip": self.clip_skip,
246
+ "is_using_inpainting_conditioning": False
247
+ }
248
+
249
+ self.build_respond = {
250
+ "images": self.img,
251
+ "videos": [],
252
+ "images_url": self.img_url,
253
+ "parameters": {
254
+ "prompt": self.tags,
255
+ "negative_prompt": self.ntags,
256
+ "seed": self.seed_list,
257
+ "subseed": -1,
258
+ "subseed_strength": 0,
259
+ "seed_resize_from_h": -1,
260
+ "seed_resize_from_w": -1,
261
+ "sampler_name": '',
262
+ "batch_size": 1,
263
+ "n_iter": self.total_img_count,
264
+ "steps": self.steps,
265
+ "cfg_scale": self.scale,
266
+ "width": self.width,
267
+ "height": self.height,
268
+ "restore_faces": None,
269
+ "tiling": None,
270
+ "do_not_save_samples": None,
271
+ "do_not_save_grid": None,
272
+ "eta": None,
273
+ "denoising_strength": 0,
274
+ "s_min_uncond": None,
275
+ "s_churn": None,
276
+ "s_tmax": None,
277
+ "s_tmin": None,
278
+ "s_noise": None,
279
+ "override_settings": None,
280
+ "override_settings_restore_afterwards": True,
281
+ "refiner_checkpoint": None,
282
+ "refiner_switch_at": None,
283
+ "disable_extra_networks": False,
284
+ "comments": None,
285
+ "enable_hr": True if self.enable_hr else False,
286
+ "firstphase_width": 0,
287
+ "firstphase_height": 0,
288
+ "hr_scale": self.hr_scale,
289
+ "hr_upscaler": None,
290
+ "hr_second_pass_steps": self.hr_second_pass_steps,
291
+ "hr_resize_x": 0,
292
+ "hr_resize_y": 0,
293
+ "hr_checkpoint_name": None,
294
+ "hr_sampler_name": None,
295
+ "hr_prompt": "",
296
+ "hr_negative_prompt": "",
297
+ "sampler_index": "Euler",
298
+ "script_name": None,
299
+ "script_args": [],
300
+ "send_images": True,
301
+ "save_images": False,
302
+ "alwayson_scripts": {}
303
+ },
304
+
305
+ "info": ''
306
+ }
307
+ image = Image.open(BytesIO(self.img_btyes[0]))
308
+ self.final_width, self.final_height = image.size
309
+
310
+ str_info = json.dumps(self.build_info)
311
+ self.build_respond['info'] = str_info
312
+
313
+ def format_models_resp(self, input_list=None):
314
+ models_resp_list = []
315
+ input_list = input_list if input_list else [self.model]
316
+ for i in input_list:
317
+ built_reps = {
318
+ "title": f"{i} [{self.model_hash}]",
319
+ "model_name": i,
320
+ "hash": f"{self.model_hash}",
321
+ "sha256": "03f33720f33b67634b5da3a8bf2e374ef90ea03e85ab157fcf89bf48213eee4e",
322
+ "filename": self.backend_name,
323
+ "config": None
324
+ }
325
+ models_resp_list.append(built_reps)
326
+
327
+ return models_resp_list
328
+
329
+ @staticmethod
330
+ async def write_image(img_data, save_path):
331
+ """
332
+ 异步保存图片数据到指定路径。
333
+ :param img_data: 图片的字节数据
334
+ :param save_path: 保存图片的完整路径
335
+ """
336
+ if "view?filename=" in str(save_path):
337
+ save_path = Path(str(save_path).replace("view?filename=", ""))
338
+ async with aiofiles.open(save_path, 'wb') as img_file:
339
+ await img_file.write(img_data)
340
+
341
+ @staticmethod
342
+ async def run_later(func, delay=1):
343
+ loop = asyncio.get_running_loop()
344
+ loop.call_later(
345
+ delay,
346
+ lambda: loop.create_task(
347
+ func
348
+ )
349
+ )
350
+
351
+ @staticmethod
352
+ def format_progress_api_resp(progress, start_time) -> dict:
353
+ build_resp = {
354
+ "progress": progress,
355
+ "eta_relative": 0.0,
356
+ "state": {
357
+ "skipped": False,
358
+ "interrupted": False,
359
+ "job": "",
360
+ "job_count": 0,
361
+ "job_timestamp": start_time,
362
+ "job_no": 0,
363
+ "sampling_step": 0,
364
+ "sampling_steps": 0
365
+ },
366
+ "current_image": "",
367
+ "textinfo": None
368
+ }
369
+
370
+ return build_resp
371
+
372
+ @staticmethod
373
+ def format_vram_api_resp():
374
+
375
+ build_resp = {
376
+ "ram": {
377
+ "free": 61582063428.50122,
378
+ "used": 2704183296,
379
+ "total": 64286246724.50122
380
+ },
381
+ "cuda": {
382
+ "system": {
383
+ "free": 4281335808,
384
+ "used": 2160787456,
385
+ "total": 85899345920
386
+ },
387
+ "active": {
388
+ "current": 699560960,
389
+ "peak": 3680867328
390
+ },
391
+ "allocated": {
392
+ "current": 699560960,
393
+ "peak": 3680867328
394
+ },
395
+ "reserved": {
396
+ "current": 713031680,
397
+ "peak": 3751804928
398
+ },
399
+ "inactive": {
400
+ "current": 13470720,
401
+ "peak": 650977280
402
+ },
403
+ "events": {
404
+ "retries": 0,
405
+ "oom": 0
406
+ }
407
+ }
408
+ }
409
+ return build_resp
410
+
411
+ @staticmethod
412
+ async def http_request(
413
+ method,
414
+ target_url,
415
+ headers=None,
416
+ params=None,
417
+ content=None,
418
+ format=True,
419
+ timeout=300,
420
+ verify=True,
421
+ http2=False,
422
+ use_aiohttp=False,
423
+ proxy=False
424
+ ) -> Union[dict, httpx.Response, bytes, list]:
425
+
426
+ logger = setup_logger("[HTTP_REQUEST]")
427
+
428
+ if use_aiohttp:
429
+ async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=timeout)) as session:
430
+ async with session.request(
431
+ method,
432
+ target_url,
433
+ headers=headers,
434
+ params=params,
435
+ data=content,
436
+ ssl=verify,
437
+ proxy=init_instance.config.server_settings['proxy'] if proxy else None
438
+ ) as response:
439
+ if format:
440
+ return await response.json()
441
+ else:
442
+ return await response.read()
443
+
444
+ proxies = {
445
+ "http://": init_instance.config.server_settings['proxy'] if proxy else None,
446
+ "https://": init_instance.config.server_settings['proxy'] if proxy else None,
447
+ }
448
+
449
+ async with httpx.AsyncClient(
450
+ verify=verify,
451
+ http2=http2,
452
+ proxies=proxies
453
+ ) as client:
454
+ try:
455
+ response = await client.request(
456
+ method,
457
+ target_url,
458
+ headers=headers,
459
+ params=params,
460
+ content=content,
461
+ timeout=timeout,
462
+ )
463
+ response.raise_for_status()
464
+ except httpx.RequestError as e:
465
+ error_info = {"error": "Request error", "details": traceback.format_exc()}
466
+ logger.warning(error_info)
467
+ return error_info
468
+ except httpx.HTTPStatusError as e:
469
+ error_info = {"error": "HTTP error", "status_code": e.response.status_code, "details": traceback.format_exc()}
470
+ logger.warning(error_info)
471
+ return error_info
472
+ if format:
473
+ return response.json()
474
+ else:
475
+ return response
476
+
477
+ def repeat(self, input_):
478
+ # 使用列表推导式生成重复的tag列表
479
+ repeated_ = [input_ for _ in range(self.total_img_count)]
480
+ return repeated_
481
+
482
+ async def exec_login(self):
483
+ pass
484
+
485
+ async def check_backend_usability(self):
486
+ pass
487
+
488
+ async def get_backend_working_progress(self):
489
+
490
+ self.get_backend_id()
491
+
492
+ avg_time = 0
493
+ try:
494
+ if self.redis_client.exists("backend_avg_time"):
495
+ backend_avg_dict = json.loads(self.redis_client.get("backend_avg_time"))
496
+ spend_time_list = backend_avg_dict.get(self.backend_id, [])
497
+ if spend_time_list and len(spend_time_list) >= 10:
498
+ sorted_list = sorted(spend_time_list)
499
+ trimmed_list = sorted_list[1:-1]
500
+ avg_time = sum(trimmed_list) / len(trimmed_list) if trimmed_list else None
501
+
502
+ workload_dict = await self.set_backend_working_status(get=True)
503
+ start_time = workload_dict.get('start_time', None)
504
+ end_time = workload_dict.get('end_time', None)
505
+ current_time = time.time()
506
+
507
+ if end_time:
508
+ progress = 0.0
509
+ else:
510
+ if start_time:
511
+ spend_time = current_time - start_time
512
+ self.logger.info(f"当前耗时: {spend_time}")
513
+
514
+ if avg_time:
515
+ progress = 0.99 if spend_time > avg_time else spend_time / avg_time
516
+ else:
517
+ progress = 0.99
518
+ else:
519
+ progress = 0.0
520
+
521
+ available = await self.set_backend_working_status(get=True, key="available")
522
+ sc = 200 if available is True else 500
523
+ build_resp = self.format_progress_api_resp(progress, self.start_time)
524
+
525
+ except:
526
+ traceback.print_exc()
527
+
528
+ return build_resp, sc, self.backend_id, sc
529
+
530
+ async def send_result_to_api(self):
531
+ """
532
+ 获取生图结果的函数
533
+ :return: 类A1111 webui返回值
534
+ """
535
+ if self.backend_id is None:
536
+ self.get_backend_id()
537
+ total_retry = self.config.retry_times
538
+
539
+ for retry_times in range(total_retry):
540
+ self.start_time = time.time()
541
+
542
+ try:
543
+ await self.set_backend_working_status(
544
+ params={"start_time": self.start_time, "idle": False, "end_time": None}
545
+ )
546
+ # 如果传入了Request对象/转发请求
547
+ if self.request:
548
+ target_url = f"{self.backend_url}/{self.path}"
549
+
550
+ self.logger.info(f"{_('Forwarding request')} - {target_url}")
551
+
552
+ method = self.request.method
553
+ headers = self.request.headers
554
+ params = self.request.query_params
555
+ content = await self.request.body()
556
+
557
+ response = await self.http_request(method, target_url, headers, params, content, False)
558
+
559
+ try:
560
+ resp = response.json()
561
+ except json.JSONDecodeError:
562
+ self.logger.error(str(response.text))
563
+ raise RuntimeError(_('Backend returned error'))
564
+
565
+ self.result = JSONResponse(content=resp, status_code=response.status_code)
566
+ else:
567
+
568
+ if "comfyui" in self.backend_name:
569
+ await self.add_to_queue(self.backend_id[:24], self.posting)
570
+ self.logger.info(_('Comfyui Backend, not using built-in multi-image generation management'))
571
+ elif "a1111" in self.backend_name:
572
+ await self.add_to_queue(self.backend_id[:24], self.posting)
573
+ self.logger.info(_('A1111 Backend, not using built-in multi-image generation management'))
574
+ else:
575
+ self.logger.info(f"{self.backend_name}: {self.backend_id[:24]} total {self.total_img_count} images")
576
+ for i in range(self.total_img_count):
577
+ if i > 0:
578
+ self.seed += 1
579
+ self.seed_list.append(self.seed)
580
+
581
+ await self.add_to_queue(self.backend_id[:24], self.posting)
582
+
583
+ if self.config.server_settings['enable_nsfw_check']:
584
+ await self.pic_audit()
585
+ break
586
+
587
+ except Exception as e:
588
+
589
+ self.logger.info(f"{retry_times + 1} retries")
590
+ self.logger.error(traceback.format_exc())
591
+
592
+ # if retry_times >= (total_retry - 1):
593
+ # await asyncio.sleep(30)
594
+
595
+ if retry_times == (total_retry - 1):
596
+
597
+ err = traceback.format_exc()
598
+ self.logger.error(f"{_('Over maximum retry times, posting still failed')}: {err}")
599
+ await self.return_build_image(text=f"Exception: {e}", title="FATAL")
600
+ await self.err_formating_to_sd_style()
601
+ return self
602
+
603
+ finally:
604
+ self.end_time = time.time()
605
+ self.spend_time = self.end_time - self.start_time
606
+ self.logger.info(_("Request completed, took %s seconds") % int(self.spend_time))
607
+ await self.set_backend_working_status(params={"end_time": self.end_time, "idle": True})
608
+
609
+ return self
610
+
611
+ async def post_request(self):
612
+ try:
613
+ post_api = f"{self.backend_url}/sdapi/v1/txt2img"
614
+ if self.init_images:
615
+ post_api = f"{self.backend_url}/sdapi/v1/img2img"
616
+
617
+ response = await self.http_request(
618
+ method="POST",
619
+ target_url=post_api,
620
+ headers=self.headers,
621
+ content=json.dumps(self.payload),
622
+ format=False,
623
+
624
+ )
625
+
626
+ if isinstance(response, httpx.Response):
627
+ resp_dict = response.json()
628
+
629
+ if response.status_code not in [200, 201]:
630
+ self.logger.error(resp_dict)
631
+ if resp_dict.get("error") == "OutOfMemoryError":
632
+ self.logger.info(_("VRAM OOM detected, auto model unload and reload"))
633
+ await self.unload_and_reload(self.backend_url)
634
+ else:
635
+ self.result = resp_dict
636
+ self.logger.info(_("Get a respond image, processing"))
637
+ else:
638
+ self.logger.error(f"{_('Request failed, error message:')} {response.get('details')}")
639
+ return True
640
+
641
+ except:
642
+ traceback.print_exc()
643
+
644
+ async def posting(self):
645
+
646
+ """
647
+ 默认为a1111webui posting
648
+ :return:
649
+ """
650
+ await self.post_request()
651
+
652
+ # self.post_event = asyncio.Event()
653
+ # post_task = asyncio.create_task(self.post_request())
654
+ # # 此处为显示进度条
655
+ # while not self.post_event.is_set():
656
+ # await self.show_progress_bar()
657
+ # await asyncio.sleep(2)
658
+ #
659
+ # ok = await post_task
660
+
661
+ async def download_img(self, image_list=None):
662
+ """
663
+ 使用aiohttp下载图片并保存到指定路径。
664
+ """
665
+
666
+ for url in self.img_url:
667
+ response = await self.http_request(
668
+ method="GET",
669
+ target_url=url,
670
+ headers=None,
671
+ format=False,
672
+ verify=False,
673
+ proxy=True
674
+ )
675
+
676
+ if isinstance(response, httpx.Response):
677
+ if response.status_code == 200:
678
+ img_data = response.read()
679
+ self.logger.info(_("Downloading image successful"))
680
+ self.img.append(base64.b64encode(img_data).decode('utf-8'))
681
+ self.img_btyes.append(img_data)
682
+ await self.save_image(img_data)
683
+ else:
684
+ self.logger.error(f"{_('Image download failed!')}: {response.status_code}")
685
+ raise ConnectionError(_('Image download failed!'))
686
+ else:
687
+ self.logger.error(f"{_('Request failed, error message:')} {response.get('details')}")
688
+
689
+ async def save_image(self, img_data, base_path="txt2img"):
690
+
691
+ self.save_path = Path(f'saved_images/{self.task_type}/{self.current_date}/{self.workload_name[:12]}')
692
+ self.save_path.mkdir(parents=True, exist_ok=True)
693
+
694
+ img_filename = self.save_path / Path(self.task_id).name
695
+ await self.run_later(self.write_image(img_data, img_filename), 1)
696
+
697
+ async def unload_and_reload(self, backend_url=None):
698
+ """
699
+ 释放a1111后端的显存
700
+ :param backend_url: 后端url地址
701
+ :return:
702
+ """
703
+ # 释放模型
704
+ response = await self.http_request(
705
+ method="POST",
706
+ target_url=f"{backend_url}/sdapi/v1/unload-checkpoint",
707
+ headers=None
708
+ )
709
+
710
+ if isinstance(response, httpx.Response):
711
+ if response.status_code not in [200, 201]:
712
+ error_message = await response.text()
713
+ self.logger.error(f"释放模型失败,可能是webui版本太旧,未支持此API,错误: {error_message}")
714
+ else:
715
+ self.logger.error(f"{_('Request failed, error message:')} {response.get('details')}")
716
+
717
+ # 重载模型
718
+ response = await self.http_request(
719
+ method="POST",
720
+ target_url=f"{backend_url}/sdapi/v1/reload-checkpoint",
721
+ headers=None
722
+ )
723
+
724
+ if isinstance(response, httpx.Response):
725
+ if response.status_code not in [200, 201]:
726
+ error_message = await response.text()
727
+ self.logger.error(f"重载模型失败,错误: {error_message}")
728
+ else:
729
+ self.logger.info("重载模型成功")
730
+ else:
731
+ self.logger.error(f"{_('Request failed, error message:')} {response.get('details')}")
732
+
733
+ async def get_backend_status(self):
734
+ """
735
+ 共有函数, 用于获取各种类型的后端的工作状态
736
+ :return:
737
+ """
738
+ await self.check_backend_usability()
739
+ resp_json, resp_status = await self.get_backend_working_progress()
740
+
741
+ return resp_json, resp_status
742
+
743
+ async def show_progress_bar(self):
744
+ """
745
+ 在控制台实时打印后端工作进度进度条
746
+ :return:
747
+ """
748
+ show_str = f"[SD-A1111] [{self.time}] : {self.seed}"
749
+ show_str = show_str.ljust(25, "-")
750
+ with tqdm(total=1, desc=show_str + "-->", bar_format="{l_bar}{bar}|{postfix}\n") as pbar:
751
+ while not self.post_event.is_set():
752
+ self.current_process, eta = await self.update_progress()
753
+ increment = self.current_process - pbar.n
754
+ pbar.update(increment)
755
+ pbar.set_postfix({"eta": f"{int(eta)}秒"})
756
+ await asyncio.sleep(2)
757
+
758
+ async def update_progress(self):
759
+ """
760
+ 更新后端工作进度
761
+ :return:
762
+ """
763
+ try:
764
+ response = await self.http_request(
765
+ method="GET",
766
+ target_url=f"{self.backend_url}/sdapi/v1/progress",
767
+ headers=None
768
+ )
769
+
770
+ if isinstance(response, httpx.Response):
771
+ if response.status_code == 200:
772
+ resp_json = response.json()
773
+ return resp_json.get("progress"), resp_json.get("eta_relative")
774
+ else:
775
+ self.logger.error(f"获取进度失败,状态码: {response.status_code}")
776
+ raise RuntimeError(f"获取进度失败,状态码: {response.status_code}")
777
+ else:
778
+ self.logger.error(f"请求失败,错误信息: {response.get('details')}")
779
+ raise RuntimeError(f"请求失败,错误信息: {response.get('details')}")
780
+ except:
781
+ traceback.print_exc()
782
+ return 0.404
783
+
784
+ async def set_backend_working_status(
785
+ self,
786
+ params: dict = None,
787
+ get: bool = False,
788
+ key: str = None,
789
+ ) -> bool or None:
790
+ """
791
+ 设置或获取后端工作状态
792
+
793
+ :param params: 包含要更新的参数的字典 (如 {'start_time': xxx, 'idle': True})
794
+ :param get: 是否只读取
795
+ :param key: 要获取的键
796
+ :return: 获取或设置结果
797
+ """
798
+ current_backend_workload = self.redis_client.get('workload')
799
+ backend_workload: dict = json.loads(current_backend_workload.decode('utf-8'))
800
+ current_backend_workload: dict = backend_workload.get(self.workload_name)
801
+
802
+ if get:
803
+ if key is None:
804
+ return current_backend_workload
805
+ return current_backend_workload.get(key, None)
806
+
807
+ if params:
808
+ for param_key, param_value in params.items():
809
+ if param_key in current_backend_workload:
810
+ current_backend_workload[param_key] = param_value
811
+
812
+ backend_workload[self.workload_name] = current_backend_workload
813
+ self.redis_client.set('workload', json.dumps(backend_workload))
814
+
815
+ return True
816
+
817
+ async def get_models(self) -> dict:
818
+
819
+ if self.backend_name != self.config.backend_name_list[1]:
820
+ respond = self.format_models_resp()
821
+
822
+ backend_to_models_dict = {
823
+ self.workload_name: respond
824
+ }
825
+
826
+ return backend_to_models_dict
827
+
828
+ else:
829
+
830
+ self.backend_url = self.config.a1111webui_setting['backend_url'][self.count]
831
+ try:
832
+ respond = await self.http_request(
833
+ "GET",
834
+ f"{self.backend_url}/sdapi/v1/sd-models",
835
+ )
836
+ except Exception:
837
+ self.logger.warning(f"获取模型失败")
838
+ respond = self.format_models_resp()
839
+
840
+ backend_to_models_dict = {
841
+ self.workload_name: respond
842
+ }
843
+
844
+ return backend_to_models_dict
845
+
846
+ async def get_all_prompt_style(self) -> list:
847
+
848
+ if self.backend_name == "comfyui":
849
+
850
+ work_flows = []
851
+ resp_dict = {}
852
+ json_files = PATH_TO_COMFYUI_WORKFLOWS.glob("**/*.json")
853
+
854
+ for json_file in json_files:
855
+ prefixed_filename = f"comfyui-work-flows-{json_file.name}".replace('.json', '')
856
+ if not json_file.name.endswith("_reflex.json"):
857
+ work_flows.append({"name": prefixed_filename, "prompt": "", "negative_prompt": ""})
858
+
859
+ return work_flows
860
+
861
+ else:
862
+
863
+ resp = []
864
+
865
+ try:
866
+ self.backend_url = self.config.a1111webui_setting['backend_url'][self.count]
867
+ respond = await self.http_request(
868
+ "GET",
869
+ f"{self.backend_url}/sdapi/v1/prompt-styles",
870
+ format=True
871
+ )
872
+ if respond.get('error', None):
873
+ self.logger.warning(f"获取预设失败")
874
+ else:
875
+ resp = await respond.json()
876
+
877
+ except:
878
+ self.logger.warning(f"获取预设失败")
879
+ finally:
880
+ return resp
881
+
882
+ async def pic_audit(self):
883
+ from ..utils.tagger import wd_tagger_handler
884
+ new_image_list = []
885
+ for i in self.result['images']:
886
+ is_nsfw = await wd_tagger_handler.tagger_main(i, 0.35, [], True)
887
+
888
+ if is_nsfw:
889
+ img_base64 = await self.return_build_image()
890
+ new_image_list.append(img_base64)
891
+ else:
892
+ new_image_list.append(i)
893
+
894
+ self.result['images'] = new_image_list
895
+
896
+ async def return_build_image(self, title='Warning', text='NSFW Detected'):
897
+
898
+ def draw_rounded_rectangle(draw, xy, radius, fill):
899
+ x0, y0, x1, y1 = xy
900
+ draw.rectangle([x0 + radius, y0, x1 - radius, y1], fill=fill) # 中间部分
901
+ draw.rectangle([x0, y0 + radius, x0 + radius, y1 - radius], fill=fill) # 左上角
902
+ draw.rectangle([x1 - radius, y0 + radius, x1, y1 - radius], fill=fill) # 右上角
903
+ draw.pieslice([x0, y0, x0 + 2 * radius, y0 + 2 * radius], 180, 270, fill=fill) # 左上圆角
904
+ draw.pieslice([x1 - 2 * radius, y0, x1, y0 + 2 * radius], 270, 360, fill=fill) # 右上圆角
905
+ draw.pieslice([x0, y1 - 2 * radius, x0 + 2 * radius, y1], 90, 180, fill=fill) # 左下圆角
906
+ draw.pieslice([x1 - 2 * radius, y1 - 2 * radius, x1, y1], 0, 90, fill=fill) # 右下圆角
907
+
908
+ # 创建一个新的图像
909
+ img = Image.new("RGB", (512, 512), color=(255, 255, 255))
910
+ draw = ImageDraw.Draw(img)
911
+
912
+ # 设置字体大小
913
+ title_font_size = 24
914
+ text_font_size = 16
915
+
916
+ # 加载默认字体
917
+ title_font = ImageFont.load_default()
918
+ text_font = ImageFont.load_default()
919
+
920
+ # 绘制标题背景
921
+ title_x = 20 # 左对齐,设置标题的横坐标
922
+ title_y = 20 # 设置标题的纵坐标
923
+ title_bbox = draw.textbbox((0, 0), title, font=title_font)
924
+
925
+ # 绘制以标题为边界的背景
926
+ draw_rounded_rectangle(draw,
927
+ (title_x - 10, title_y - 10, title_x + title_bbox[2] + 10, title_y + title_bbox[3] + 10),
928
+ radius=10, fill=(0, 0, 0))
929
+
930
+ # 绘制标题
931
+ draw.text((title_x, title_y), title, fill=(255, 255, 255), font=title_font) # 白色标题
932
+
933
+ # 准备绘制文本,设置最大宽度
934
+ max_text_width = img.width - 40
935
+ wrapped_text = []
936
+ words = text.split(' ')
937
+ current_line = ""
938
+
939
+ for word in words:
940
+ test_line = f"{current_line} {word}".strip()
941
+ text_bbox = draw.textbbox((0, 0), test_line, font=text_font)
942
+ if text_bbox[2] - text_bbox[0] <= max_text_width:
943
+ current_line = test_line
944
+ else:
945
+ wrapped_text.append(current_line)
946
+ current_line = word
947
+
948
+ wrapped_text.append(current_line) # 添加最后一行
949
+
950
+ # 绘制内容文字
951
+ text_y = title_y + 40 # 让内容文字与标题有间距
952
+ for line in wrapped_text:
953
+ text_x = 20 # 左对齐,设置内容文字的横坐标
954
+
955
+ # 绘制内容文字背景
956
+ text_bbox = draw.textbbox((0, 0), line, font=text_font)
957
+ draw_rounded_rectangle(draw,
958
+ (text_x - 10, text_y - 5, text_x + text_bbox[2] + 10, text_y + text_bbox[3] + 5),
959
+ radius=10, fill=(0, 0, 0))
960
+
961
+ # 绘制内容文字
962
+ draw.text((text_x, text_y), line, fill=(255, 255, 255), font=text_font) # 白色内容文字
963
+ text_y += text_bbox[3] - text_bbox[1] + 5 # 行间距
964
+
965
+ # 将图像保存到内存字节流中
966
+ img_byte_array = BytesIO()
967
+ img.save(img_byte_array, format='PNG')
968
+ img_byte_array.seek(0)
969
+
970
+ # 编码为base64
971
+ base64_image = base64.b64encode(img_byte_array.getvalue()).decode('utf-8')
972
+ self.img_btyes.append(img_byte_array.getvalue())
973
+ self.img.append(base64_image)
974
+
975
+ return base64_image
976
+
977
+ def get_backend_id(self):
978
+ self.backend_id = self.token or self.backend_url
979
+
980
+ async def err_formating_to_sd_style(self):
981
+
982
+ self.format_api_respond()
983
+
984
+ self.result = self.build_respond
DrawBridgeAPI/backend/comfyui.py ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import copy
3
+ import json
4
+ import random
5
+ import time
6
+ import traceback
7
+ import uuid
8
+ from pathlib import Path
9
+ from tqdm import tqdm
10
+ import os
11
+ import base64
12
+ import aiohttp
13
+
14
+ from .base import Backend
15
+
16
+ global __ALL_SUPPORT_NODE__
17
+ MAX_SEED = 2 ** 32
18
+
19
+ class AIDRAW(Backend):
20
+
21
+ def __init__(self, count, payload, **kwargs):
22
+ super().__init__(count=count, payload=payload, **kwargs)
23
+ # 需要更改
24
+ self.model_hash = "c7352c5d2f"
25
+ self.logger = self.setup_logger('[Comfyui]')
26
+ backend = self.config.comfyui['name'][self.count]
27
+ self.backend_name = self.config.backend_name_list[8]
28
+ self.workload_name = f"{self.backend_name}-{backend}"
29
+
30
+ self.current_config: dict = self.config.comfyui_setting
31
+ self.model = f"Comfyui - {self.current_config['name'][self.count]}"
32
+ self.backend_url = self.current_config['backend_url'][self.count]
33
+
34
+ self.reflex_dict['sampler'] = {
35
+ "DPM++ 2M": "dpmpp_2m",
36
+ "DPM++ SDE": "dpmpp_sde",
37
+ "DPM++ 2M SDE": "dpmpp_2m_sde",
38
+ "DPM++ 2M SDE Heun": "dpmpp_2m_sde",
39
+ "DPM++ 2S a": "dpmpp_2s_ancestral",
40
+ "DPM++ 3M SDE": "dpmpp_3m_sde",
41
+ "Euler a": "euler_ancestral",
42
+ "Euler": "euler",
43
+ "LMS": "lms",
44
+ "Heun": "heun",
45
+ "DPM2": "dpm_2",
46
+ "DPM2 a": "dpm_2_ancestral",
47
+ "DPM fast": "dpm_fast",
48
+ "DPM adaptive": "dpm_adaptive",
49
+ "Restart": "restart",
50
+ "HeunPP2": "heunpp2",
51
+ "IPNDM": "ipndm",
52
+ "IPNDM_V": "ipndm_v",
53
+ "DEIS": "deis",
54
+ "DDIM": "ddim",
55
+ "DDIM CFG++": "ddim",
56
+ "PLMS": "plms",
57
+ "UniPC": "uni_pc",
58
+ "LCM": "lcm",
59
+ "DDPM": "ddpm",
60
+ # "[Forge] Flux Realistic": None,
61
+ # "[Forge] Flux Realistic (Slow)": None,
62
+ }
63
+ self.reflex_dict['scheduler'] = {
64
+ "Automatic": "normal",
65
+ "Karras": "karras",
66
+ "Exponential": "exponential",
67
+ "SGM Uniform": "sgm_uniform",
68
+ "Simple": "simple",
69
+ "Normal": "normal",
70
+ "DDIM": "ddim_uniform",
71
+ "Beta": "beta"
72
+ }
73
+
74
+ self.reflex_dict['parameters'] = {}
75
+
76
+ self.scheduler = self.reflex_dict['scheduler'].get(self.scheduler, "normal")
77
+ self.sampler = self.reflex_dict['sampler'].get(self.sampler, "euler")
78
+
79
+ self.model_path = self.config.comfyui['model'][self.count]
80
+
81
+ self.logger.info(f"选择工作流{self.comfyui_api_json}")
82
+ path_to_json = self.comfyui_api_json
83
+ if self.comfyui_api_json:
84
+
85
+ with open(
86
+ Path(f"{os.path.dirname(os.path.abspath(__file__))}/../comfyui_workflows/{self.comfyui_api_json}.json").resolve(), 'r', encoding='utf-8') as f:
87
+ self.comfyui_api_json = json.load(f)
88
+ with open(
89
+ Path(f"{os.path.dirname(os.path.abspath(__file__))}/../comfyui_workflows/{path_to_json}_reflex.json").resolve(), 'r', encoding='utf-8') as f:
90
+ self.comfyui_api_json_reflex = json.load(f)
91
+
92
+ async def heart_beat(self, id_):
93
+ self.logger.info(f"{id_} 开始请求")
94
+
95
+ async def get_images():
96
+
97
+ response = await self.http_request(
98
+ method="GET",
99
+ target_url=f"{self.backend_url}/history/{id_}",
100
+ )
101
+
102
+ if response:
103
+ for img in response[id_]['outputs'][str(self.comfyui_api_json_reflex.get('output', 9))]['images']:
104
+ img_url = f"{self.backend_url}/view?filename={img['filename']}"
105
+ self.img_url.append(img_url)
106
+
107
+ async with aiohttp.ClientSession() as session:
108
+ ws_url = f'{self.backend_url}/ws?clientId={self.client_id}'
109
+ async with session.ws_connect(ws_url) as ws:
110
+
111
+ self.logger.info(f"WS连接成功: {ws_url}")
112
+ progress_bar = None
113
+
114
+ async for msg in ws:
115
+ if msg.type == aiohttp.WSMsgType.TEXT:
116
+ ws_msg = json.loads(msg.data)
117
+ #
118
+ # current_node = ws_msg['data']['node']
119
+
120
+ if ws_msg['type'] == 'progress':
121
+ value = ws_msg['data']['value']
122
+ max_value = ws_msg['data']['max']
123
+
124
+ if progress_bar is None:
125
+ progress_bar = await asyncio.to_thread(
126
+ tqdm, total=max_value,
127
+ desc=f"Prompt ID: {ws_msg['data']['prompt_id']}",
128
+ unit="steps"
129
+ )
130
+
131
+ delta = value - progress_bar.n
132
+ await asyncio.to_thread(progress_bar.update, delta)
133
+
134
+ if ws_msg['type'] == 'executing':
135
+ if ws_msg['data']['node'] is None:
136
+ self.logger.info(f"{id_}绘画完成!")
137
+ await get_images()
138
+ await ws.close()
139
+ #
140
+ # elif msg.type == aiohttp.WSMsgType.BINARY:
141
+ # if current_node == 'save_image_websocket_node':
142
+ # bytes_msg = msg.data
143
+ # images_output = output_images.get(current_node, [])
144
+ # images_output.append(bytes_msg[8:])
145
+ # output_images[current_node] = images_output
146
+
147
+
148
+ elif msg.type == aiohttp.WSMsgType.ERROR:
149
+ self.logger.error(f"Error: {msg.data}")
150
+ await ws.close()
151
+ break
152
+
153
+ if progress_bar is not None:
154
+ await asyncio.to_thread(progress_bar.close)
155
+
156
+ async def update_progress(self):
157
+ # 覆写函数
158
+ pass
159
+
160
+ async def get_backend_working_progress(self):
161
+
162
+ self.get_backend_id()
163
+
164
+ try:
165
+ response = await self.http_request(
166
+ method="GET",
167
+ target_url=f"{self.backend_url}/queue",
168
+ )
169
+ if response.get("error", None):
170
+ available = False
171
+ else:
172
+ available = True
173
+
174
+ if len(response["queue_running"]) == 0:
175
+ progress = 0
176
+ else:
177
+ progress = 0.99
178
+
179
+ build_resp = self.format_progress_api_resp(progress, self.start_time)
180
+
181
+ sc = 200 if available is True else 500
182
+ except:
183
+ traceback.print_exc()
184
+ finally:
185
+ return build_resp, sc, self.backend_url, sc
186
+
187
+ async def check_backend_usability(self):
188
+ pass
189
+
190
+ async def err_formating_to_sd_style(self):
191
+
192
+ await self.download_img()
193
+ self.format_api_respond()
194
+ self.result = self.build_respond
195
+
196
+ async def posting(self):
197
+ upload_img_resp_list = []
198
+
199
+ if self.init_images:
200
+ for image in self.init_images:
201
+ resp = await self.upload_base64_image(image, uuid.uuid4().hex)
202
+ upload_img_resp_list.append(resp)
203
+
204
+ self.update_api_json(upload_img_resp_list)
205
+
206
+ input_ = {
207
+ "client_id": self.client_id,
208
+ "prompt": self.comfyui_api_json
209
+ }
210
+
211
+ respone = await self.http_request(
212
+ method="POST",
213
+ target_url=f"{self.backend_url}/prompt",
214
+ headers=self.headers,
215
+ content=json.dumps(input_)
216
+ )
217
+
218
+ if respone.get("error", None):
219
+ self.logger.error(respone)
220
+ raise RuntimeError(respone["status_code"])
221
+
222
+ self.task_id = respone['prompt_id']
223
+
224
+ await self.heart_beat(self.task_id)
225
+ await self.err_formating_to_sd_style()
226
+
227
+ def update_api_json(self, init_images):
228
+ api_json = copy.deepcopy(self.comfyui_api_json)
229
+ raw_api_json = copy.deepcopy(self.comfyui_api_json)
230
+
231
+ print(api_json)
232
+
233
+ update_mapping = {
234
+ "sampler": {
235
+ "seed": self.seed,
236
+ "steps": self.steps,
237
+ "cfg": self.scale,
238
+ "sampler_name": self.sampler,
239
+ "scheduler": self.scheduler,
240
+ "denoise": self.denoising_strength
241
+ },
242
+ "seed": {
243
+ "seed": self.seed,
244
+ "noise_seed": self.seed
245
+ },
246
+ "image_size": {
247
+ "width": self.width,
248
+ "height": self.height,
249
+ "batch_size": self.batch_size
250
+ },
251
+ "prompt": {
252
+ "text": self.tags
253
+ },
254
+ "negative_prompt": {
255
+ "text": self.ntags
256
+ },
257
+ "checkpoint": {
258
+ "ckpt_name": self.model_path if self.model_path else None
259
+ },
260
+ "latentupscale": {
261
+ "width": int(self.width*self.hr_scale) if not self.hr_resize_x else self.hr_resize_x,
262
+ "height": int(self.height*self.hr_scale) if not self.hr_resize_y else self.hr_resize_y,
263
+ },
264
+ "load_image": {
265
+ "image": init_images[0]['name'] if self.init_images else None
266
+ },
267
+ "resize": {
268
+ "width": int(self.width*self.hr_scale) if not self.hr_resize_x else self.hr_resize_x,
269
+ "height": int(self.height*self.hr_scale) if not self.hr_resize_y else self.hr_resize_y,
270
+ },
271
+ "hr_steps": {
272
+ "seed": self.seed,
273
+ "steps": self.hr_second_pass_steps,
274
+ "cfg": self.hr_scale,
275
+ "sampler_name": self.sampler,
276
+ "scheduler": self.scheduler,
277
+ "denoise": self.denoising_strength,
278
+ },
279
+ "hr_prompt": {
280
+ "text": self.hr_prompt
281
+ },
282
+ "hr_negative_prompt": {
283
+ "text": self.hr_negative_prompt
284
+ },
285
+ "tipo": {
286
+ "width": self.width,
287
+ "height": self.height,
288
+ "seed": self.seed,
289
+ "tags": self.tags,
290
+ },
291
+ "append_prompt": {
292
+
293
+ }
294
+ }
295
+
296
+ __OVERRIDE_SUPPORT_KEYS__ = {
297
+ 'keep',
298
+ 'value',
299
+ 'append_prompt',
300
+ 'append_negative_prompt',
301
+ 'remove',
302
+ "randint",
303
+ "get_text",
304
+ "upscale",
305
+ 'image'
306
+
307
+ }
308
+ __ALL_SUPPORT_NODE__ = set(update_mapping.keys())
309
+
310
+ for item, node_id in self.comfyui_api_json_reflex.items():
311
+
312
+ if node_id and item not in ("override", "note"):
313
+
314
+ org_node_id = node_id
315
+
316
+ if isinstance(node_id, list):
317
+ node_id = node_id
318
+ elif isinstance(node_id, int or str):
319
+ node_id = [node_id]
320
+ elif isinstance(node_id, dict):
321
+ node_id = list(node_id.keys())
322
+
323
+ for id_ in node_id:
324
+ id_ = str(id_)
325
+ update_dict = api_json.get(id_, None)
326
+ if update_dict and item in update_mapping:
327
+ api_json[id_]['inputs'].update(update_mapping[item])
328
+
329
+ if isinstance(org_node_id, dict):
330
+ for node, override_dict in org_node_id.items():
331
+ single_node_or = override_dict.get("override", {})
332
+
333
+ if single_node_or:
334
+ for key, override_action in single_node_or.items():
335
+
336
+ if override_action == "randint":
337
+ api_json[node]['inputs'][key] = random.randint(0, MAX_SEED)
338
+
339
+ elif override_action == "keep":
340
+ org_cons = raw_api_json[node]['inputs'][key]
341
+
342
+ elif override_action == "append_prompt":
343
+ prompt = raw_api_json[node]['inputs'][key]
344
+ prompt = self.tags + prompt
345
+ api_json[node]['inputs'][key] = prompt
346
+
347
+ elif override_action == "append_negative_prompt":
348
+ prompt = raw_api_json[node]['inputs'][key]
349
+ prompt = self.ntags + prompt
350
+ api_json[node]['inputs'][key] = prompt
351
+
352
+ elif "upscale" in override_action:
353
+ scale = 1.5
354
+ if "_" in override_action:
355
+ scale = override_action.split("_")[1]
356
+
357
+ if key == 'width':
358
+ res = self.width
359
+ elif key == 'height':
360
+ res = self.height
361
+
362
+ upscale_size = int(res * scale)
363
+ api_json[node]['inputs'][key] = upscale_size
364
+
365
+ elif "value" in override_action:
366
+ override_value = raw_api_json[node]['inputs'][key]
367
+ if "_" in override_action:
368
+ override_value = override_action.split("_")[1]
369
+ override_type = override_action.split("_")[2]
370
+ if override_type == "int":
371
+ override_value = int(override_value)
372
+ elif override_type == "float":
373
+ override_value = float(override_value)
374
+ elif override_type == "str":
375
+ override_value = str(override_value)
376
+
377
+ api_json[node]['inputs'][key] = override_value
378
+
379
+ elif "image" in override_action:
380
+ image_id = int(override_action.split("_")[1])
381
+ api_json[node]['inputs'][key] = init_images[image_id]['name']
382
+
383
+ else:
384
+ update_dict = api_json.get(node, None)
385
+ if update_dict and item in update_mapping:
386
+ api_json[node]['inputs'].update(update_mapping[item])
387
+
388
+ test_dict = {
389
+ "sampler": 3,
390
+ "image_size": 5,
391
+ "prompt": 6,
392
+ "negative_prompt": 7,
393
+ "checkpoint": 4,
394
+ "latentupscale": 10,
395
+ "load_image": 0,
396
+ "resize": 15,
397
+ "hr_steps": 19,
398
+ "hr_prompt": 21,
399
+ "hr_negative_prompt": 22,
400
+ "output": 9
401
+ }
402
+
403
+ print(api_json)
404
+ self.comfyui_api_json = api_json
405
+
406
+ async def upload_base64_image(self, b64_image, name, image_type="input", overwrite=False):
407
+
408
+ if b64_image.startswith("data:image"):
409
+ header, b64_image = b64_image.split(",", 1)
410
+ file_type = header.split(";")[0].split(":")[1].split("/")[1]
411
+ else:
412
+ raise ValueError("Invalid base64 image format.")
413
+
414
+ image_data = base64.b64decode(b64_image)
415
+
416
+ data = aiohttp.FormData()
417
+ data.add_field('image', image_data, filename=f"{name}.{file_type}", content_type=f'image/{file_type}')
418
+ data.add_field('type', image_type)
419
+ data.add_field('overwrite', str(overwrite).lower())
420
+
421
+ async with aiohttp.ClientSession() as session:
422
+ async with session.post(f"{self.backend_url}/upload/image", data=data) as response:
423
+ return json.loads(await response.read())
DrawBridgeAPI/backend/liblibai.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import json
3
+ import traceback
4
+
5
+ from .base import Backend
6
+
7
+
8
+ class AIDRAW(Backend):
9
+
10
+ def __init__(self, count, payload, **kwargs):
11
+ super().__init__(count=count, payload=payload, **kwargs)
12
+
13
+ self.xl = self.config.liblibai_setting['xl'][self.count]
14
+ self.flux = self.config.liblibai_setting['flux'][self.count]
15
+ site_name = 'LiblibAI_XL' if self.xl else 'LiblibAI'
16
+ self.model = f"{site_name} - {self.config.liblibai_setting['model_name'][self.count]}"
17
+ self.model_id = self.config.liblibai_setting['model'][self.count]
18
+ self.model_hash = "c7352c5d2f"
19
+ self.logger = self.setup_logger('[LiblibAI]')
20
+
21
+ token = self.config.liblibai[self.count]
22
+ self.token = token
23
+ self.backend_name = self.config.backend_name_list[4]
24
+ self.workload_name = f"{self.backend_name}-{token}"
25
+
26
+ async def heart_beat(self, id_):
27
+ self.logger.info(f"{id_}开始请求")
28
+ for i in range(60):
29
+
30
+ response = await self.http_request(
31
+ method="POST",
32
+ target_url=f"https://liblib-api.vibrou.com/gateway/sd-api/generate/progress/msg/v3/{id_}",
33
+ headers=self.headers,
34
+ content=json.dumps({"flag": 0}),
35
+ verify=False
36
+ )
37
+
38
+ # 检查请求结果并处理
39
+ if response.get('error') == "error":
40
+ self.logger.warning(f"Failed to request: {response}")
41
+ raise RuntimeError('服务器返回错误')
42
+ if response['code'] != 0 or response['data']['statusMsg'] == '执行异常':
43
+ raise RuntimeError('服务器返回错误')
44
+
45
+ images = response['data']['images']
46
+
47
+ if images is None:
48
+ self.logger.info(f"第{i+1}次心跳,未返回结果")
49
+ await asyncio.sleep(5)
50
+ continue
51
+ else:
52
+ # await self.set_backend_working_status(available=True)
53
+ for i in images:
54
+ if 'porn' in i['previewPath']:
55
+ self.nsfw_detected = True
56
+ self.logger.warning("API侧检测到NSFW图片")
57
+ else:
58
+ self.logger.img(f"图片url: {i['previewPath']}")
59
+ self.img_url.append(i['previewPath'])
60
+ self.comment = i['imageInfo']
61
+ break
62
+
63
+ async def update_progress(self):
64
+ # 覆写函数
65
+ pass
66
+
67
+ async def check_backend_usability(self):
68
+ pass
69
+
70
+ async def err_formating_to_sd_style(self):
71
+
72
+ if self.nsfw_detected:
73
+ await self.return_build_image()
74
+ else:
75
+ await self.download_img()
76
+
77
+ self.format_api_respond()
78
+
79
+ self.result = self.build_respond
80
+
81
+ async def posting(self):
82
+
83
+ if self.xl or self.flux:
84
+ if self.xl:
85
+ pre_tag, pre_ntag = tuple(self.config.liblibai_setting.get('preference')[self.count]['pretags']['xl'])
86
+ elif self.flux:
87
+ pre_tag, pre_ntag = tuple(self.config.liblibai_setting.get('preference')[self.count]['pretags']['flux'])
88
+ self.tags = pre_tag + self.tags
89
+ self.ntags = pre_ntag + self.ntags
90
+ if self.enable_hr:
91
+ self.width = int(self.width * self.hr_scale)
92
+ self.height = int(self.height * self.hr_scale)
93
+ self.enable_hr = False
94
+ elif self.width * self.height < 1048576:
95
+ self.width = int(self.width * 1.5)
96
+ self.height = int(self.height * 1.5)
97
+
98
+ self.steps = self.config.liblibai_setting.get('preference')[self.count].get('steps', 12)
99
+
100
+ if self.flux:
101
+ input_ = {
102
+ "checkpointId": 2295774,
103
+ "generateType": 17,
104
+ "frontCustomerReq": {
105
+ "windowId": "",
106
+ "tabType": "txt2img",
107
+ "conAndSegAndGen": "gen"
108
+ },
109
+ "adetailerEnable": 0,
110
+ "text2imgV3": {
111
+ "clipSkip": 2,
112
+ "checkPointName": 2295774,
113
+ "prompt": self.tags,
114
+ "negPrompt": self.ntags,
115
+ "seed": self.seed,
116
+ "randnSource": 0,
117
+ "samplingMethod": 31,
118
+ "imgCount": self.batch_size,
119
+ "samplingStep": self.steps,
120
+ "cfgScale": self.scale,
121
+ "width": self.width,
122
+ "height": self.height
123
+ },
124
+ "taskQueuePriority": 1
125
+ }
126
+
127
+ else:
128
+ input_ = {
129
+ "checkpointId": self.model_id,
130
+ "generateType": 1,
131
+ "frontCustomerReq": {
132
+ # "frontId": "f46f8e35-5728-4ded-b163-832c3b85009d",
133
+ "windowId": "",
134
+ "tabType": "txt2img",
135
+ "conAndSegAndGen": "gen"
136
+ }
137
+ ,
138
+ "adetailerEnable": 0,
139
+ "text2img": {
140
+ "prompt": self.tags,
141
+ "negativePrompt": self.ntags,
142
+ "extraNetwork": "",
143
+ "samplingMethod": 0,
144
+ "samplingStep": self.steps,
145
+ "width": self.width,
146
+ "height": self.height,
147
+ "imgCount": self.batch_size,
148
+ "cfgScale": self.scale,
149
+ "seed": self.seed,
150
+ "seedExtra": 0,
151
+ "hiResFix": 0,
152
+ "restoreFaces": 0,
153
+ "tiling": 0,
154
+ "clipSkip": 2,
155
+ "randnSource": 0,
156
+ "tileDiffusion": None
157
+ }
158
+ ,
159
+ "taskQueuePriority": 1
160
+ }
161
+
162
+ if self.enable_hr and self.flux is False and self.xl is False:
163
+
164
+ hr_payload = {
165
+ "hiresSteps": self.hr_second_pass_steps,
166
+ "denoisingStrength": self.denoising_strength,
167
+ "hiResFix": 1 if self.enable_hr else 0,
168
+ "hiResFixInfo": {
169
+ "upscaler": 6,
170
+ "upscaleBy": self.hr_scale,
171
+ "resizeWidth": int(self.width * self.hr_scale),
172
+ "resizeHeight": int(self.height * self.hr_scale)
173
+ }
174
+ }
175
+
176
+ input_['text2img'].update(hr_payload)
177
+
178
+ new_headers = {
179
+ "Accept": "application/json, text/plain, */*",
180
+ "Token": self.token
181
+ }
182
+ self.headers.update(new_headers)
183
+
184
+ response = await self.http_request(
185
+ method="POST",
186
+ target_url="https://liblib-api.vibrou.com/gateway/sd-api/generate/image",
187
+ headers=self.headers,
188
+ content=json.dumps(input_),
189
+ verify=False
190
+ )
191
+
192
+ # 检查请求结果
193
+ if response.get('error') == "error":
194
+ self.logger.warning(f"Failed to request: {response}")
195
+ else:
196
+ task = response
197
+ if task.get('msg') == 'Insufficient power':
198
+ self.logger.warning('费用不足!')
199
+ self.logger.info(f"API返回{task}")
200
+ task_id = task['data']
201
+ await self.heart_beat(task_id)
202
+
203
+ await self.err_formating_to_sd_style()
204
+
205
+
DrawBridgeAPI/backend/midjourney.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+
3
+ import aiohttp
4
+
5
+ from .base import Backend
6
+ from PIL import Image
7
+ import asyncio
8
+ import json
9
+ import traceback
10
+ import math
11
+ import zipfile
12
+ import io
13
+ import os
14
+ import aiofiles
15
+ import base64
16
+
17
+ from pathlib import Path
18
+
19
+ class AIDRAW(Backend):
20
+
21
+ def __init__(self, count, payload, **kwargs):
22
+ super().__init__(count=count, payload=payload, **kwargs)
23
+
24
+ self.model = f"MidJourney"
25
+ self.model_hash = "c7352c5d2f"
26
+ self.logger = self.setup_logger('[MidJourney]')
27
+
28
+ self.backend_url = self.config.midjourney['backend_url'][self.count]
29
+ self.backend_name = self.config.backend_name_list[10]
30
+ self.workload_name = f"{self.backend_name}-{self.config.midjourney['name'][self.count]}"
31
+
32
+ async def heart_beat(self, id_):
33
+ task_url = f"{self.backend_url}/mj/task/{id_}/fetch"
34
+
35
+ while True:
36
+ try:
37
+ resp = await self.http_request("GET", task_url, format=True)
38
+ status = resp.get('status')
39
+ content = ''
40
+
41
+ if status == "SUCCESS":
42
+ content = resp['imageUrl']
43
+ self.img_url.append(resp['imageUrl'])
44
+ self.logger.img(f"任务{id_}成功完成,图片URL:{resp['imageUrl']}")
45
+ return content
46
+
47
+ elif status == "FAILED":
48
+ content = resp.get('failReason') or '未知原因'
49
+ self.logger.error(f"任务处理失败,原因:{content}")
50
+
51
+ raise Exception(f"任务处理失败,原因:{content}")
52
+
53
+ elif status == "NOT_START":
54
+ content = '任务未开始'
55
+
56
+ elif status == "IN_PROGRESS":
57
+ content = '任务正在运行'
58
+ if resp.get('progress'):
59
+ content += f",进度:{resp['progress']}"
60
+
61
+ elif status == "SUBMITTED":
62
+ content = '任务已提交处理'
63
+
64
+ elif status == "FAILURE":
65
+ fail_reason = resp.get('failReason') or '未知原因'
66
+ self.logger.error(f"任务处理失败,原因:{fail_reason}")
67
+ if "Banned prompt detected" in fail_reason:
68
+ await self.return_build_image("NSFW Prompt Detected")
69
+ return
70
+ else:
71
+ raise Exception(f"任务处理失败,原因:{content}")
72
+
73
+ else:
74
+ content = status
75
+
76
+ self.logger.info(f"任务{id_}状态:{content}")
77
+
78
+ await asyncio.sleep(5)
79
+
80
+ except Exception as e:
81
+ self.logger.error(f"任务{id_}心跳监控出错: {str(e)}")
82
+ raise
83
+
84
+
85
+ async def update_progress(self):
86
+ # 覆写函数
87
+ pass
88
+
89
+ async def get_shape(self):
90
+
91
+ gcd = math.gcd(self.width, self.height)
92
+
93
+ simplified_width = self.width // gcd
94
+ simplified_height = self.height // gcd
95
+
96
+ ar = f"{simplified_width}:{simplified_height}"
97
+
98
+ return ar
99
+
100
+ async def check_backend_usability(self):
101
+ pass
102
+
103
+ async def split_image(self):
104
+ img = Image.open(io.BytesIO(self.img_btyes[0]))
105
+ width, height = img.size
106
+
107
+ half_width = width // 2
108
+ half_height = height // 2
109
+
110
+ coordinates = [(0, 0, half_width, half_height),
111
+ (half_width, 0, width, half_height),
112
+ (0, half_height, half_width, height),
113
+ (half_width, half_height, width, height)]
114
+
115
+ images = [img.crop(c) for c in coordinates]
116
+
117
+ images_bytes = [io.BytesIO() for _ in range(4)]
118
+ base64_images = []
119
+
120
+ for i in range(4):
121
+ images[i].save(images_bytes[i], format='PNG')
122
+
123
+ images_bytes[i].seek(0)
124
+ base64_image = base64.b64encode(images_bytes[i].getvalue()).decode('utf-8')
125
+
126
+ base64_images.append(base64_image)
127
+
128
+ self.img_btyes += images_bytes
129
+ self.img += base64_images
130
+
131
+ # async def formating_to_sd_style(self):
132
+ #
133
+ # await self.download_img()
134
+ # await self.split_image()
135
+ #
136
+ # self.format_api_respond()
137
+ # self.result = self.build_respond
138
+
139
+ async def posting(self):
140
+
141
+ accept_ratio = await self.get_shape()
142
+
143
+ ntags = f"--no {self.ntags}" if self.ntags else ""
144
+
145
+ build_prompt = f"{self.tags} --ar {accept_ratio} --seed {self.seed}" + ' ' + ntags + ' '
146
+
147
+ payload = {
148
+ "prompt": build_prompt
149
+ }
150
+
151
+ if self.config.midjourney['auth_toekn'][self.count]:
152
+ self.headers.update({"mj-api-secret": self.config.midjourney['auth_toekn'][self.count]})
153
+
154
+ resp = await self.http_request(
155
+ "POST",
156
+ f"{self.backend_url}/mj/submit/imagine",
157
+ headers=self.headers,
158
+ content=json.dumps(payload),
159
+ format=True
160
+ )
161
+
162
+ if resp.get('code') == 24:
163
+ await self.return_build_image(text="NSFW Prompt Detected")
164
+
165
+ elif resp.get('code') == 1:
166
+ task_id = resp.get('result')
167
+ self.task_id = task_id
168
+ self.logger.info(f"任务提交成功,任务id: {task_id}")
169
+
170
+ await self.heart_beat(task_id)
171
+ await self.download_img()
172
+ await self.split_image()
173
+
174
+ self.format_api_respond()
175
+ self.result = self.build_respond
DrawBridgeAPI/backend/novelai.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+
3
+ import aiohttp
4
+
5
+ from .base import Backend
6
+ import asyncio
7
+ import json
8
+ import traceback
9
+ import zipfile
10
+ import io
11
+ import os
12
+ import aiofiles
13
+ import base64
14
+
15
+ from pathlib import Path
16
+
17
+ class AIDRAW(Backend):
18
+
19
+ def __init__(self, count, payload, **kwargs):
20
+ super().__init__(count=count, payload=payload, **kwargs)
21
+
22
+ self.model = f"NovelAI - {self.config.novelai_setting['model'][self.count]}"
23
+ self.model_hash = "c7352c5d2f"
24
+ self.logger = self.setup_logger('[NovelAI]')
25
+
26
+ token = self.config.novelai[self.count]
27
+ self.token = token
28
+ self.backend_name = self.config.backend_name_list[9]
29
+ self.workload_name = f"{self.backend_name}-{token}"
30
+
31
+ self.save_path = Path(f'saved_images/{self.task_type}/{self.current_date}/{self.workload_name[:12]}')
32
+
33
+ self.reflex_dict['sampler'] = {
34
+ "DPM++ 2M": "k_dpmpp_2m",
35
+ "DPM++ SDE": "k_dpmpp_sde",
36
+ "DPM++ 2M SDE": "k_dpmpp_2m_sde",
37
+ "DPM++ 2S a": "k_dpmpp_2s_ancestral",
38
+ "Euler a": "k_euler_ancestral",
39
+ "Euler": "k_euler",
40
+ "DDIM": "ddim_v3"
41
+ }
42
+
43
+ async def update_progress(self):
44
+ # 覆写函数
45
+ pass
46
+
47
+ async def get_shape(self):
48
+ aspect_ratio = self.width / self.height
49
+
50
+ resolutions = {
51
+ "832x1216": (832, 1216),
52
+ "1216x832": (1216, 832),
53
+ "1024x1024": (1024, 1024),
54
+ }
55
+
56
+ closest_resolution = min(resolutions.keys(),
57
+ key=lambda r: abs((resolutions[r][0] / resolutions[r][1]) - aspect_ratio))
58
+
59
+ self.width, self.height = resolutions[closest_resolution]
60
+
61
+ return closest_resolution
62
+
63
+ async def check_backend_usability(self):
64
+ pass
65
+
66
+ async def err_formating_to_sd_style(self):
67
+
68
+ if self.nsfw_detected:
69
+ await self.return_build_image()
70
+
71
+ self.format_api_respond()
72
+
73
+ self.result = self.build_respond
74
+
75
+ async def posting(self):
76
+
77
+ self.sampler = self.reflex_dict['sampler'].get(self.sampler, "k_euler_ancestral")
78
+
79
+ header = {
80
+ "authorization": "Bearer " + self.token,
81
+ ":authority": "https://api.novelai.net",
82
+ ":path": "/ai/generate-image",
83
+ "content-type": "application/json",
84
+ "referer": "https://novelai.net",
85
+ "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36",
86
+ }
87
+
88
+ post_api = "https://image.novelai.net/ai/generate-image"
89
+
90
+ await self.get_shape()
91
+
92
+ parameters = {
93
+ "width": self.width,
94
+ "height": self.height,
95
+ "qualityToggle": False,
96
+ "scale": self.scale,
97
+ "sampler": self.sampler,
98
+ "steps": self.steps,
99
+ "seed": self.seed,
100
+ "n_samples": 1,
101
+ "ucPreset": 0,
102
+ "negative_prompt": self.ntags,
103
+ }
104
+
105
+ json_data = {
106
+ "input": self.tags,
107
+ "model": self.config.novelai_setting['model'][self.count],
108
+ "parameters": parameters
109
+ }
110
+
111
+ async def send_request():
112
+
113
+ async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=300)) as session:
114
+ while True:
115
+ async with session.post(
116
+ post_api,
117
+ headers=header,
118
+ json=json_data,
119
+ ssl=False,
120
+ proxy=self.config.server_settings['proxy']
121
+ ) as response:
122
+
123
+ if response.status == 429:
124
+ resp_text = await response.json()
125
+ if resp_text['message'] == 'Rate limited':
126
+ raise Exception("触发频率限制")
127
+ self.logger.warning(f"token繁忙中..., {resp_text}")
128
+ wait_time = 5
129
+ await asyncio.sleep(wait_time)
130
+ else:
131
+ response_data = await response.read()
132
+ try:
133
+ with zipfile.ZipFile(io.BytesIO(response_data)) as z:
134
+ z.extractall(self.save_path)
135
+ except:
136
+ try:
137
+ resp_text = await response.json()
138
+ except:
139
+ if resp_text['statusCode'] == 402:
140
+ self.logger.warning(f"token余额不足, {resp_text}")
141
+ return
142
+
143
+ await send_request()
144
+
145
+ # self.save_path = self.save_path
146
+ # self.save_path.mkdir(parents=True, exist_ok=True)
147
+
148
+ await self.images_to_base64(self.save_path)
149
+
150
+ await self.err_formating_to_sd_style()
151
+
152
+ async def images_to_base64(self, save_path):
153
+
154
+ for filename in os.listdir(save_path):
155
+ if filename.endswith('.png'):
156
+ file_path = os.path.join(save_path, filename)
157
+ async with aiofiles.open(file_path, "rb") as image_file:
158
+ image_data = await image_file.read()
159
+ encoded_string = base64.b64encode(image_data).decode('utf-8')
160
+ self.img.append(encoded_string)
161
+ self.img_btyes.append(image_data)
DrawBridgeAPI/backend/seaart.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import json
3
+ import traceback
4
+
5
+ from .base import Backend
6
+
7
+
8
+ class AIDRAW(Backend):
9
+
10
+ def __init__(self, count, payload, **kwargs):
11
+ super().__init__(count=count, payload=payload, **kwargs)
12
+ # 需要更改
13
+ self.model = f"SeaArt - {self.config.seaart_setting['model'][self.count]}"
14
+ self.model_hash = "c7352c5d2f"
15
+ self.logger = self.setup_logger('[SeaArt]')
16
+ token = self.config.seaart[self.count]
17
+
18
+ self.token = token
19
+ self.backend_name = self.config.backend_name_list[6]
20
+ self.workload_name = f"{self.backend_name}-{token}"
21
+
22
+ async def heart_beat(self, id_):
23
+ self.logger.info(f"{id_} 开始请求")
24
+ data = json.dumps({"task_ids": [id_]})
25
+ for i in range(60):
26
+ response = await self.http_request(
27
+ method="POST",
28
+ target_url="https://www.seaart.me/api/v1/task/batch-progress",
29
+ headers=self.headers,
30
+ content=data
31
+ )
32
+
33
+ if isinstance(response, dict) and 'error' in response:
34
+ raise RuntimeError(f"请求失败,错误信息: {response.get('details')}")
35
+ else:
36
+ items = response.get('data', {}).get('items', [])
37
+
38
+ if not items:
39
+ self.logger.info(f"第{i + 1}次心跳,未返回结果")
40
+ await asyncio.sleep(5)
41
+ continue
42
+
43
+ for item in items:
44
+ urls = item.get("img_uris")
45
+
46
+ if urls is None:
47
+ self.logger.info(f"第{i + 1}次心跳,未返回结果")
48
+ await asyncio.sleep(5)
49
+ continue
50
+
51
+ elif isinstance(urls, list):
52
+ for url in urls:
53
+ self.logger.img(f"图片url: {url['url']}")
54
+ self.img_url.append(url['url'])
55
+ return
56
+
57
+ raise RuntimeError(f"任务 {id_} 在60次心跳后仍未完成")
58
+
59
+
60
+ async def update_progress(self):
61
+ # 覆写函数
62
+ pass
63
+
64
+ async def check_backend_usability(self):
65
+ pass
66
+
67
+ async def err_formating_to_sd_style(self):
68
+
69
+ await self.download_img()
70
+
71
+ self.format_api_respond()
72
+
73
+ self.result = self.build_respond
74
+
75
+ async def posting(self):
76
+
77
+ input_ = {
78
+ "action": 1,
79
+ "art_model_no": "1a486c58c2aa0601b57ddc263fc350d0",
80
+ "category": 1,
81
+ "speed_type": 1,
82
+ "meta":
83
+ {
84
+ "prompt": self.tags,
85
+ "negative_prompt": self.ntags,
86
+ "restore_faces": self.restore_faces,
87
+ "seed": self.seed,
88
+ "sampler_name": self.sampler,
89
+ "width": self.width,
90
+ "height": self.height,
91
+ "steps": self.steps,
92
+ "cfg_scale": self.scale,
93
+ "lora_models": [],
94
+ "vae": "vae-ft-mse-840000-ema-pruned",
95
+ "clip_skip": 1,
96
+ "hr_second_pass_steps": 20,
97
+ "lcm_mode": 0,
98
+ "n_iter": 1,
99
+ "embeddings": []
100
+ }
101
+ }
102
+
103
+ if self.enable_hr:
104
+
105
+ hr_payload = {
106
+ "hr_second_pass_steps": self.hr_second_pass_steps,
107
+ "enable_hr": True,
108
+ "hr_upscaler": "4x-UltraSharp",
109
+ "hr_scale": self.hr_scale,
110
+ }
111
+
112
+ input_['meta'].update(hr_payload)
113
+
114
+ new_headers = {
115
+ "Accept": "application/json, text/plain, */*",
116
+ "Token": self.token
117
+ }
118
+
119
+ self.headers.update(new_headers)
120
+
121
+ data = json.dumps(input_)
122
+ response = await self.http_request(
123
+ method="POST",
124
+ target_url="https://www.seaart.me/api/v1/task/create",
125
+ headers=self.headers,
126
+ content=data
127
+ )
128
+
129
+ if isinstance(response, dict) and 'error' in response:
130
+ self.logger.warning(f"{response.get('details')}")
131
+ else:
132
+ task = response
133
+ task_id = task.get('data', {}).get('id')
134
+
135
+ if task_id:
136
+ await self.heart_beat(task_id)
137
+
138
+ await self.err_formating_to_sd_style()
139
+
DrawBridgeAPI/backend/tusiart.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import json
3
+ import traceback
4
+
5
+ from .base import Backend
6
+
7
+
8
+ class AIDRAW(Backend):
9
+
10
+ def __init__(self, count, payload, **kwargs):
11
+ super().__init__(count=count, payload=payload, **kwargs)
12
+
13
+ self.model = f"TusiArt - tusiart.com/models/{self.config.tusiart_setting['model'][self.count]}"
14
+ self.model_hash = "c7352c5d2f"
15
+ self.logger = self.setup_logger('[TusiArt]')
16
+
17
+ token = self.config.tusiart[self.count]
18
+ self.token = token
19
+ self.backend_name = self.config.backend_name_list[5]
20
+ self.workload_name = f"{self.backend_name}-{token}"
21
+
22
+ async def heart_beat(self, id_):
23
+ self.logger.info(f"{id_}开始请求")
24
+ self.headers['referer'] = "https://tusiart.com/models"
25
+ del self.headers['sec-ch-ua']
26
+
27
+ for i in range(60):
28
+ await asyncio.sleep(5)
29
+ self.logger.info(f"第{i + 1}次心跳")
30
+ response = await self.http_request(
31
+ method="GET",
32
+ target_url='https://api.tusiart.cn/works/v1/works/tasks?size=20&cursor=0&returnAllTask=true',
33
+ headers=self.headers
34
+ )
35
+
36
+ if isinstance(response, dict) and 'error' in response:
37
+ raise RuntimeError(f"Request failed with error: {response.get('details')}")
38
+ else:
39
+ resp_json = response
40
+ all_tasks = resp_json['data']['tasks']
41
+ task_found = False
42
+ for task in all_tasks:
43
+ if task['taskId'] == id_:
44
+ task_found = True
45
+ if task['status'] == 'WAITING':
46
+ break
47
+ elif task['status'] == 'FINISH':
48
+ matched = False
49
+ for img in task['items']:
50
+ if 'workspace.tusiassets.com' in img['url']:
51
+ self.logger.img(f"图片url: {img['url']}")
52
+ self.img_url.append(img['url'])
53
+ matched = True
54
+
55
+ if matched:
56
+ return
57
+ else:
58
+ self.logger.info(f"第{i + 1}次心跳,FINISH状态下未找到符合条件的URL")
59
+ await asyncio.sleep(5)
60
+ break
61
+ if not task_found:
62
+ self.logger.info(f"任务 {id_} 未找到")
63
+ await asyncio.sleep(5)
64
+ continue
65
+
66
+ raise RuntimeError(f"任务 {id_} 在 {60} 次轮询后仍未完成")
67
+
68
+ async def update_progress(self):
69
+ # 覆写函数
70
+ pass
71
+
72
+ async def check_backend_usability(self):
73
+ pass
74
+
75
+ async def err_formating_to_sd_style(self):
76
+
77
+ await self.download_img()
78
+
79
+ self.format_api_respond()
80
+
81
+ self.result = self.build_respond
82
+
83
+ async def posting(self):
84
+
85
+ self.sampler = "Euler a"
86
+
87
+ input_ = {
88
+ "params":
89
+ {
90
+ "baseModel":
91
+ {
92
+ "modelId": self.config.tusiart_setting['model'][self.count],
93
+ "modelFileId": "708770380970509676"
94
+ },
95
+ "sdxl":
96
+ {"refiner": False},
97
+ "models": [],
98
+ "embeddingModels": [],
99
+ "sdVae": "Automatic",
100
+ "prompt": self.tags,
101
+ "negativePrompt": self.ntags,
102
+ "height": self.height,
103
+ "width": self.width,
104
+ "imageCount": self.total_img_count,
105
+ "steps": self.steps,
106
+ "images": [],
107
+ "cfgScale": self.scale,
108
+ "seed": str(self.seed),
109
+ "clipSkip": 2,
110
+ "etaNoiseSeedDelta": 31337,
111
+ "v1Clip": False,
112
+ "samplerName": self.sampler
113
+ },
114
+ "taskType": "TXT2IMG",
115
+ "isRemix": False,
116
+ "captchaType": "CLOUDFLARE_TURNSTILE"
117
+ }
118
+
119
+ if self.enable_hr:
120
+
121
+ hr_payload = {
122
+ "enableHr": True,
123
+ "hrUpscaler": "R-ESRGAN 4x+ Anime6B",
124
+ "hrSecondPassSteps": self.hr_second_pass_steps,
125
+ "denoisingStrength": self.denoising_strength,
126
+ "hrResizeX": int(self.width*self.hr_scale),
127
+ "hrResizeY": int(self.height*self.hr_scale)
128
+ }
129
+
130
+ input_['params'].update(hr_payload)
131
+
132
+ new_headers = {
133
+ "Authorization": f"Bearer {self.token}",
134
+ "Token": self.token,
135
+ "referer": self.config.tusiart_setting['referer'][self.count],
136
+ "sec-ch-ua": 'Not)A;Brand";v="99", "Microsoft Edge";v="127", "Chromium";v="127'
137
+ }
138
+ self.headers.update(new_headers)
139
+
140
+ data = json.dumps(input_)
141
+
142
+ response = await self.http_request(
143
+ method="POST",
144
+ target_url="https://api.tusiart.cn/works/v1/works/task",
145
+ headers=self.headers,
146
+ content=data
147
+ )
148
+
149
+ if isinstance(response, dict) and 'error' in response:
150
+ pass
151
+ else:
152
+ task = response
153
+ if task['code'] == '1300100':
154
+ error_text = f"""
155
+ 后端:{self.config.tusiart_setting['note'][self.count]} 遇到人机验证,需到验证。
156
+ 请前往https://tusiart.com/使用一次生图来触发验证码。
157
+ 后端已被标记为不可使用,如需继续使用请重启API"
158
+ """
159
+ self.logger.warning("遇到人机验证!")
160
+ raise RuntimeError(error_text)
161
+ task_id = task['data']['task']['taskId']
162
+ await self.heart_beat(task_id)
163
+
164
+ await self.err_formating_to_sd_style()
165
+
166
+
DrawBridgeAPI/backend/yunjie.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import json
3
+ import traceback
4
+
5
+ from .base import Backend
6
+
7
+
8
+ class AIDRAW(Backend):
9
+
10
+ def __init__(self, count, payload, **kwargs):
11
+ super().__init__(count=count, payload=payload, **kwargs)
12
+ # 需要更改
13
+ self.model = f"YunJie - {self.config.yunjie_setting['model'][self.count]}"
14
+ self.model_hash = "c7352c5d2f"
15
+ self.logger = self.setup_logger('[YunJie]')
16
+ token = self.config.yunjie[self.count]
17
+
18
+ self.token = token
19
+ self.backend_name = self.config.backend_name_list[7]
20
+ self.workload_name = f"{self.backend_name}-{token}"
21
+
22
+ async def heart_beat(self, id_):
23
+ self.logger.info(f"{id_} 开始请求")
24
+ for i in range(60):
25
+ await asyncio.sleep(5)
26
+
27
+ data = json.dumps({"taskId": id_})
28
+ response = await self.http_request(
29
+ method="POST",
30
+ target_url="https://www.yunjie.art/rayvision/aigc/customer/task/progress",
31
+ headers=self.headers,
32
+ content=data
33
+ )
34
+
35
+ if isinstance(response, dict) and 'error' in response:
36
+ raise RuntimeError(f"请求失败,错误信息: {response.get('details')}")
37
+ else:
38
+ resp_json = response
39
+ if resp_json['code'] == "Account.Token.Expired":
40
+ error_text = f"""
41
+ 后端:{self.config.yunjie_setting['note'][self.count]} token过期。
42
+ 请前往https://www.yunjie.art/ 登录重新获取token
43
+ """
44
+ self.logger.warning("token过期")
45
+ raise RuntimeError(error_text)
46
+ items = resp_json.get('data', {}).get('data', [])
47
+ self.logger.info(f"第{i + 1}次心跳,未返回结果")
48
+
49
+ if not items:
50
+ continue
51
+
52
+ for item in items:
53
+ url = item.get("url")
54
+
55
+ if url:
56
+ self.logger.img(f"图片url: {url}")
57
+ self.img_url.append(url)
58
+ return
59
+
60
+ raise RuntimeError(f"任务 {id_} 在60次心跳后仍未完成")
61
+
62
+ async def update_progress(self):
63
+ # 覆写函数
64
+ pass
65
+
66
+ async def check_backend_usability(self):
67
+ pass
68
+
69
+ async def err_formating_to_sd_style(self):
70
+
71
+ await self.download_img()
72
+
73
+ self.format_api_respond()
74
+
75
+ self.result = self.build_respond
76
+
77
+ async def posting(self):
78
+
79
+ input_ = {
80
+ "genModel": "advance",
81
+ "initImage": "",
82
+ "modelUuid": "MGC-17d172ee37c1b000",
83
+ "samplingMethod":
84
+ self.sampler,
85
+ "cfgScale": self.scale,
86
+ "samplingSteps": self.steps,
87
+ "plugins": [],
88
+ "clipSkip": 2,
89
+ "etaNoiseSeedDelta": 31337,
90
+ "prompt": self.tags,
91
+ "negativePrompt": self.ntags,
92
+ "resolutionX": self.width,
93
+ "resolutionY": self.height,
94
+ "genCount": self.total_img_count,
95
+ "seed": self.seed,
96
+ "tags": []
97
+ }
98
+
99
+ if self.enable_hr:
100
+
101
+ hr_payload = {
102
+ "hires":
103
+ {"hrSecondPassSteps": self.hr_second_pass_steps,
104
+ "denoisingStrength": self.denoising_strength,
105
+ "hrScale": self.hr_scale,
106
+ "hrUpscaler": "R-ESRGAN 4x+"
107
+ }
108
+ }
109
+
110
+ input_.update(hr_payload)
111
+
112
+ new_headers = {
113
+ "Token": self.token
114
+ }
115
+ self.headers.update(new_headers)
116
+ data = json.dumps(input_)
117
+
118
+ # 使用 http_request 函数发送 POST 请求
119
+ response = await self.http_request(
120
+ method="POST",
121
+ target_url="https://www.yunjie.art/rayvision/aigc/customer/task/imageGen",
122
+ headers=self.headers,
123
+ content=data
124
+ )
125
+
126
+ if response.get("error", None):
127
+ self.logger.error(f"请求失败,错误信息: {response.get('details')}")
128
+ else:
129
+ task = response
130
+ task_id = task['data']['taskId']
131
+ await self.heart_beat(task_id)
132
+ await self.err_formating_to_sd_style()
133
+
DrawBridgeAPI/base_config.py ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import yaml as yaml_
2
+ import shutil
3
+ import redis
4
+ import json
5
+ import logging
6
+ import os
7
+ import traceback
8
+ import sys
9
+
10
+ import pydantic
11
+ from packaging import version
12
+
13
+ pyd_version = pydantic.__version__
14
+
15
+ if version.parse(pyd_version) < version.parse("2.0"):
16
+ from pydantic import BaseSettings
17
+ else:
18
+ try:
19
+ from pydantic_settings import BaseSettings
20
+ except:
21
+ traceback.print_exc()
22
+ import subprocess
23
+ subprocess.run([sys.executable, "-m", "pip", "install", "pydantic_settings"])
24
+ from pydantic_settings import BaseSettings
25
+
26
+ from pathlib import Path
27
+
28
+ redis_client = None
29
+
30
+ api_current_dir = os.path.dirname(os.path.abspath(__file__))
31
+
32
+
33
+ class CustomFormatter(logging.Formatter):
34
+ def __init__(self, fmt=None, datefmt=None, style='%', prefix="[MAIN]"):
35
+ super().__init__(fmt, datefmt, style)
36
+ self.prefix = prefix
37
+
38
+ def format(self, record):
39
+ original_msg = record.msg
40
+ record.msg = f"{self.prefix} {original_msg}"
41
+ formatted_msg = super().format(record)
42
+ record.msg = original_msg # 恢复原始消息
43
+ return formatted_msg
44
+
45
+
46
+ # 字典用于跟踪已创建的日志记录器
47
+
48
+ empty_dict = {"token": None}
49
+
50
+ import logging
51
+
52
+
53
+ class CustomFormatter(logging.Formatter):
54
+ """Custom formatter to add a fixed color for the prefix and variable colors for the log levels."""
55
+
56
+ def __init__(self, prefix="", img_prefix="", *args, **kwargs):
57
+ super().__init__(*args, **kwargs)
58
+ self.prefix = f"\033[94m{prefix}\033[0m" # 固定蓝色前缀
59
+ self.img_prefix = f"\033[93m{img_prefix}\033[0m" # 固定黄色前缀
60
+ self.FORMATS = {
61
+ logging.DEBUG: f"{self.prefix} \033[94m[DEBUG]\033[0m %(message)s",
62
+ logging.INFO: f"{self.prefix} \033[92m[INFO]\033[0m %(message)s",
63
+ logging.WARNING: f"{self.prefix} \033[93m[WARNING]\033[0m %(message)s",
64
+ logging.ERROR: f"{self.prefix} \033[91m[ERROR]\033[0m %(message)s",
65
+ logging.CRITICAL: f"{self.prefix} \033[95m[CRITICAL]\033[0m %(message)s",
66
+ "IMG": f"{self.img_prefix} \033[93m[IMG]\033[0m %(message)s" # 黄色前缀的 IMG 日志
67
+ }
68
+
69
+ def format(self, record):
70
+ log_fmt = self.FORMATS.get(record.levelno, self.FORMATS.get("IMG"))
71
+ formatter = logging.Formatter(log_fmt)
72
+ return formatter.format(record)
73
+
74
+
75
+ class CustomLogger(logging.Logger):
76
+ """Custom logger class to add an img method."""
77
+
78
+ def __init__(self, name, level=logging.DEBUG):
79
+ super().__init__(name, level)
80
+ self.img_level = 25 # 自定义日志等级
81
+ logging.addLevelName(self.img_level, "IMG")
82
+
83
+ def img(self, msg, *args, **kwargs):
84
+ if self.isEnabledFor(self.img_level):
85
+ self._log(self.img_level, msg, args, **kwargs)
86
+
87
+
88
+ loggers = {}
89
+
90
+
91
+ def setup_logger(custom_prefix="[MAIN]"):
92
+ # 检查是否已经存在具有相同前缀的 logger
93
+ if custom_prefix in loggers:
94
+ return loggers[custom_prefix]
95
+
96
+ # 使用自定义的 Logger 类
97
+ logger = CustomLogger(custom_prefix)
98
+ logger.setLevel(logging.DEBUG)
99
+
100
+ # 创建一个控制台处理器并设置日志级别为DEBUG
101
+ console_handler = logging.StreamHandler()
102
+ console_handler.setLevel(logging.DEBUG)
103
+
104
+ # 创建一个文件处理器来保存所有日志到 log.txt
105
+ file_handler = logging.FileHandler('log.log')
106
+ file_handler.setLevel(logging.DEBUG)
107
+
108
+ # 创建一个错误文件处理器来保存错误日志到 log_error.txt
109
+ error_file_handler = logging.FileHandler('log_error.log')
110
+ error_file_handler.setLevel(logging.ERROR)
111
+
112
+ # 创建一个文件处理器来保存IMG日志到 log_img.log
113
+ img_file_handler = logging.FileHandler('log_img.log')
114
+ img_file_handler.setLevel(logger.img_level)
115
+
116
+ # 创建格式器并将其添加到处理器
117
+ formatter = CustomFormatter(prefix=custom_prefix, img_prefix=custom_prefix)
118
+ console_handler.setFormatter(formatter)
119
+ file_handler.setFormatter(formatter)
120
+ error_file_handler.setFormatter(formatter)
121
+ img_file_handler.setFormatter(formatter)
122
+
123
+ # 将处理器添加到日志记录器
124
+ logger.addHandler(console_handler)
125
+ logger.addHandler(file_handler)
126
+ logger.addHandler(error_file_handler)
127
+ logger.addHandler(img_file_handler)
128
+
129
+ # 将创建的 logger 存储在字典中
130
+ loggers[custom_prefix] = logger
131
+
132
+ return logger
133
+
134
+
135
+ class Config(BaseSettings):
136
+
137
+ backend_name_list: list = []
138
+
139
+ server_settings: dict = None
140
+
141
+ civitai_setting: dict = empty_dict
142
+ a1111webui_setting: dict = {"backend_url": None}
143
+ fal_ai_setting: dict = empty_dict
144
+ replicate_setting: dict = empty_dict
145
+ liblibai_setting: dict = empty_dict
146
+ tusiart_setting: dict = empty_dict
147
+ seaart_setting: dict = empty_dict
148
+ yunjie_setting: dict = empty_dict
149
+ comfyui_setting: dict = empty_dict
150
+ novelai_setting: dict = empty_dict
151
+ midjourney_setting: dict = empty_dict
152
+
153
+ civitai: list or None = []
154
+ a1111webui: list = []
155
+ fal_ai: list = []
156
+ replicate: list = []
157
+ liblibai: list = []
158
+ tusiart: list = []
159
+ seaart: list = []
160
+ yunjie: list = []
161
+ comfyui: list = []
162
+ novelai: list = []
163
+ midjourney: list = []
164
+
165
+ civitai_name: dict = {}
166
+ a1111webui_name: dict = {}
167
+ fal_ai_name: dict = {}
168
+ replicate_name: dict = {}
169
+ liblibai_name: dict = {}
170
+ tusiart_name: dict = {}
171
+ seaart_name: dict = {}
172
+ yunjie_name: dict = {}
173
+ comfyui_name: dict = {}
174
+ novelai_name: dict = {}
175
+ midjourney_name: dict = {}
176
+
177
+ server_settings: dict = {}
178
+ retry_times: int = 3
179
+ proxy: str = ''
180
+
181
+ workload_dict: dict = {}
182
+
183
+ base_workload_dict: dict = {
184
+ "start_time": None,
185
+ "end_time": None,
186
+ "idle": True,
187
+ "available": True,
188
+ "fault": False
189
+ }
190
+
191
+ models_list: list = []
192
+
193
+ name_url: dict = {}
194
+
195
+
196
+ def package_import(copy_to_config_path):
197
+ current_dir = os.path.dirname(os.path.abspath(__file__))
198
+ source_template = Path(os.path.join(current_dir, "config_example.yaml")).resolve()
199
+ shutil.copy(source_template, copy_to_config_path)
200
+
201
+
202
+ class ConfigInit:
203
+
204
+ def __init__(self):
205
+ self.config = None
206
+ self.config_file_path = None
207
+ self.logger = setup_logger(custom_prefix="[INIT]")
208
+ self.redis_client = None
209
+
210
+ def load_config(self):
211
+
212
+ with open(self.config_file_path, "r", encoding="utf-8") as f:
213
+ yaml_config = yaml_.load(f, Loader=yaml_.FullLoader)
214
+ config = Config(**yaml_config)
215
+ self.logger.info('Loading config file completed')
216
+
217
+ return config
218
+
219
+ def init(self, config_file_path):
220
+
221
+ self.config_file_path = config_file_path
222
+ config = self.load_config()
223
+
224
+ config.backend_name_list = ['civitai', 'a1111', 'falai', 'replicate', 'liblibai', 'tusiart', 'seaart', 'yunjie',
225
+ 'comfyui', 'novelai', 'midjourney']
226
+
227
+ welcome_txt = '''
228
+ 欢迎使用
229
+ _____ ____ _ _ _____ _____
230
+ | __ \ | _ \ (_) | | /\ | __ \ |_ _|
231
+ | | | | _ __ __ _ __ __ | |_) | _ __ _ __| | __ _ ___ / \ | |__) | | |
232
+ | | | | | '__| / _` | \ \ /\ / / | _ < | '__| | | / _` | / _` | / _ \ / /\ \ | ___/ | |
233
+ | |__| | | | | (_| | \ V V / | |_) | | | | | | (_| | | (_| | | __/ / ____ \ | | _| |_
234
+ |_____/ |_| \__,_| \_/\_/ |____/ |_| |_| \__,_| \__, | \___| /_/ \_\ |_| |_____|
235
+ __/ |
236
+ |___/
237
+ 关注雕雕, 关注雕雕喵
238
+ 项目地址/Project Re: https://github.com/DiaoDaiaChan/Stable-Diffusion-DrawBridgeAPI
239
+ '''
240
+
241
+ print(welcome_txt)
242
+
243
+ config.civitai = config.civitai_setting['token']
244
+ config.a1111webui = config.a1111webui_setting
245
+ config.fal_ai = config.fal_ai_setting['token']
246
+ config.replicate = config.replicate_setting['token']
247
+ config.liblibai = config.liblibai_setting['token']
248
+ config.tusiart = config.tusiart_setting['token']
249
+ config.seaart = config.seaart_setting['token']
250
+ config.yunjie = config.yunjie_setting['token']
251
+ config.comfyui = config.comfyui_setting
252
+ config.novelai = config.novelai_setting['token']
253
+ config.midjourney = config.midjourney_setting
254
+
255
+ sources_list = [
256
+ (config.civitai, 0, config.civitai_name),
257
+ (config.a1111webui, 1, config.a1111webui_name),
258
+ (config.fal_ai, 2, config.fal_ai_name),
259
+ (config.replicate, 3, config.replicate_name),
260
+ (config.liblibai, 4, config.liblibai_name),
261
+ (config.tusiart, 5, config.tusiart_name),
262
+ (config.seaart, 6, config.seaart_name),
263
+ (config.yunjie, 7, config.yunjie_name),
264
+ (config.comfyui, 8, config.comfyui_name),
265
+ (config.novelai, 9, config.novelai_name),
266
+ (config.midjourney, 10, config.midjourney_name),
267
+ ]
268
+
269
+ def process_items(config, items, backend_index, name_dict):
270
+ if backend_index == 1: # 特殊处理 config.a1111webui
271
+ for i in range(len(items['name'])):
272
+ key = f"{config.backend_name_list[backend_index]}-{items['name'][i]}"
273
+ config.workload_dict[key] = config.base_workload_dict
274
+ name_dict[f"a1111-{items['name'][i]}"] = items['backend_url'][i]
275
+ elif backend_index == 8:
276
+ for i in range(len(items['name'])):
277
+ key = f"{config.backend_name_list[backend_index]}-{items['name'][i]}"
278
+ config.workload_dict[key] = config.base_workload_dict
279
+ name_dict[f"comfyui-{items['name'][i]}"] = items['backend_url'][i]
280
+ elif backend_index == 10:
281
+ for i in range(len(items['name'])):
282
+ key = f"{config.backend_name_list[backend_index]}-{items['name'][i]}"
283
+ config.workload_dict[key] = config.base_workload_dict
284
+ name_dict[f"midjourney-{items['name'][i]}"] = items['backend_url'][i]
285
+ else:
286
+ for n in items:
287
+ key = f"{config.backend_name_list[backend_index]}-{n}"
288
+ config.workload_dict[key] = config.base_workload_dict
289
+ name_dict[key] = n
290
+
291
+ for items, backend_index, name_dict in sources_list:
292
+ process_items(config, items, backend_index, name_dict)
293
+
294
+ def merge_and_count(*args):
295
+ merged_dict = {}
296
+ lengths = []
297
+ for arg in args:
298
+ merged_dict |= arg[2]
299
+ lengths.append(len(arg[0]))
300
+ return merged_dict, tuple(lengths)
301
+
302
+ config.name_url = merge_and_count(*sources_list)
303
+
304
+ models_dict = {}
305
+ models_dict['is_loaded'] = False
306
+ for back_name in list(config.workload_dict.keys()):
307
+ models_dict[back_name] = config.models_list
308
+
309
+ try:
310
+ db_index = config.server_settings['redis_server'][3]
311
+ except IndexError:
312
+ db_index = 15
313
+
314
+ self.redis_client = redis.Redis(
315
+ host=config.server_settings['redis_server'][0],
316
+ port=config.server_settings['redis_server'][1],
317
+ password=config.server_settings['redis_server'][2],
318
+ db=db_index
319
+ )
320
+
321
+ self.logger.info('Redis connection successful')
322
+
323
+ workload_json = json.dumps(config.workload_dict)
324
+
325
+ rp = self.redis_client.pipeline()
326
+ rp.set('workload', workload_json)
327
+ rp.set('models', json.dumps(models_dict))
328
+ rp.set('styles', json.dumps([]))
329
+ rp.execute()
330
+
331
+ self.config = config
332
+
333
+
334
+ init_instance = ConfigInit()
DrawBridgeAPI/comfyui_workflows/diaopony-hr.json ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "4": {
3
+ "inputs": {
4
+ "ckpt_name": "models\\DiaoDaiaPony - 100 Artists - testing.safetensors"
5
+ },
6
+ "class_type": "CheckpointLoaderSimple",
7
+ "_meta": {
8
+ "title": "Load Checkpoint"
9
+ }
10
+ },
11
+ "7": {
12
+ "inputs": {
13
+ "text": "score_3,poorly drawn,bad anatomy,bad proportions, watercolor painting, brush strokes,3d,2.5d,signature,watermark,bad face,distorted face,messed up eyes,deformed,(low quality, bad quality, worst quality:1.2),bad hand",
14
+ "clip": [
15
+ "4",
16
+ 1
17
+ ]
18
+ },
19
+ "class_type": "CLIPTextEncode",
20
+ "_meta": {
21
+ "title": "CLIP Text Encode (Negative Prompt)"
22
+ }
23
+ },
24
+ "53": {
25
+ "inputs": {
26
+ "width": 768,
27
+ "height": 1152,
28
+ "batch_size": 1
29
+ },
30
+ "class_type": "EmptyLatentImage",
31
+ "_meta": {
32
+ "title": "Empty Latent Image"
33
+ }
34
+ },
35
+ "79": {
36
+ "inputs": {
37
+ "seed": 657283391776279,
38
+ "steps": 30,
39
+ "cfg": 8,
40
+ "sampler_name": "euler",
41
+ "scheduler": "karras",
42
+ "denoise": 1,
43
+ "model": [
44
+ "4",
45
+ 0
46
+ ],
47
+ "positive": [
48
+ "103",
49
+ 0
50
+ ],
51
+ "negative": [
52
+ "7",
53
+ 0
54
+ ],
55
+ "latent_image": [
56
+ "53",
57
+ 0
58
+ ]
59
+ },
60
+ "class_type": "KSampler",
61
+ "_meta": {
62
+ "title": "KSampler"
63
+ }
64
+ },
65
+ "88": {
66
+ "inputs": {
67
+ "filename_prefix": "ComfyUI",
68
+ "images": [
69
+ "91",
70
+ 0
71
+ ]
72
+ },
73
+ "class_type": "SaveImage",
74
+ "_meta": {
75
+ "title": "Save Image"
76
+ }
77
+ },
78
+ "91": {
79
+ "inputs": {
80
+ "upscale_by": 2,
81
+ "seed": 291655160144038,
82
+ "steps": 12,
83
+ "cfg": 8,
84
+ "sampler_name": "dpmpp_2m",
85
+ "scheduler": "karras",
86
+ "denoise": 0.2,
87
+ "mode_type": "Linear",
88
+ "tile_width": 1024,
89
+ "tile_height": 1024,
90
+ "mask_blur": 8,
91
+ "tile_padding": 32,
92
+ "seam_fix_mode": "None",
93
+ "seam_fix_denoise": 1,
94
+ "seam_fix_width": 64,
95
+ "seam_fix_mask_blur": 8,
96
+ "seam_fix_padding": 16,
97
+ "force_uniform_tiles": true,
98
+ "tiled_decode": false,
99
+ "image": [
100
+ "92",
101
+ 0
102
+ ],
103
+ "model": [
104
+ "4",
105
+ 0
106
+ ],
107
+ "positive": [
108
+ "103",
109
+ 0
110
+ ],
111
+ "negative": [
112
+ "7",
113
+ 0
114
+ ],
115
+ "vae": [
116
+ "4",
117
+ 2
118
+ ],
119
+ "upscale_model": [
120
+ "93",
121
+ 0
122
+ ]
123
+ },
124
+ "class_type": "UltimateSDUpscale",
125
+ "_meta": {
126
+ "title": "Ultimate SD Upscale"
127
+ }
128
+ },
129
+ "92": {
130
+ "inputs": {
131
+ "samples": [
132
+ "99",
133
+ 0
134
+ ],
135
+ "vae": [
136
+ "4",
137
+ 2
138
+ ]
139
+ },
140
+ "class_type": "VAEDecode",
141
+ "_meta": {
142
+ "title": "VAE Decode"
143
+ }
144
+ },
145
+ "93": {
146
+ "inputs": {
147
+ "model_name": "4x-UltraSharp.pth"
148
+ },
149
+ "class_type": "UpscaleModelLoader",
150
+ "_meta": {
151
+ "title": "Load Upscale Model"
152
+ }
153
+ },
154
+ "98": {
155
+ "inputs": {
156
+ "upscale_method": "nearest-exact",
157
+ "width": 1152,
158
+ "height": 1536,
159
+ "crop": "disabled",
160
+ "samples": [
161
+ "79",
162
+ 0
163
+ ]
164
+ },
165
+ "class_type": "LatentUpscale",
166
+ "_meta": {
167
+ "title": "Upscale Latent"
168
+ }
169
+ },
170
+ "99": {
171
+ "inputs": {
172
+ "seed": 641400482051274,
173
+ "steps": 20,
174
+ "cfg": 8,
175
+ "sampler_name": "euler",
176
+ "scheduler": "normal",
177
+ "denoise": 1,
178
+ "model": [
179
+ "4",
180
+ 0
181
+ ],
182
+ "positive": [
183
+ "103",
184
+ 0
185
+ ],
186
+ "negative": [
187
+ "7",
188
+ 0
189
+ ],
190
+ "latent_image": [
191
+ "98",
192
+ 0
193
+ ]
194
+ },
195
+ "class_type": "KSampler",
196
+ "_meta": {
197
+ "title": "KSampler"
198
+ }
199
+ },
200
+ "103": {
201
+ "inputs": {
202
+ "text": ",(qianqianjie:1.1),(shinyo yukino:1),roku 6,(miyu (miy u1308):1.1),momoko (momopoco), score_9,score_8_up,score_7_up,score_anime,amazing quality,very aesthetic,absurdres,",
203
+ "clip": [
204
+ "4",
205
+ 1
206
+ ]
207
+ },
208
+ "class_type": "CLIPTextEncode",
209
+ "_meta": {
210
+ "title": "CLIP Text Encode (Prompt)"
211
+ }
212
+ }
213
+ }
DrawBridgeAPI/comfyui_workflows/diaopony-hr_reflex.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": {"103": {"override": {"text": "append_prompt"}}},
3
+ "negative_prompt": {"7": {"override": {"text": "append_negative_prompt"}}},
4
+ "sampler": ["79", "99"],
5
+ "image_size": {"53": {}, "98": {"override": {"width": "upscale", "height": "upscale"}}},
6
+ "output": 88
7
+ }
DrawBridgeAPI/comfyui_workflows/diaopony-tipo.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "4": {
3
+ "inputs": {
4
+ "ckpt_name": "models\\DiaoDaiaPony - 100 Artists - testing.safetensors"
5
+ },
6
+ "class_type": "CheckpointLoaderSimple",
7
+ "_meta": {
8
+ "title": "Load Checkpoint"
9
+ }
10
+ },
11
+ "6": {
12
+ "inputs": {
13
+ "text": [
14
+ "50",
15
+ 0
16
+ ],
17
+ "clip": [
18
+ "4",
19
+ 1
20
+ ]
21
+ },
22
+ "class_type": "CLIPTextEncode",
23
+ "_meta": {
24
+ "title": "CLIP Text Encode (TIPO Prompt)"
25
+ }
26
+ },
27
+ "7": {
28
+ "inputs": {
29
+ "text": "score_3,poorly drawn,bad anatomy,bad proportions, watercolor painting, brush strokes,3d,2.5d,signature,watermark,bad face,distorted face,messed up eyes,deformed,(low quality, bad quality, worst quality:1.2),bad hand",
30
+ "clip": [
31
+ "4",
32
+ 1
33
+ ]
34
+ },
35
+ "class_type": "CLIPTextEncode",
36
+ "_meta": {
37
+ "title": "CLIP Text Encode (Negative Prompt)"
38
+ }
39
+ },
40
+ "8": {
41
+ "inputs": {
42
+ "samples": [
43
+ "52",
44
+ 0
45
+ ],
46
+ "vae": [
47
+ "4",
48
+ 2
49
+ ]
50
+ },
51
+ "class_type": "VAEDecode",
52
+ "_meta": {
53
+ "title": "VAE Decode"
54
+ }
55
+ },
56
+ "50": {
57
+ "inputs": {
58
+ "tags": "\n\nscore_9,score_8_up,score_7_up,score_anime,amazing quality,very aesthetic,absurdres",
59
+ "nl_prompt": "An illustration of",
60
+ "ban_tags": "text, censor, speech, say, illustrations, doll",
61
+ "tipo_model": "KBlueLeaf/TIPO-500M",
62
+ "format": "<|special|>, \n<|characters|>, <|copyrights|>, \n<|artist|>, \n\n<|general|>,\n\n<|extended|>.\n\n<|quality|>, <|meta|>, <|rating|>",
63
+ "width": 1024,
64
+ "height": 1024,
65
+ "temperature": 0.5,
66
+ "top_p": 0.95,
67
+ "min_p": 0.05,
68
+ "top_k": 80,
69
+ "tag_length": "long",
70
+ "nl_length": "long",
71
+ "seed": 1763
72
+ },
73
+ "class_type": "TIPO",
74
+ "_meta": {
75
+ "title": "TIPO"
76
+ }
77
+ },
78
+ "52": {
79
+ "inputs": {
80
+ "seed": 11451,
81
+ "steps": 20,
82
+ "cfg": 8,
83
+ "sampler_name": "euler",
84
+ "scheduler": "normal",
85
+ "denoise": 1,
86
+ "model": [
87
+ "4",
88
+ 0
89
+ ],
90
+ "positive": [
91
+ "6",
92
+ 0
93
+ ],
94
+ "negative": [
95
+ "7",
96
+ 0
97
+ ],
98
+ "latent_image": [
99
+ "53",
100
+ 0
101
+ ]
102
+ },
103
+ "class_type": "KSampler",
104
+ "_meta": {
105
+ "title": "KSampler"
106
+ }
107
+ },
108
+ "53": {
109
+ "inputs": {
110
+ "width": 1152,
111
+ "height": 1536,
112
+ "batch_size": 1
113
+ },
114
+ "class_type": "EmptyLatentImage",
115
+ "_meta": {
116
+ "title": "Empty Latent Image"
117
+ }
118
+ },
119
+ "72": {
120
+ "inputs": {
121
+ "filename_prefix": "ComfyUI",
122
+ "images": [
123
+ "8",
124
+ 0
125
+ ]
126
+ },
127
+ "class_type": "SaveImage",
128
+ "_meta": {
129
+ "title": "Save Image"
130
+ }
131
+ }
132
+ }
DrawBridgeAPI/comfyui_workflows/diaopony-tipo_reflex.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "tipo": {"50": {"override": {"tags": "append_prompt"}}},
3
+ "sampler": 52,
4
+ "image_size": 53,
5
+ "output": 72
6
+ }
DrawBridgeAPI/comfyui_workflows/flux-dev.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "1": {
3
+ "inputs": {
4
+ "ckpt_name": "models\\flux1-dev-bnb-nf4-v2.safetensors"
5
+ },
6
+ "class_type": "CheckpointLoaderNF4",
7
+ "_meta": {
8
+ "title": "CheckpointLoaderNF4"
9
+ }
10
+ },
11
+ "2": {
12
+ "inputs": {
13
+ "text": "a tank",
14
+ "clip": [
15
+ "1",
16
+ 1
17
+ ]
18
+ },
19
+ "class_type": "CLIPTextEncode",
20
+ "_meta": {
21
+ "title": "CLIP Text Encode (Prompt)"
22
+ }
23
+ },
24
+ "3": {
25
+ "inputs": {
26
+ "seed": 861133332082627,
27
+ "steps": 20,
28
+ "cfg": 1,
29
+ "sampler_name": "euler",
30
+ "scheduler": "simple",
31
+ "denoise": 1,
32
+ "model": [
33
+ "1",
34
+ 0
35
+ ],
36
+ "positive": [
37
+ "2",
38
+ 0
39
+ ],
40
+ "negative": [
41
+ "2",
42
+ 0
43
+ ],
44
+ "latent_image": [
45
+ "4",
46
+ 0
47
+ ]
48
+ },
49
+ "class_type": "KSampler",
50
+ "_meta": {
51
+ "title": "KSampler"
52
+ }
53
+ },
54
+ "4": {
55
+ "inputs": {
56
+ "width": 512,
57
+ "height": 768,
58
+ "batch_size": 1
59
+ },
60
+ "class_type": "EmptyLatentImage",
61
+ "_meta": {
62
+ "title": "Empty Latent Image"
63
+ }
64
+ },
65
+ "5": {
66
+ "inputs": {
67
+ "samples": [
68
+ "3",
69
+ 0
70
+ ],
71
+ "vae": [
72
+ "1",
73
+ 2
74
+ ]
75
+ },
76
+ "class_type": "VAEDecode",
77
+ "_meta": {
78
+ "title": "VAE Decode"
79
+ }
80
+ },
81
+ "6": {
82
+ "inputs": {
83
+ "filename_prefix": "ComfyUI",
84
+ "images": [
85
+ "5",
86
+ 0
87
+ ]
88
+ },
89
+ "class_type": "SaveImage",
90
+ "_meta": {
91
+ "title": "Save Image"
92
+ }
93
+ }
94
+ }
DrawBridgeAPI/comfyui_workflows/flux-dev_reflex.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": 2,
3
+ "image_size": 4,
4
+ "output": 6,
5
+ "seed": 3
6
+ }
DrawBridgeAPI/comfyui_workflows/flux-schnell.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "1": {
3
+ "inputs": {
4
+ "ckpt_name": "models\\flux1-schnell-bnb-nf4.safetensors"
5
+ },
6
+ "class_type": "CheckpointLoaderNF4",
7
+ "_meta": {
8
+ "title": "CheckpointLoaderNF4"
9
+ }
10
+ },
11
+ "2": {
12
+ "inputs": {
13
+ "text": "a tank",
14
+ "clip": [
15
+ "1",
16
+ 1
17
+ ]
18
+ },
19
+ "class_type": "CLIPTextEncode",
20
+ "_meta": {
21
+ "title": "CLIP Text Encode (Prompt)"
22
+ }
23
+ },
24
+ "3": {
25
+ "inputs": {
26
+ "seed": 0,
27
+ "steps": 4,
28
+ "cfg": 1,
29
+ "sampler_name": "euler",
30
+ "scheduler": "simple",
31
+ "denoise": 1,
32
+ "model": [
33
+ "1",
34
+ 0
35
+ ],
36
+ "positive": [
37
+ "2",
38
+ 0
39
+ ],
40
+ "negative": [
41
+ "2",
42
+ 0
43
+ ],
44
+ "latent_image": [
45
+ "4",
46
+ 0
47
+ ]
48
+ },
49
+ "class_type": "KSampler",
50
+ "_meta": {
51
+ "title": "KSampler"
52
+ }
53
+ },
54
+ "4": {
55
+ "inputs": {
56
+ "width": 512,
57
+ "height": 768,
58
+ "batch_size": 1
59
+ },
60
+ "class_type": "EmptyLatentImage",
61
+ "_meta": {
62
+ "title": "Empty Latent Image"
63
+ }
64
+ },
65
+ "5": {
66
+ "inputs": {
67
+ "samples": [
68
+ "3",
69
+ 0
70
+ ],
71
+ "vae": [
72
+ "1",
73
+ 2
74
+ ]
75
+ },
76
+ "class_type": "VAEDecode",
77
+ "_meta": {
78
+ "title": "VAE Decode"
79
+ }
80
+ },
81
+ "6": {
82
+ "inputs": {
83
+ "filename_prefix": "ComfyUI",
84
+ "images": [
85
+ "5",
86
+ 0
87
+ ]
88
+ },
89
+ "class_type": "SaveImage",
90
+ "_meta": {
91
+ "title": "Save Image"
92
+ }
93
+ }
94
+ }
DrawBridgeAPI/comfyui_workflows/flux-schnell_reflex.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": 2,
3
+ "image_size": 4,
4
+ "output": 6,
5
+ "seed": 3
6
+ }
DrawBridgeAPI/comfyui_workflows/flux修手.json ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "1": {
3
+ "inputs": {
4
+ "context_expand_pixels": 100,
5
+ "context_expand_factor": 1,
6
+ "fill_mask_holes": true,
7
+ "blur_mask_pixels": 16,
8
+ "invert_mask": false,
9
+ "blend_pixels": 16,
10
+ "rescale_algorithm": "bicubic",
11
+ "mode": "ranged size",
12
+ "force_width": 1024,
13
+ "force_height": 1024,
14
+ "rescale_factor": 1,
15
+ "min_width": 512,
16
+ "min_height": 512,
17
+ "max_width": 768,
18
+ "max_height": 768,
19
+ "padding": 32,
20
+ "image": [
21
+ "47",
22
+ 0
23
+ ],
24
+ "mask": [
25
+ "50",
26
+ 0
27
+ ]
28
+ },
29
+ "class_type": "InpaintCrop",
30
+ "_meta": {
31
+ "title": "✂️ Inpaint Crop"
32
+ }
33
+ },
34
+ "2": {
35
+ "inputs": {
36
+ "rescale_algorithm": "bislerp",
37
+ "stitch": [
38
+ "1",
39
+ 0
40
+ ],
41
+ "inpainted_image": [
42
+ "15",
43
+ 0
44
+ ]
45
+ },
46
+ "class_type": "InpaintStitch",
47
+ "_meta": {
48
+ "title": "✂️ Inpaint Stitch"
49
+ }
50
+ },
51
+ "3": {
52
+ "inputs": {
53
+ "image": "a87ed50d8e69b8bfb62df848bac69d12.png",
54
+ "upload": "image"
55
+ },
56
+ "class_type": "LoadImage",
57
+ "_meta": {
58
+ "title": "Load Image"
59
+ }
60
+ },
61
+ "15": {
62
+ "inputs": {
63
+ "samples": [
64
+ "100",
65
+ 0
66
+ ],
67
+ "vae": [
68
+ "99",
69
+ 2
70
+ ]
71
+ },
72
+ "class_type": "VAEDecode",
73
+ "_meta": {
74
+ "title": "VAE Decode"
75
+ }
76
+ },
77
+ "19": {
78
+ "inputs": {
79
+ "positive": [
80
+ "32",
81
+ 0
82
+ ],
83
+ "negative": [
84
+ "32",
85
+ 0
86
+ ],
87
+ "vae": [
88
+ "99",
89
+ 2
90
+ ],
91
+ "pixels": [
92
+ "1",
93
+ 1
94
+ ],
95
+ "mask": [
96
+ "1",
97
+ 2
98
+ ]
99
+ },
100
+ "class_type": "InpaintModelConditioning",
101
+ "_meta": {
102
+ "title": "InpaintModelConditioning"
103
+ }
104
+ },
105
+ "25": {
106
+ "inputs": {
107
+ "rescale_algorithm": "bicubic",
108
+ "mode": "ensure minimum size",
109
+ "min_width": 0,
110
+ "min_height": 1536,
111
+ "rescale_factor": 1,
112
+ "image": [
113
+ "26",
114
+ 0
115
+ ],
116
+ "mask": [
117
+ "26",
118
+ 1
119
+ ]
120
+ },
121
+ "class_type": "InpaintResize",
122
+ "_meta": {
123
+ "title": "✂️ Resize Image Before Inpainting"
124
+ }
125
+ },
126
+ "26": {
127
+ "inputs": {
128
+ "sam_model": "sam_vit_h (2.56GB)",
129
+ "grounding_dino_model": "GroundingDINO_SwinB (938MB)",
130
+ "threshold": 0.3,
131
+ "detail_method": "VITMatte",
132
+ "detail_erode": 6,
133
+ "detail_dilate": 6,
134
+ "black_point": 0.15,
135
+ "white_point": 0.99,
136
+ "process_detail": false,
137
+ "prompt": "hand",
138
+ "device": "cuda",
139
+ "max_megapixels": 2,
140
+ "cache_model": false,
141
+ "image": [
142
+ "3",
143
+ 0
144
+ ]
145
+ },
146
+ "class_type": "LayerMask: SegmentAnythingUltra V2",
147
+ "_meta": {
148
+ "title": "LayerMask: SegmentAnythingUltra V2"
149
+ }
150
+ },
151
+ "32": {
152
+ "inputs": {
153
+ "text": "Masterpiece, High Definition, Real Person Portrait, 5 Fingers, Girl's Hand",
154
+ "clip": [
155
+ "99",
156
+ 1
157
+ ]
158
+ },
159
+ "class_type": "CLIPTextEncode",
160
+ "_meta": {
161
+ "title": "CLIP Text Encode (Prompt)"
162
+ }
163
+ },
164
+ "47": {
165
+ "inputs": {
166
+ "fill_background": false,
167
+ "background_color": "#000000",
168
+ "RGBA_image": [
169
+ "25",
170
+ 0
171
+ ],
172
+ "mask": [
173
+ "25",
174
+ 1
175
+ ]
176
+ },
177
+ "class_type": "LayerUtility: ImageRemoveAlpha",
178
+ "_meta": {
179
+ "title": "LayerUtility: ImageRemoveAlpha"
180
+ }
181
+ },
182
+ "50": {
183
+ "inputs": {
184
+ "expand": 30,
185
+ "incremental_expandrate": 0.1,
186
+ "tapered_corners": false,
187
+ "flip_input": false,
188
+ "blur_radius": 10,
189
+ "lerp_alpha": 1,
190
+ "decay_factor": 1,
191
+ "fill_holes": false,
192
+ "mask": [
193
+ "25",
194
+ 1
195
+ ]
196
+ },
197
+ "class_type": "GrowMaskWithBlur",
198
+ "_meta": {
199
+ "title": "Grow Mask With Blur"
200
+ }
201
+ },
202
+ "94": {
203
+ "inputs": {
204
+ "filename_prefix": "hand_fix",
205
+ "images": [
206
+ "2",
207
+ 0
208
+ ]
209
+ },
210
+ "class_type": "SaveImage",
211
+ "_meta": {
212
+ "title": "Save Image"
213
+ }
214
+ },
215
+ "99": {
216
+ "inputs": {
217
+ "ckpt_name": "models\\flux1-dev-bnb-nf4-v2.safetensors"
218
+ },
219
+ "class_type": "CheckpointLoaderNF4",
220
+ "_meta": {
221
+ "title": "CheckpointLoaderNF4"
222
+ }
223
+ },
224
+ "100": {
225
+ "inputs": {
226
+ "seed": 266696528873091,
227
+ "steps": 20,
228
+ "cfg": 1,
229
+ "sampler_name": "euler",
230
+ "scheduler": "simple",
231
+ "denoise": 0.5,
232
+ "model": [
233
+ "99",
234
+ 0
235
+ ],
236
+ "positive": [
237
+ "19",
238
+ 0
239
+ ],
240
+ "negative": [
241
+ "19",
242
+ 1
243
+ ],
244
+ "latent_image": [
245
+ "19",
246
+ 2
247
+ ]
248
+ },
249
+ "class_type": "KSampler",
250
+ "_meta": {
251
+ "title": "KSampler"
252
+ }
253
+ }
254
+ }
DrawBridgeAPI/comfyui_workflows/flux修手_reflex.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "prompt": 32,
3
+ "output": 94,
4
+ "load_image":3
5
+ }
DrawBridgeAPI/comfyui_workflows/sd3.5_txt2img.json ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "4": {
3
+ "inputs": {
4
+ "ckpt_name": "models\\sd3.5_large.safetensors"
5
+ },
6
+ "class_type": "CheckpointLoaderSimple",
7
+ "_meta": {
8
+ "title": "Load Checkpoint"
9
+ }
10
+ },
11
+ "6": {
12
+ "inputs": {
13
+ "text": "beautiful scenery nature glass bottle landscape, purple galaxy bottle,",
14
+ "clip": [
15
+ "11",
16
+ 0
17
+ ]
18
+ },
19
+ "class_type": "CLIPTextEncode",
20
+ "_meta": {
21
+ "title": "CLIP Text Encode (Prompt)"
22
+ }
23
+ },
24
+ "8": {
25
+ "inputs": {
26
+ "samples": [
27
+ "294",
28
+ 0
29
+ ],
30
+ "vae": [
31
+ "4",
32
+ 2
33
+ ]
34
+ },
35
+ "class_type": "VAEDecode",
36
+ "_meta": {
37
+ "title": "VAE Decode"
38
+ }
39
+ },
40
+ "11": {
41
+ "inputs": {
42
+ "clip_name1": "clip_g.pth",
43
+ "clip_name2": "clip_l.safetensors",
44
+ "clip_name3": "t5xxl_fp16.safetensors"
45
+ },
46
+ "class_type": "TripleCLIPLoader",
47
+ "_meta": {
48
+ "title": "TripleCLIPLoader"
49
+ }
50
+ },
51
+ "13": {
52
+ "inputs": {
53
+ "shift": 3,
54
+ "model": [
55
+ "4",
56
+ 0
57
+ ]
58
+ },
59
+ "class_type": "ModelSamplingSD3",
60
+ "_meta": {
61
+ "title": "ModelSamplingSD3"
62
+ }
63
+ },
64
+ "67": {
65
+ "inputs": {
66
+ "conditioning": [
67
+ "71",
68
+ 0
69
+ ]
70
+ },
71
+ "class_type": "ConditioningZeroOut",
72
+ "_meta": {
73
+ "title": "ConditioningZeroOut"
74
+ }
75
+ },
76
+ "68": {
77
+ "inputs": {
78
+ "start": 0.1,
79
+ "end": 1,
80
+ "conditioning": [
81
+ "67",
82
+ 0
83
+ ]
84
+ },
85
+ "class_type": "ConditioningSetTimestepRange",
86
+ "_meta": {
87
+ "title": "ConditioningSetTimestepRange"
88
+ }
89
+ },
90
+ "69": {
91
+ "inputs": {
92
+ "conditioning_1": [
93
+ "68",
94
+ 0
95
+ ],
96
+ "conditioning_2": [
97
+ "70",
98
+ 0
99
+ ]
100
+ },
101
+ "class_type": "ConditioningCombine",
102
+ "_meta": {
103
+ "title": "Conditioning (Combine)"
104
+ }
105
+ },
106
+ "70": {
107
+ "inputs": {
108
+ "start": 0,
109
+ "end": 0.1,
110
+ "conditioning": [
111
+ "71",
112
+ 0
113
+ ]
114
+ },
115
+ "class_type": "ConditioningSetTimestepRange",
116
+ "_meta": {
117
+ "title": "ConditioningSetTimestepRange"
118
+ }
119
+ },
120
+ "71": {
121
+ "inputs": {
122
+ "text": "",
123
+ "clip": [
124
+ "11",
125
+ 0
126
+ ]
127
+ },
128
+ "class_type": "CLIPTextEncode",
129
+ "_meta": {
130
+ "title": "CLIP Text Encode (Prompt)"
131
+ }
132
+ },
133
+ "135": {
134
+ "inputs": {
135
+ "width": 1024,
136
+ "height": 1024,
137
+ "batch_size": 1
138
+ },
139
+ "class_type": "EmptySD3LatentImage",
140
+ "_meta": {
141
+ "title": "EmptySD3LatentImage"
142
+ }
143
+ },
144
+ "294": {
145
+ "inputs": {
146
+ "seed": 143084108695924,
147
+ "steps": 20,
148
+ "cfg": 4.5,
149
+ "sampler_name": "dpmpp_2m",
150
+ "scheduler": "sgm_uniform",
151
+ "denoise": 1,
152
+ "model": [
153
+ "13",
154
+ 0
155
+ ],
156
+ "positive": [
157
+ "6",
158
+ 0
159
+ ],
160
+ "negative": [
161
+ "69",
162
+ 0
163
+ ],
164
+ "latent_image": [
165
+ "135",
166
+ 0
167
+ ]
168
+ },
169
+ "class_type": "KSampler",
170
+ "_meta": {
171
+ "title": "KSampler"
172
+ }
173
+ },
174
+ "302": {
175
+ "inputs": {
176
+ "filename_prefix": "ComfyUI",
177
+ "images": [
178
+ "8",
179
+ 0
180
+ ]
181
+ },
182
+ "class_type": "SaveImage",
183
+ "_meta": {
184
+ "title": "Save Image"
185
+ }
186
+ }
187
+ }
DrawBridgeAPI/comfyui_workflows/sd3.5_txt2img_reflex.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": 6,
3
+ "negative_prompt": 71,
4
+ "image_size": 135,
5
+ "output": 302,
6
+ "seed": 294
7
+ }
DrawBridgeAPI/comfyui_workflows/sdbase_img2img.json ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "3": {
3
+ "inputs": {
4
+ "seed": 280823642470253,
5
+ "steps": 20,
6
+ "cfg": 8,
7
+ "sampler_name": "dpmpp_2m",
8
+ "scheduler": "normal",
9
+ "denoise": 0.8700000000000001,
10
+ "model": [
11
+ "14",
12
+ 0
13
+ ],
14
+ "positive": [
15
+ "6",
16
+ 0
17
+ ],
18
+ "negative": [
19
+ "7",
20
+ 0
21
+ ],
22
+ "latent_image": [
23
+ "12",
24
+ 0
25
+ ]
26
+ },
27
+ "class_type": "KSampler",
28
+ "_meta": {
29
+ "title": "KSampler"
30
+ }
31
+ },
32
+ "6": {
33
+ "inputs": {
34
+ "text": "photograph of victorian woman with wings, sky clouds, meadow grass\n",
35
+ "clip": [
36
+ "14",
37
+ 1
38
+ ]
39
+ },
40
+ "class_type": "CLIPTextEncode",
41
+ "_meta": {
42
+ "title": "CLIP Text Encode (Prompt)"
43
+ }
44
+ },
45
+ "7": {
46
+ "inputs": {
47
+ "text": "watermark, text\n",
48
+ "clip": [
49
+ "14",
50
+ 1
51
+ ]
52
+ },
53
+ "class_type": "CLIPTextEncode",
54
+ "_meta": {
55
+ "title": "CLIP Text Encode (Prompt)"
56
+ }
57
+ },
58
+ "8": {
59
+ "inputs": {
60
+ "samples": [
61
+ "3",
62
+ 0
63
+ ],
64
+ "vae": [
65
+ "14",
66
+ 2
67
+ ]
68
+ },
69
+ "class_type": "VAEDecode",
70
+ "_meta": {
71
+ "title": "VAE Decode"
72
+ }
73
+ },
74
+ "9": {
75
+ "inputs": {
76
+ "filename_prefix": "ComfyUI",
77
+ "images": [
78
+ "8",
79
+ 0
80
+ ]
81
+ },
82
+ "class_type": "SaveImage",
83
+ "_meta": {
84
+ "title": "Save Image"
85
+ }
86
+ },
87
+ "10": {
88
+ "inputs": {
89
+ "image": "example.png",
90
+ "upload": "image"
91
+ },
92
+ "class_type": "LoadImage",
93
+ "_meta": {
94
+ "title": "Load Image"
95
+ }
96
+ },
97
+ "12": {
98
+ "inputs": {
99
+ "pixels": [
100
+ "10",
101
+ 0
102
+ ],
103
+ "vae": [
104
+ "14",
105
+ 2
106
+ ]
107
+ },
108
+ "class_type": "VAEEncode",
109
+ "_meta": {
110
+ "title": "VAE Encode"
111
+ }
112
+ },
113
+ "14": {
114
+ "inputs": {
115
+ "ckpt_name": "v1-5-pruned-emaonly.ckpt"
116
+ },
117
+ "class_type": "CheckpointLoaderSimple",
118
+ "_meta": {
119
+ "title": "Load Checkpoint"
120
+ }
121
+ }
122
+ }
DrawBridgeAPI/comfyui_workflows/sdbase_img2img_reflex.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sampler": 3,
3
+ "prompt": 6,
4
+ "image_size": 5,
5
+ "negative_prompt": 7,
6
+ "checkpoint": 14,
7
+ "output": 9,
8
+ "load_image":10
9
+ }
DrawBridgeAPI/comfyui_workflows/sdbase_txt2img.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "3": {
3
+ "inputs": {
4
+ "seed": 567570346829551,
5
+ "steps": 20,
6
+ "cfg": 8,
7
+ "sampler_name": "euler",
8
+ "scheduler": "normal",
9
+ "denoise": 1,
10
+ "model": [
11
+ "4",
12
+ 0
13
+ ],
14
+ "positive": [
15
+ "6",
16
+ 0
17
+ ],
18
+ "negative": [
19
+ "7",
20
+ 0
21
+ ],
22
+ "latent_image": [
23
+ "5",
24
+ 0
25
+ ]
26
+ },
27
+ "class_type": "KSampler",
28
+ "_meta": {
29
+ "title": "KSampler"
30
+ }
31
+ },
32
+ "4": {
33
+ "inputs": {
34
+ "ckpt_name": "models\\DiaoDaia_mix_4.5.ckpt"
35
+ },
36
+ "class_type": "CheckpointLoaderSimple",
37
+ "_meta": {
38
+ "title": "Load Checkpoint"
39
+ }
40
+ },
41
+ "5": {
42
+ "inputs": {
43
+ "width": 512,
44
+ "height": 512,
45
+ "batch_size": 1
46
+ },
47
+ "class_type": "EmptyLatentImage",
48
+ "_meta": {
49
+ "title": "Empty Latent Image"
50
+ }
51
+ },
52
+ "6": {
53
+ "inputs": {
54
+ "text": "beautiful scenery nature glass bottle landscape, , purple galaxy bottle,",
55
+ "clip": [
56
+ "4",
57
+ 1
58
+ ]
59
+ },
60
+ "class_type": "CLIPTextEncode",
61
+ "_meta": {
62
+ "title": "CLIP Text Encode (Prompt)"
63
+ }
64
+ },
65
+ "7": {
66
+ "inputs": {
67
+ "text": "text, watermark",
68
+ "clip": [
69
+ "4",
70
+ 1
71
+ ]
72
+ },
73
+ "class_type": "CLIPTextEncode",
74
+ "_meta": {
75
+ "title": "CLIP Text Encode (Prompt)"
76
+ }
77
+ },
78
+ "8": {
79
+ "inputs": {
80
+ "samples": [
81
+ "3",
82
+ 0
83
+ ],
84
+ "vae": [
85
+ "4",
86
+ 2
87
+ ]
88
+ },
89
+ "class_type": "VAEDecode",
90
+ "_meta": {
91
+ "title": "VAE Decode"
92
+ }
93
+ },
94
+ "9": {
95
+ "inputs": {
96
+ "filename_prefix": "ComfyUI",
97
+ "images": [
98
+ "8",
99
+ 0
100
+ ]
101
+ },
102
+ "class_type": "SaveImage",
103
+ "_meta": {
104
+ "title": "Save Image"
105
+ }
106
+ }
107
+ }
DrawBridgeAPI/comfyui_workflows/sdbase_txt2img_hr_fix.json ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "3": {
3
+ "inputs": {
4
+ "seed": 213416933995644,
5
+ "steps": 20,
6
+ "cfg": 8,
7
+ "sampler_name": "euler_ancestral",
8
+ "scheduler": "normal",
9
+ "denoise": 1,
10
+ "model": [
11
+ "4",
12
+ 0
13
+ ],
14
+ "positive": [
15
+ "6",
16
+ 0
17
+ ],
18
+ "negative": [
19
+ "7",
20
+ 0
21
+ ],
22
+ "latent_image": [
23
+ "5",
24
+ 0
25
+ ]
26
+ },
27
+ "class_type": "KSampler",
28
+ "_meta": {
29
+ "title": "KSampler"
30
+ }
31
+ },
32
+ "4": {
33
+ "inputs": {
34
+ "ckpt_name": "models\\1053-S.ckpt"
35
+ },
36
+ "class_type": "CheckpointLoaderSimple",
37
+ "_meta": {
38
+ "title": "Load Checkpoint"
39
+ }
40
+ },
41
+ "5": {
42
+ "inputs": {
43
+ "width": 768,
44
+ "height": 512,
45
+ "batch_size": 1
46
+ },
47
+ "class_type": "EmptyLatentImage",
48
+ "_meta": {
49
+ "title": "Empty Latent Image"
50
+ }
51
+ },
52
+ "6": {
53
+ "inputs": {
54
+ "text": "beautiful scenery nature glass bottle landscape, , purple galaxy bottle,",
55
+ "clip": [
56
+ "4",
57
+ 1
58
+ ]
59
+ },
60
+ "class_type": "CLIPTextEncode",
61
+ "_meta": {
62
+ "title": "CLIP Text Encode (Prompt)"
63
+ }
64
+ },
65
+ "7": {
66
+ "inputs": {
67
+ "text": "text, watermark",
68
+ "clip": [
69
+ "4",
70
+ 1
71
+ ]
72
+ },
73
+ "class_type": "CLIPTextEncode",
74
+ "_meta": {
75
+ "title": "CLIP Text Encode (Prompt)"
76
+ }
77
+ },
78
+ "8": {
79
+ "inputs": {
80
+ "samples": [
81
+ "3",
82
+ 0
83
+ ],
84
+ "vae": [
85
+ "4",
86
+ 2
87
+ ]
88
+ },
89
+ "class_type": "VAEDecode",
90
+ "_meta": {
91
+ "title": "VAE Decode"
92
+ }
93
+ },
94
+ "9": {
95
+ "inputs": {
96
+ "filename_prefix": "ComfyUI",
97
+ "images": [
98
+ "18",
99
+ 0
100
+ ]
101
+ },
102
+ "class_type": "SaveImage",
103
+ "_meta": {
104
+ "title": "Save Image"
105
+ }
106
+ },
107
+ "10": {
108
+ "inputs": {
109
+ "upscale_method": "nearest-exact",
110
+ "width": 1536,
111
+ "height": 1152,
112
+ "crop": "disabled",
113
+ "samples": [
114
+ "16",
115
+ 0
116
+ ]
117
+ },
118
+ "class_type": "LatentUpscale",
119
+ "_meta": {
120
+ "title": "Upscale Latent"
121
+ }
122
+ },
123
+ "12": {
124
+ "inputs": {
125
+ "model_name": "RealESRGAN_x4plus.pth"
126
+ },
127
+ "class_type": "UpscaleModelLoader",
128
+ "_meta": {
129
+ "title": "Load Upscale Model"
130
+ }
131
+ },
132
+ "14": {
133
+ "inputs": {
134
+ "upscale_model": [
135
+ "12",
136
+ 0
137
+ ],
138
+ "image": [
139
+ "8",
140
+ 0
141
+ ]
142
+ },
143
+ "class_type": "ImageUpscaleWithModel",
144
+ "_meta": {
145
+ "title": "Upscale Image (using Model)"
146
+ }
147
+ },
148
+ "15": {
149
+ "inputs": {
150
+ "upscale_method": "area",
151
+ "width": 1152,
152
+ "height": 768,
153
+ "crop": "disabled",
154
+ "image": [
155
+ "14",
156
+ 0
157
+ ]
158
+ },
159
+ "class_type": "ImageScale",
160
+ "_meta": {
161
+ "title": "Upscale Image"
162
+ }
163
+ },
164
+ "16": {
165
+ "inputs": {
166
+ "pixels": [
167
+ "15",
168
+ 0
169
+ ],
170
+ "vae": [
171
+ "4",
172
+ 2
173
+ ]
174
+ },
175
+ "class_type": "VAEEncode",
176
+ "_meta": {
177
+ "title": "VAE Encode"
178
+ }
179
+ },
180
+ "18": {
181
+ "inputs": {
182
+ "samples": [
183
+ "19",
184
+ 0
185
+ ],
186
+ "vae": [
187
+ "4",
188
+ 2
189
+ ]
190
+ },
191
+ "class_type": "VAEDecode",
192
+ "_meta": {
193
+ "title": "VAE Decode"
194
+ }
195
+ },
196
+ "19": {
197
+ "inputs": {
198
+ "seed": 1069147258069384,
199
+ "steps": 8,
200
+ "cfg": 8,
201
+ "sampler_name": "euler",
202
+ "scheduler": "sgm_uniform",
203
+ "denoise": 0.6,
204
+ "model": [
205
+ "4",
206
+ 0
207
+ ],
208
+ "positive": [
209
+ "21",
210
+ 0
211
+ ],
212
+ "negative": [
213
+ "22",
214
+ 0
215
+ ],
216
+ "latent_image": [
217
+ "10",
218
+ 0
219
+ ]
220
+ },
221
+ "class_type": "KSampler",
222
+ "_meta": {
223
+ "title": "KSampler"
224
+ }
225
+ },
226
+ "20": {
227
+ "inputs": {
228
+ "seed": 85387134314530,
229
+ "steps": 20,
230
+ "cfg": 5.74,
231
+ "sampler_name": "dpm_2",
232
+ "scheduler": "normal",
233
+ "denoise": 1
234
+ },
235
+ "class_type": "KSampler",
236
+ "_meta": {
237
+ "title": "KSampler"
238
+ }
239
+ },
240
+ "21": {
241
+ "inputs": {
242
+ "text": "",
243
+ "clip": [
244
+ "4",
245
+ 1
246
+ ]
247
+ },
248
+ "class_type": "CLIPTextEncode",
249
+ "_meta": {
250
+ "title": "CLIP Text Encode (Prompt)"
251
+ }
252
+ },
253
+ "22": {
254
+ "inputs": {
255
+ "text": "",
256
+ "clip": [
257
+ "4",
258
+ 1
259
+ ]
260
+ },
261
+ "class_type": "CLIPTextEncode",
262
+ "_meta": {
263
+ "title": "CLIP Text Encode (Prompt)"
264
+ }
265
+ }
266
+ }
DrawBridgeAPI/comfyui_workflows/sdbase_txt2img_hr_fix_reflex.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sampler": 3,
3
+ "prompt": 6,
4
+ "image_size": 5,
5
+ "negative_prompt": 7,
6
+ "checkpoint": 4,
7
+ "output": 9,
8
+ "latentupscale": 10,
9
+ "resize": 15,
10
+ "hr_steps": 19,
11
+ "hr_prompt": 21,
12
+ "hr_negative_prompt": 22
13
+ }
DrawBridgeAPI/comfyui_workflows/sdbase_txt2img_reflex.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sampler": 3,
3
+ "prompt": 6,
4
+ "image_size": 5,
5
+ "negative_prompt": 7,
6
+ "checkpoint": 4,
7
+ "output": 9
8
+ }
DrawBridgeAPI/comfyui_workflows/创意融字 工作流Jianan_创意融字海报.json ADDED
@@ -0,0 +1,1789 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "last_node_id": 70,
3
+ "last_link_id": 130,
4
+ "nodes": [
5
+ {
6
+ "id": 68,
7
+ "type": "LineArtPreprocessor",
8
+ "pos": [
9
+ 631,
10
+ -867
11
+ ],
12
+ "size": {
13
+ "0": 315,
14
+ "1": 82
15
+ },
16
+ "flags": {
17
+
18
+ },
19
+ "order": 7,
20
+ "mode": 0,
21
+ "inputs": [
22
+ {
23
+ "name": "image",
24
+ "type": "IMAGE",
25
+ "link": 111,
26
+ "label": "图像"
27
+ }
28
+ ],
29
+ "outputs": [
30
+ {
31
+ "name": "IMAGE",
32
+ "type": "IMAGE",
33
+ "links": [
34
+ 112,
35
+ 115
36
+ ],
37
+ "shape": 3,
38
+ "label": "图像",
39
+ "slot_index": 0
40
+ }
41
+ ],
42
+ "properties": {
43
+ "Node name for S&R": "LineArtPreprocessor"
44
+ },
45
+ "widgets_values": [
46
+ "disable",
47
+ 512
48
+ ],
49
+ "_widget_cache_map": {
50
+
51
+ }
52
+ },
53
+ {
54
+ "id": 18,
55
+ "type": "ControlNetLoader",
56
+ "pos": [
57
+ 977,
58
+ -874
59
+ ],
60
+ "size": {
61
+ "0": 339.6257019042969,
62
+ "1": 82
63
+ },
64
+ "flags": {
65
+ "collapsed": false
66
+ },
67
+ "order": 0,
68
+ "mode": 0,
69
+ "outputs": [
70
+ {
71
+ "name": "CONTROL_NET",
72
+ "type": "CONTROL_NET",
73
+ "links": [
74
+ 25
75
+ ],
76
+ "shape": 3,
77
+ "label": "ControlNet"
78
+ }
79
+ ],
80
+ "properties": {
81
+ "Node name for S&R": "ControlNetLoader"
82
+ },
83
+ "widgets_values": [
84
+ ""
85
+ ],
86
+ "_widget_cache_map": {
87
+
88
+ }
89
+ },
90
+ {
91
+ "id": 42,
92
+ "type": "ControlNetLoader",
93
+ "pos": [
94
+ 1349,
95
+ -876
96
+ ],
97
+ "size": {
98
+ "0": 368.9059753417969,
99
+ "1": 82
100
+ },
101
+ "flags": {
102
+ "collapsed": false
103
+ },
104
+ "order": 1,
105
+ "mode": 0,
106
+ "outputs": [
107
+ {
108
+ "name": "CONTROL_NET",
109
+ "type": "CONTROL_NET",
110
+ "links": [
111
+ 66
112
+ ],
113
+ "shape": 3,
114
+ "label": "ControlNet"
115
+ }
116
+ ],
117
+ "properties": {
118
+ "Node name for S&R": "ControlNetLoader"
119
+ },
120
+ "widgets_values": [
121
+ ""
122
+ ],
123
+ "_widget_cache_map": {
124
+
125
+ }
126
+ },
127
+ {
128
+ "id": 22,
129
+ "type": "PreviewImage",
130
+ "pos": [
131
+ 899,
132
+ -726
133
+ ],
134
+ "size": {
135
+ "0": 240.84320068359375,
136
+ "1": 246
137
+ },
138
+ "flags": {
139
+
140
+ },
141
+ "order": 11,
142
+ "mode": 0,
143
+ "inputs": [
144
+ {
145
+ "name": "images",
146
+ "type": "IMAGE",
147
+ "link": 112,
148
+ "label": "图像"
149
+ }
150
+ ],
151
+ "properties": {
152
+ "Node name for S&R": "PreviewImage"
153
+ }
154
+ },
155
+ {
156
+ "id": 17,
157
+ "type": "ControlNetApply",
158
+ "pos": [
159
+ 1240,
160
+ -653
161
+ ],
162
+ "size": {
163
+ "0": 210,
164
+ "1": 98
165
+ },
166
+ "flags": {
167
+
168
+ },
169
+ "order": 15,
170
+ "mode": 0,
171
+ "inputs": [
172
+ {
173
+ "name": "conditioning",
174
+ "type": "CONDITIONING",
175
+ "link": 23,
176
+ "label": "条件"
177
+ },
178
+ {
179
+ "name": "control_net",
180
+ "type": "CONTROL_NET",
181
+ "link": 25,
182
+ "label": "ControlNet",
183
+ "slot_index": 1
184
+ },
185
+ {
186
+ "name": "image",
187
+ "type": "IMAGE",
188
+ "link": 115,
189
+ "label": "图像"
190
+ }
191
+ ],
192
+ "outputs": [
193
+ {
194
+ "name": "CONDITIONING",
195
+ "type": "CONDITIONING",
196
+ "links": [
197
+ 70
198
+ ],
199
+ "shape": 3,
200
+ "label": "条件",
201
+ "slot_index": 0
202
+ }
203
+ ],
204
+ "properties": {
205
+ "Node name for S&R": "ControlNetApply"
206
+ },
207
+ "widgets_values": [
208
+ 0.7000000000000001
209
+ ],
210
+ "_widget_cache_map": {
211
+
212
+ }
213
+ },
214
+ {
215
+ "id": 41,
216
+ "type": "ControlNetApply",
217
+ "pos": [
218
+ 1493,
219
+ -652
220
+ ],
221
+ "size": {
222
+ "0": 210,
223
+ "1": 98
224
+ },
225
+ "flags": {
226
+
227
+ },
228
+ "order": 16,
229
+ "mode": 0,
230
+ "inputs": [
231
+ {
232
+ "name": "conditioning",
233
+ "type": "CONDITIONING",
234
+ "link": 70,
235
+ "label": "条件"
236
+ },
237
+ {
238
+ "name": "control_net",
239
+ "type": "CONTROL_NET",
240
+ "link": 66,
241
+ "label": "ControlNet",
242
+ "slot_index": 1
243
+ },
244
+ {
245
+ "name": "image",
246
+ "type": "IMAGE",
247
+ "link": 119,
248
+ "label": "图像"
249
+ }
250
+ ],
251
+ "outputs": [
252
+ {
253
+ "name": "CONDITIONING",
254
+ "type": "CONDITIONING",
255
+ "links": [
256
+ 71
257
+ ],
258
+ "shape": 3,
259
+ "label": "条件",
260
+ "slot_index": 0
261
+ }
262
+ ],
263
+ "properties": {
264
+ "Node name for S&R": "ControlNetApply"
265
+ },
266
+ "widgets_values": [
267
+ 0.8
268
+ ],
269
+ "_widget_cache_map": {
270
+
271
+ }
272
+ },
273
+ {
274
+ "id": 20,
275
+ "type": "LoadImage",
276
+ "pos": [
277
+ 59,
278
+ -877
279
+ ],
280
+ "size": {
281
+ "0": 244.5690155029297,
282
+ "1": 338.8974304199219
283
+ },
284
+ "flags": {
285
+ "collapsed": false
286
+ },
287
+ "order": 2,
288
+ "mode": 0,
289
+ "outputs": [
290
+ {
291
+ "name": "IMAGE",
292
+ "type": "IMAGE",
293
+ "links": [
294
+ 111,
295
+ 119
296
+ ],
297
+ "shape": 3,
298
+ "label": "图像",
299
+ "slot_index": 0
300
+ },
301
+ {
302
+ "name": "MASK",
303
+ "type": "MASK",
304
+ "links": null,
305
+ "shape": 3,
306
+ "label": "遮罩"
307
+ }
308
+ ],
309
+ "properties": {
310
+ "Node name for S&R": "LoadImage"
311
+ },
312
+ "widgets_values": [
313
+ "1724338180087.png",
314
+ "image"
315
+ ],
316
+ "_widget_cache_map": {
317
+
318
+ },
319
+ "color": "#322",
320
+ "bgcolor": "#533"
321
+ },
322
+ {
323
+ "id": 15,
324
+ "type": "LoraLoader",
325
+ "pos": [
326
+ 14.33333365122489,
327
+ -380.3333536783855
328
+ ],
329
+ "size": {
330
+ "0": 210,
331
+ "1": 150
332
+ },
333
+ "flags": {
334
+
335
+ },
336
+ "order": 9,
337
+ "mode": 0,
338
+ "inputs": [
339
+ {
340
+ "name": "model",
341
+ "type": "MODEL",
342
+ "link": 120,
343
+ "label": "模型"
344
+ },
345
+ {
346
+ "name": "clip",
347
+ "type": "CLIP",
348
+ "link": 121,
349
+ "label": "CLIP"
350
+ }
351
+ ],
352
+ "outputs": [
353
+ {
354
+ "name": "MODEL",
355
+ "type": "MODEL",
356
+ "links": [
357
+ 122
358
+ ],
359
+ "shape": 3,
360
+ "label": "模型",
361
+ "slot_index": 0
362
+ },
363
+ {
364
+ "name": "CLIP",
365
+ "type": "CLIP",
366
+ "links": [
367
+ 123
368
+ ],
369
+ "shape": 3,
370
+ "label": "CLIP",
371
+ "slot_index": 1
372
+ }
373
+ ],
374
+ "properties": {
375
+ "Node name for S&R": "LoraLoader"
376
+ },
377
+ "widgets_values": [
378
+ null,
379
+ 0.8,
380
+ 1
381
+ ],
382
+ "_widget_cache_map": {
383
+
384
+ }
385
+ },
386
+ {
387
+ "id": 14,
388
+ "type": "LoraLoader",
389
+ "pos": [
390
+ 285.33333365122496,
391
+ -380.3333536783855
392
+ ],
393
+ "size": {
394
+ "0": 210,
395
+ "1": 150
396
+ },
397
+ "flags": {
398
+
399
+ },
400
+ "order": 12,
401
+ "mode": 0,
402
+ "inputs": [
403
+ {
404
+ "name": "model",
405
+ "type": "MODEL",
406
+ "link": 122,
407
+ "label": "模型"
408
+ },
409
+ {
410
+ "name": "clip",
411
+ "type": "CLIP",
412
+ "link": 123,
413
+ "label": "CLIP"
414
+ }
415
+ ],
416
+ "outputs": [
417
+ {
418
+ "name": "MODEL",
419
+ "type": "MODEL",
420
+ "links": [
421
+ 124
422
+ ],
423
+ "shape": 3,
424
+ "label": "模型",
425
+ "slot_index": 0
426
+ },
427
+ {
428
+ "name": "CLIP",
429
+ "type": "CLIP",
430
+ "links": [
431
+ 125
432
+ ],
433
+ "shape": 3,
434
+ "label": "CLIP",
435
+ "slot_index": 1
436
+ }
437
+ ],
438
+ "properties": {
439
+ "Node name for S&R": "LoraLoader"
440
+ },
441
+ "widgets_values": [
442
+ null,
443
+ 0.9,
444
+ 1
445
+ ],
446
+ "_widget_cache_map": {
447
+
448
+ }
449
+ },
450
+ {
451
+ "id": 16,
452
+ "type": "LoraLoader",
453
+ "pos": [
454
+ 533.333333651225,
455
+ -383.3333536783855
456
+ ],
457
+ "size": {
458
+ "0": 235.24232482910156,
459
+ "1": 150
460
+ },
461
+ "flags": {
462
+
463
+ },
464
+ "order": 13,
465
+ "mode": 4,
466
+ "inputs": [
467
+ {
468
+ "name": "model",
469
+ "type": "MODEL",
470
+ "link": 124,
471
+ "label": "模型"
472
+ },
473
+ {
474
+ "name": "clip",
475
+ "type": "CLIP",
476
+ "link": 125,
477
+ "label": "CLIP"
478
+ }
479
+ ],
480
+ "outputs": [
481
+ {
482
+ "name": "MODEL",
483
+ "type": "MODEL",
484
+ "links": [
485
+ 22
486
+ ],
487
+ "shape": 3,
488
+ "label": "模型",
489
+ "slot_index": 0
490
+ },
491
+ {
492
+ "name": "CLIP",
493
+ "type": "CLIP",
494
+ "links": [
495
+ 20
496
+ ],
497
+ "shape": 3,
498
+ "label": "CLIP",
499
+ "slot_index": 1
500
+ }
501
+ ],
502
+ "properties": {
503
+ "Node name for S&R": "LoraLoader"
504
+ },
505
+ "widgets_values": [
506
+ null,
507
+ 0.9,
508
+ 1
509
+ ],
510
+ "_widget_cache_map": {
511
+
512
+ }
513
+ },
514
+ {
515
+ "id": 7,
516
+ "type": "CLIPTextEncode",
517
+ "pos": [
518
+ 906,
519
+ -187
520
+ ],
521
+ "size": {
522
+ "0": 304.75079345703125,
523
+ "1": 132.6532440185547
524
+ },
525
+ "flags": {
526
+
527
+ },
528
+ "order": 8,
529
+ "mode": 0,
530
+ "inputs": [
531
+ {
532
+ "name": "clip",
533
+ "type": "CLIP",
534
+ "link": 5,
535
+ "label": "CLIP"
536
+ }
537
+ ],
538
+ "outputs": [
539
+ {
540
+ "name": "CONDITIONING",
541
+ "type": "CONDITIONING",
542
+ "links": [
543
+ 6,
544
+ 109
545
+ ],
546
+ "slot_index": 0,
547
+ "label": "条件"
548
+ }
549
+ ],
550
+ "properties": {
551
+ "Node name for S&R": "CLIPTextEncode"
552
+ },
553
+ "widgets_values": [
554
+ "embedding:EasyNegativeV2,humans,people, "
555
+ ],
556
+ "_widget_cache_map": {
557
+
558
+ },
559
+ "color": "#322",
560
+ "bgcolor": "#533"
561
+ },
562
+ {
563
+ "id": 60,
564
+ "type": "UpscaleModelLoader",
565
+ "pos": [
566
+ 162.99199549854984,
567
+ 213.91385230251254
568
+ ],
569
+ "size": {
570
+ "0": 261.4676208496094,
571
+ "1": 84.79285430908203
572
+ },
573
+ "flags": {
574
+
575
+ },
576
+ "order": 3,
577
+ "mode": 0,
578
+ "outputs": [
579
+ {
580
+ "name": "UPSCALE_MODEL",
581
+ "type": "UPSCALE_MODEL",
582
+ "links": [
583
+ 95
584
+ ],
585
+ "shape": 3,
586
+ "label": "放大模型"
587
+ }
588
+ ],
589
+ "properties": {
590
+ "Node name for S&R": "UpscaleModelLoader"
591
+ },
592
+ "widgets_values": [
593
+ "ESRGAN_4x"
594
+ ],
595
+ "_widget_cache_map": {
596
+
597
+ }
598
+ },
599
+ {
600
+ "id": 59,
601
+ "type": "ImageUpscaleWithModel",
602
+ "pos": [
603
+ 433.99199549855007,
604
+ 215.91385230251257
605
+ ],
606
+ "size": {
607
+ "0": 241.79998779296875,
608
+ "1": 46
609
+ },
610
+ "flags": {
611
+ "collapsed": true
612
+ },
613
+ "order": 20,
614
+ "mode": 0,
615
+ "inputs": [
616
+ {
617
+ "name": "upscale_model",
618
+ "type": "UPSCALE_MODEL",
619
+ "link": 95,
620
+ "label": "放大模型",
621
+ "slot_index": 0
622
+ },
623
+ {
624
+ "name": "image",
625
+ "type": "IMAGE",
626
+ "link": 127,
627
+ "label": "图像",
628
+ "slot_index": 1
629
+ }
630
+ ],
631
+ "outputs": [
632
+ {
633
+ "name": "IMAGE",
634
+ "type": "IMAGE",
635
+ "links": [
636
+ 101
637
+ ],
638
+ "shape": 3,
639
+ "label": "图像",
640
+ "slot_index": 0
641
+ }
642
+ ],
643
+ "properties": {
644
+ "Node name for S&R": "ImageUpscaleWithModel"
645
+ },
646
+ "color": "#322",
647
+ "bgcolor": "#533"
648
+ },
649
+ {
650
+ "id": 64,
651
+ "type": "ImageScaleBy",
652
+ "pos": [
653
+ 439.99199549855,
654
+ 260.9138523025126
655
+ ],
656
+ "size": {
657
+ "0": 210,
658
+ "1": 95.07756805419922
659
+ },
660
+ "flags": {
661
+
662
+ },
663
+ "order": 21,
664
+ "mode": 0,
665
+ "inputs": [
666
+ {
667
+ "name": "image",
668
+ "type": "IMAGE",
669
+ "link": 101,
670
+ "label": "图像"
671
+ }
672
+ ],
673
+ "outputs": [
674
+ {
675
+ "name": "IMAGE",
676
+ "type": "IMAGE",
677
+ "links": [
678
+ 92,
679
+ 99
680
+ ],
681
+ "shape": 3,
682
+ "label": "图像",
683
+ "slot_index": 0
684
+ }
685
+ ],
686
+ "properties": {
687
+ "Node name for S&R": "ImageScaleBy"
688
+ },
689
+ "widgets_values": [
690
+ "nearest-exact",
691
+ 0.5
692
+ ],
693
+ "_widget_cache_map": {
694
+
695
+ }
696
+ },
697
+ {
698
+ "id": 56,
699
+ "type": "TilePreprocessor",
700
+ "pos": [
701
+ 350.9919954985504,
702
+ 420.9138523025124
703
+ ],
704
+ "size": {
705
+ "0": 315,
706
+ "1": 82
707
+ },
708
+ "flags": {
709
+
710
+ },
711
+ "order": 22,
712
+ "mode": 0,
713
+ "inputs": [
714
+ {
715
+ "name": "image",
716
+ "type": "IMAGE",
717
+ "link": 92,
718
+ "label": "图像"
719
+ }
720
+ ],
721
+ "outputs": [
722
+ {
723
+ "name": "IMAGE",
724
+ "type": "IMAGE",
725
+ "links": [
726
+ 94
727
+ ],
728
+ "shape": 3,
729
+ "label": "图像",
730
+ "slot_index": 0
731
+ }
732
+ ],
733
+ "properties": {
734
+ "Node name for S&R": "TilePreprocessor"
735
+ },
736
+ "widgets_values": [
737
+ 2,
738
+ 512
739
+ ],
740
+ "_widget_cache_map": {
741
+
742
+ }
743
+ },
744
+ {
745
+ "id": 58,
746
+ "type": "ControlNetLoader",
747
+ "pos": [
748
+ 388.9919954985502,
749
+ 636.9138523025122
750
+ ],
751
+ "size": {
752
+ "0": 315,
753
+ "1": 82
754
+ },
755
+ "flags": {
756
+ "collapsed": true
757
+ },
758
+ "order": 4,
759
+ "mode": 0,
760
+ "outputs": [
761
+ {
762
+ "name": "CONTROL_NET",
763
+ "type": "CONTROL_NET",
764
+ "links": [
765
+ 93
766
+ ],
767
+ "shape": 3,
768
+ "label": "ControlNet"
769
+ }
770
+ ],
771
+ "properties": {
772
+ "Node name for S&R": "ControlNetLoader"
773
+ },
774
+ "widgets_values": [
775
+ ""
776
+ ],
777
+ "_widget_cache_map": {
778
+
779
+ }
780
+ },
781
+ {
782
+ "id": 62,
783
+ "type": "VAEEncode",
784
+ "pos": [
785
+ 699.9919954985504,
786
+ 635.9138523025122
787
+ ],
788
+ "size": {
789
+ "0": 210,
790
+ "1": 46
791
+ },
792
+ "flags": {
793
+ "collapsed": true
794
+ },
795
+ "order": 23,
796
+ "mode": 0,
797
+ "inputs": [
798
+ {
799
+ "name": "pixels",
800
+ "type": "IMAGE",
801
+ "link": 99,
802
+ "label": "图像"
803
+ },
804
+ {
805
+ "name": "vae",
806
+ "type": "VAE",
807
+ "link": 105,
808
+ "label": "VAE"
809
+ }
810
+ ],
811
+ "outputs": [
812
+ {
813
+ "name": "LATENT",
814
+ "type": "LATENT",
815
+ "links": [
816
+ 98
817
+ ],
818
+ "shape": 3,
819
+ "label": "Latent"
820
+ }
821
+ ],
822
+ "properties": {
823
+ "Node name for S&R": "VAEEncode"
824
+ }
825
+ },
826
+ {
827
+ "id": 4,
828
+ "type": "CheckpointLoaderSimple",
829
+ "pos": [
830
+ -297,
831
+ -131
832
+ ],
833
+ "size": {
834
+ "0": 322.34063720703125,
835
+ "1": 125.84071350097656
836
+ },
837
+ "flags": {
838
+
839
+ },
840
+ "order": 5,
841
+ "mode": 0,
842
+ "outputs": [
843
+ {
844
+ "name": "MODEL",
845
+ "type": "MODEL",
846
+ "links": [
847
+ 106,
848
+ 120
849
+ ],
850
+ "slot_index": 0,
851
+ "label": "模型"
852
+ },
853
+ {
854
+ "name": "CLIP",
855
+ "type": "CLIP",
856
+ "links": [
857
+ 5,
858
+ 121
859
+ ],
860
+ "slot_index": 1,
861
+ "label": "CLIP"
862
+ },
863
+ {
864
+ "name": "VAE",
865
+ "type": "VAE",
866
+ "links": [
867
+ 42
868
+ ],
869
+ "slot_index": 2,
870
+ "label": "VAE"
871
+ }
872
+ ],
873
+ "properties": {
874
+ "Node name for S&R": "CheckpointLoaderSimple"
875
+ },
876
+ "widgets_values": [
877
+ null
878
+ ],
879
+ "_widget_cache_map": {
880
+
881
+ }
882
+ },
883
+ {
884
+ "id": 11,
885
+ "type": "Reroute",
886
+ "pos": [
887
+ 852,
888
+ 63
889
+ ],
890
+ "size": [
891
+ 75,
892
+ 26
893
+ ],
894
+ "flags": {
895
+
896
+ },
897
+ "order": 10,
898
+ "mode": 0,
899
+ "inputs": [
900
+ {
901
+ "name": "",
902
+ "type": "*",
903
+ "link": 42
904
+ }
905
+ ],
906
+ "outputs": [
907
+ {
908
+ "name": "",
909
+ "type": "VAE",
910
+ "links": [
911
+ 12,
912
+ 105,
913
+ 107
914
+ ],
915
+ "slot_index": 0
916
+ }
917
+ ],
918
+ "properties": {
919
+ "showOutputText": false,
920
+ "horizontal": false
921
+ }
922
+ },
923
+ {
924
+ "id": 63,
925
+ "type": "VAEDecode",
926
+ "pos": [
927
+ 1285.9919954985496,
928
+ 241.91385230251265
929
+ ],
930
+ "size": {
931
+ "0": 210,
932
+ "1": 46
933
+ },
934
+ "flags": {
935
+ "collapsed": true
936
+ },
937
+ "order": 26,
938
+ "mode": 0,
939
+ "inputs": [
940
+ {
941
+ "name": "samples",
942
+ "type": "LATENT",
943
+ "link": 100,
944
+ "label": "Latent"
945
+ },
946
+ {
947
+ "name": "vae",
948
+ "type": "VAE",
949
+ "link": 107,
950
+ "label": "VAE"
951
+ }
952
+ ],
953
+ "outputs": [
954
+ {
955
+ "name": "IMAGE",
956
+ "type": "IMAGE",
957
+ "links": [
958
+ 102
959
+ ],
960
+ "shape": 3,
961
+ "label": "图像",
962
+ "slot_index": 0
963
+ }
964
+ ],
965
+ "properties": {
966
+ "Node name for S&R": "VAEDecode"
967
+ }
968
+ },
969
+ {
970
+ "id": 61,
971
+ "type": "KSampler",
972
+ "pos": [
973
+ 1028.9919954985496,
974
+ 221.9138523025125
975
+ ],
976
+ "size": {
977
+ "0": 315,
978
+ "1": 474
979
+ },
980
+ "flags": {
981
+
982
+ },
983
+ "order": 25,
984
+ "mode": 0,
985
+ "inputs": [
986
+ {
987
+ "name": "model",
988
+ "type": "MODEL",
989
+ "link": 106,
990
+ "label": "模型"
991
+ },
992
+ {
993
+ "name": "positive",
994
+ "type": "CONDITIONING",
995
+ "link": 129,
996
+ "label": "正面条件"
997
+ },
998
+ {
999
+ "name": "negative",
1000
+ "type": "CONDITIONING",
1001
+ "link": 97,
1002
+ "label": "负面条件"
1003
+ },
1004
+ {
1005
+ "name": "latent_image",
1006
+ "type": "LATENT",
1007
+ "link": 98,
1008
+ "label": "Latent",
1009
+ "slot_index": 3
1010
+ }
1011
+ ],
1012
+ "outputs": [
1013
+ {
1014
+ "name": "LATENT",
1015
+ "type": "LATENT",
1016
+ "links": [
1017
+ 100
1018
+ ],
1019
+ "shape": 3,
1020
+ "label": "Latent",
1021
+ "slot_index": 0
1022
+ }
1023
+ ],
1024
+ "properties": {
1025
+ "Node name for S&R": "KSampler"
1026
+ },
1027
+ "widgets_values": [
1028
+ 368308997265100,
1029
+ "randomize",
1030
+ 32,
1031
+ 6,
1032
+ "euler_ancestral",
1033
+ "normal",
1034
+ 0.4
1035
+ ],
1036
+ "_widget_cache_map": {
1037
+
1038
+ },
1039
+ "color": "#323",
1040
+ "bgcolor": "#535"
1041
+ },
1042
+ {
1043
+ "id": 57,
1044
+ "type": "ControlNetApplyAdvanced",
1045
+ "pos": [
1046
+ 683.9919954985504,
1047
+ 214.91385230251257
1048
+ ],
1049
+ "size": {
1050
+ "0": 315,
1051
+ "1": 166
1052
+ },
1053
+ "flags": {
1054
+
1055
+ },
1056
+ "order": 24,
1057
+ "mode": 0,
1058
+ "inputs": [
1059
+ {
1060
+ "name": "positive",
1061
+ "type": "CONDITIONING",
1062
+ "link": 130,
1063
+ "label": "正面条件"
1064
+ },
1065
+ {
1066
+ "name": "negative",
1067
+ "type": "CONDITIONING",
1068
+ "link": 109,
1069
+ "label": "负面条件"
1070
+ },
1071
+ {
1072
+ "name": "control_net",
1073
+ "type": "CONTROL_NET",
1074
+ "link": 93,
1075
+ "label": "ControlNet",
1076
+ "slot_index": 2
1077
+ },
1078
+ {
1079
+ "name": "image",
1080
+ "type": "IMAGE",
1081
+ "link": 94,
1082
+ "label": "图像"
1083
+ }
1084
+ ],
1085
+ "outputs": [
1086
+ {
1087
+ "name": "positive",
1088
+ "type": "CONDITIONING",
1089
+ "links": [
1090
+ 129
1091
+ ],
1092
+ "shape": 3,
1093
+ "label": "正面条件",
1094
+ "slot_index": 0
1095
+ },
1096
+ {
1097
+ "name": "negative",
1098
+ "type": "CONDITIONING",
1099
+ "links": [
1100
+ 97
1101
+ ],
1102
+ "shape": 3,
1103
+ "label": "负面条件",
1104
+ "slot_index": 1
1105
+ }
1106
+ ],
1107
+ "properties": {
1108
+ "Node name for S&R": "ControlNetApplyAdvanced"
1109
+ },
1110
+ "widgets_values": [
1111
+ 1,
1112
+ 0,
1113
+ 1
1114
+ ],
1115
+ "_widget_cache_map": {
1116
+
1117
+ }
1118
+ },
1119
+ {
1120
+ "id": 6,
1121
+ "type": "CLIPTextEncode",
1122
+ "pos": [
1123
+ 909,
1124
+ -357
1125
+ ],
1126
+ "size": {
1127
+ "0": 294.09674072265625,
1128
+ "1": 124.96588134765625
1129
+ },
1130
+ "flags": {
1131
+
1132
+ },
1133
+ "order": 14,
1134
+ "mode": 0,
1135
+ "inputs": [
1136
+ {
1137
+ "name": "clip",
1138
+ "type": "CLIP",
1139
+ "link": 20,
1140
+ "label": "CLIP"
1141
+ }
1142
+ ],
1143
+ "outputs": [
1144
+ {
1145
+ "name": "CONDITIONING",
1146
+ "type": "CONDITIONING",
1147
+ "links": [
1148
+ 23,
1149
+ 130
1150
+ ],
1151
+ "slot_index": 0,
1152
+ "label": "条件"
1153
+ }
1154
+ ],
1155
+ "properties": {
1156
+ "Node name for S&R": "CLIPTextEncode"
1157
+ },
1158
+ "widgets_values": [
1159
+ "Masterpiece,best quality,detailed,(cake:1.1),cloud,flower,no_one,Conceptual product design,outdoor,c4dplus,hs,8k"
1160
+ ],
1161
+ "_widget_cache_map": {
1162
+
1163
+ },
1164
+ "color": "#322",
1165
+ "bgcolor": "#533"
1166
+ },
1167
+ {
1168
+ "id": 65,
1169
+ "type": "SaveImage",
1170
+ "pos": [
1171
+ 1376.646858661257,
1172
+ 207.7515440348524
1173
+ ],
1174
+ "size": {
1175
+ "0": 410.506103515625,
1176
+ "1": 485.4575500488281
1177
+ },
1178
+ "flags": {
1179
+
1180
+ },
1181
+ "order": 27,
1182
+ "mode": 0,
1183
+ "inputs": [
1184
+ {
1185
+ "name": "images",
1186
+ "type": "IMAGE",
1187
+ "link": 102,
1188
+ "label": "图像"
1189
+ }
1190
+ ],
1191
+ "properties": {
1192
+ "Node name for S&R": "SaveImage"
1193
+ },
1194
+ "widgets_values": [
1195
+ "ComfyUI"
1196
+ ],
1197
+ "_widget_cache_map": {
1198
+
1199
+ },
1200
+ "color": "#232",
1201
+ "bgcolor": "#353"
1202
+ },
1203
+ {
1204
+ "id": 5,
1205
+ "type": "EmptyLatentImage",
1206
+ "pos": [
1207
+ 1260,
1208
+ -329
1209
+ ],
1210
+ "size": {
1211
+ "0": 210,
1212
+ "1": 112.68038177490234
1213
+ },
1214
+ "flags": {
1215
+
1216
+ },
1217
+ "order": 6,
1218
+ "mode": 0,
1219
+ "outputs": [
1220
+ {
1221
+ "name": "LATENT",
1222
+ "type": "LATENT",
1223
+ "links": [
1224
+ 2
1225
+ ],
1226
+ "slot_index": 0,
1227
+ "label": "Latent"
1228
+ }
1229
+ ],
1230
+ "properties": {
1231
+ "Node name for S&R": "EmptyLatentImage"
1232
+ },
1233
+ "widgets_values": [
1234
+ 512,
1235
+ 768,
1236
+ 1
1237
+ ],
1238
+ "_widget_cache_map": {
1239
+
1240
+ }
1241
+ },
1242
+ {
1243
+ "id": 3,
1244
+ "type": "KSampler",
1245
+ "pos": [
1246
+ 1497,
1247
+ -388
1248
+ ],
1249
+ "size": {
1250
+ "0": 263.527099609375,
1251
+ "1": 474
1252
+ },
1253
+ "flags": {
1254
+
1255
+ },
1256
+ "order": 17,
1257
+ "mode": 0,
1258
+ "inputs": [
1259
+ {
1260
+ "name": "model",
1261
+ "type": "MODEL",
1262
+ "link": 22,
1263
+ "label": "模型"
1264
+ },
1265
+ {
1266
+ "name": "positive",
1267
+ "type": "CONDITIONING",
1268
+ "link": 71,
1269
+ "label": "正面条件",
1270
+ "slot_index": 1
1271
+ },
1272
+ {
1273
+ "name": "negative",
1274
+ "type": "CONDITIONING",
1275
+ "link": 6,
1276
+ "label": "负面条件"
1277
+ },
1278
+ {
1279
+ "name": "latent_image",
1280
+ "type": "LATENT",
1281
+ "link": 2,
1282
+ "label": "Latent"
1283
+ }
1284
+ ],
1285
+ "outputs": [
1286
+ {
1287
+ "name": "LATENT",
1288
+ "type": "LATENT",
1289
+ "links": [
1290
+ 7
1291
+ ],
1292
+ "slot_index": 0,
1293
+ "label": "Latent"
1294
+ }
1295
+ ],
1296
+ "properties": {
1297
+ "Node name for S&R": "KSampler"
1298
+ },
1299
+ "widgets_values": [
1300
+ 163854169040437,
1301
+ "fixed",
1302
+ 50,
1303
+ 7,
1304
+ "dpmpp_2m_sde",
1305
+ "karras",
1306
+ 1
1307
+ ],
1308
+ "_widget_cache_map": {
1309
+
1310
+ },
1311
+ "color": "#323",
1312
+ "bgcolor": "#535"
1313
+ },
1314
+ {
1315
+ "id": 8,
1316
+ "type": "VAEDecode",
1317
+ "pos": [
1318
+ 1820,
1319
+ -366
1320
+ ],
1321
+ "size": {
1322
+ "0": 210,
1323
+ "1": 46
1324
+ },
1325
+ "flags": {
1326
+ "collapsed": true
1327
+ },
1328
+ "order": 18,
1329
+ "mode": 0,
1330
+ "inputs": [
1331
+ {
1332
+ "name": "samples",
1333
+ "type": "LATENT",
1334
+ "link": 7,
1335
+ "label": "Latent"
1336
+ },
1337
+ {
1338
+ "name": "vae",
1339
+ "type": "VAE",
1340
+ "link": 12,
1341
+ "label": "VAE"
1342
+ }
1343
+ ],
1344
+ "outputs": [
1345
+ {
1346
+ "name": "IMAGE",
1347
+ "type": "IMAGE",
1348
+ "links": [
1349
+ 29,
1350
+ 127
1351
+ ],
1352
+ "slot_index": 0,
1353
+ "label": "图像"
1354
+ }
1355
+ ],
1356
+ "properties": {
1357
+ "Node name for S&R": "VAEDecode"
1358
+ }
1359
+ },
1360
+ {
1361
+ "id": 21,
1362
+ "type": "PreviewImage",
1363
+ "pos": [
1364
+ 1774,
1365
+ -312
1366
+ ],
1367
+ "size": {
1368
+ "0": 344.7645263671875,
1369
+ "1": 368.7522277832031
1370
+ },
1371
+ "flags": {
1372
+
1373
+ },
1374
+ "order": 19,
1375
+ "mode": 0,
1376
+ "inputs": [
1377
+ {
1378
+ "name": "images",
1379
+ "type": "IMAGE",
1380
+ "link": 29,
1381
+ "label": "图像"
1382
+ }
1383
+ ],
1384
+ "properties": {
1385
+ "Node name for S&R": "PreviewImage"
1386
+ },
1387
+ "color": "#232",
1388
+ "bgcolor": "#353"
1389
+ }
1390
+ ],
1391
+ "links": [
1392
+ [
1393
+ 2,
1394
+ 5,
1395
+ 0,
1396
+ 3,
1397
+ 3,
1398
+ "LATENT"
1399
+ ],
1400
+ [
1401
+ 5,
1402
+ 4,
1403
+ 1,
1404
+ 7,
1405
+ 0,
1406
+ "CLIP"
1407
+ ],
1408
+ [
1409
+ 6,
1410
+ 7,
1411
+ 0,
1412
+ 3,
1413
+ 2,
1414
+ "CONDITIONING"
1415
+ ],
1416
+ [
1417
+ 7,
1418
+ 3,
1419
+ 0,
1420
+ 8,
1421
+ 0,
1422
+ "LATENT"
1423
+ ],
1424
+ [
1425
+ 12,
1426
+ 11,
1427
+ 0,
1428
+ 8,
1429
+ 1,
1430
+ "VAE"
1431
+ ],
1432
+ [
1433
+ 20,
1434
+ 16,
1435
+ 1,
1436
+ 6,
1437
+ 0,
1438
+ "CLIP"
1439
+ ],
1440
+ [
1441
+ 22,
1442
+ 16,
1443
+ 0,
1444
+ 3,
1445
+ 0,
1446
+ "MODEL"
1447
+ ],
1448
+ [
1449
+ 23,
1450
+ 6,
1451
+ 0,
1452
+ 17,
1453
+ 0,
1454
+ "CONDITIONING"
1455
+ ],
1456
+ [
1457
+ 25,
1458
+ 18,
1459
+ 0,
1460
+ 17,
1461
+ 1,
1462
+ "CONTROL_NET"
1463
+ ],
1464
+ [
1465
+ 29,
1466
+ 8,
1467
+ 0,
1468
+ 21,
1469
+ 0,
1470
+ "IMAGE"
1471
+ ],
1472
+ [
1473
+ 42,
1474
+ 4,
1475
+ 2,
1476
+ 11,
1477
+ 0,
1478
+ "*"
1479
+ ],
1480
+ [
1481
+ 66,
1482
+ 42,
1483
+ 0,
1484
+ 41,
1485
+ 1,
1486
+ "CONTROL_NET"
1487
+ ],
1488
+ [
1489
+ 70,
1490
+ 17,
1491
+ 0,
1492
+ 41,
1493
+ 0,
1494
+ "CONDITIONING"
1495
+ ],
1496
+ [
1497
+ 71,
1498
+ 41,
1499
+ 0,
1500
+ 3,
1501
+ 1,
1502
+ "CONDITIONING"
1503
+ ],
1504
+ [
1505
+ 92,
1506
+ 64,
1507
+ 0,
1508
+ 56,
1509
+ 0,
1510
+ "IMAGE"
1511
+ ],
1512
+ [
1513
+ 93,
1514
+ 58,
1515
+ 0,
1516
+ 57,
1517
+ 2,
1518
+ "CONTROL_NET"
1519
+ ],
1520
+ [
1521
+ 94,
1522
+ 56,
1523
+ 0,
1524
+ 57,
1525
+ 3,
1526
+ "IMAGE"
1527
+ ],
1528
+ [
1529
+ 95,
1530
+ 60,
1531
+ 0,
1532
+ 59,
1533
+ 0,
1534
+ "UPSCALE_MODEL"
1535
+ ],
1536
+ [
1537
+ 97,
1538
+ 57,
1539
+ 1,
1540
+ 61,
1541
+ 2,
1542
+ "CONDITIONING"
1543
+ ],
1544
+ [
1545
+ 98,
1546
+ 62,
1547
+ 0,
1548
+ 61,
1549
+ 3,
1550
+ "LATENT"
1551
+ ],
1552
+ [
1553
+ 99,
1554
+ 64,
1555
+ 0,
1556
+ 62,
1557
+ 0,
1558
+ "IMAGE"
1559
+ ],
1560
+ [
1561
+ 100,
1562
+ 61,
1563
+ 0,
1564
+ 63,
1565
+ 0,
1566
+ "LATENT"
1567
+ ],
1568
+ [
1569
+ 101,
1570
+ 59,
1571
+ 0,
1572
+ 64,
1573
+ 0,
1574
+ "IMAGE"
1575
+ ],
1576
+ [
1577
+ 102,
1578
+ 63,
1579
+ 0,
1580
+ 65,
1581
+ 0,
1582
+ "IMAGE"
1583
+ ],
1584
+ [
1585
+ 105,
1586
+ 11,
1587
+ 0,
1588
+ 62,
1589
+ 1,
1590
+ "VAE"
1591
+ ],
1592
+ [
1593
+ 106,
1594
+ 4,
1595
+ 0,
1596
+ 61,
1597
+ 0,
1598
+ "MODEL"
1599
+ ],
1600
+ [
1601
+ 107,
1602
+ 11,
1603
+ 0,
1604
+ 63,
1605
+ 1,
1606
+ "VAE"
1607
+ ],
1608
+ [
1609
+ 109,
1610
+ 7,
1611
+ 0,
1612
+ 57,
1613
+ 1,
1614
+ "CONDITIONING"
1615
+ ],
1616
+ [
1617
+ 111,
1618
+ 20,
1619
+ 0,
1620
+ 68,
1621
+ 0,
1622
+ "IMAGE"
1623
+ ],
1624
+ [
1625
+ 112,
1626
+ 68,
1627
+ 0,
1628
+ 22,
1629
+ 0,
1630
+ "IMAGE"
1631
+ ],
1632
+ [
1633
+ 115,
1634
+ 68,
1635
+ 0,
1636
+ 17,
1637
+ 2,
1638
+ "IMAGE"
1639
+ ],
1640
+ [
1641
+ 119,
1642
+ 20,
1643
+ 0,
1644
+ 41,
1645
+ 2,
1646
+ "IMAGE"
1647
+ ],
1648
+ [
1649
+ 120,
1650
+ 4,
1651
+ 0,
1652
+ 15,
1653
+ 0,
1654
+ "MODEL"
1655
+ ],
1656
+ [
1657
+ 121,
1658
+ 4,
1659
+ 1,
1660
+ 15,
1661
+ 1,
1662
+ "CLIP"
1663
+ ],
1664
+ [
1665
+ 122,
1666
+ 15,
1667
+ 0,
1668
+ 14,
1669
+ 0,
1670
+ "MODEL"
1671
+ ],
1672
+ [
1673
+ 123,
1674
+ 15,
1675
+ 1,
1676
+ 14,
1677
+ 1,
1678
+ "CLIP"
1679
+ ],
1680
+ [
1681
+ 124,
1682
+ 14,
1683
+ 0,
1684
+ 16,
1685
+ 0,
1686
+ "MODEL"
1687
+ ],
1688
+ [
1689
+ 125,
1690
+ 14,
1691
+ 1,
1692
+ 16,
1693
+ 1,
1694
+ "CLIP"
1695
+ ],
1696
+ [
1697
+ 127,
1698
+ 8,
1699
+ 0,
1700
+ 59,
1701
+ 1,
1702
+ "IMAGE"
1703
+ ],
1704
+ [
1705
+ 129,
1706
+ 57,
1707
+ 0,
1708
+ 61,
1709
+ 1,
1710
+ "CONDITIONING"
1711
+ ],
1712
+ [
1713
+ 130,
1714
+ 6,
1715
+ 0,
1716
+ 57,
1717
+ 0,
1718
+ "CONDITIONING"
1719
+ ]
1720
+ ],
1721
+ "groups": [
1722
+ {
1723
+ "title": "4X /2 _tile upscale 锐化 高清放大",
1724
+ "bounding": [
1725
+ 144,
1726
+ 134,
1727
+ 1716,
1728
+ 582
1729
+ ],
1730
+ "color": "#3f789e",
1731
+ "font_size": 24,
1732
+ "locked": false
1733
+ },
1734
+ {
1735
+ "title": "Contrlolnet",
1736
+ "bounding": [
1737
+ 621,
1738
+ -950,
1739
+ 1107,
1740
+ 466
1741
+ ],
1742
+ "color": "#3f789e",
1743
+ "font_size": 24,
1744
+ "locked": false
1745
+ },
1746
+ {
1747
+ "title": "LORA",
1748
+ "bounding": [
1749
+ 4,
1750
+ -457,
1751
+ 774,
1752
+ 237
1753
+ ],
1754
+ "color": "#3f789e",
1755
+ "font_size": 24,
1756
+ "locked": false
1757
+ },
1758
+ {
1759
+ "title": "prompt",
1760
+ "bounding": [
1761
+ 896,
1762
+ -431,
1763
+ 325,
1764
+ 387
1765
+ ],
1766
+ "color": "#3f789e",
1767
+ "font_size": 24,
1768
+ "locked": false
1769
+ }
1770
+ ],
1771
+ "config": {
1772
+
1773
+ },
1774
+ "extra": {
1775
+ "0246.VERSION": [
1776
+ 0,
1777
+ 0,
1778
+ 4
1779
+ ],
1780
+ "ds": {
1781
+ "scale": 0.7247295000000004,
1782
+ "offset": [
1783
+ -386.35423203542075,
1784
+ 673.0381820629576
1785
+ ]
1786
+ }
1787
+ },
1788
+ "version": 0.4
1789
+ }
DrawBridgeAPI/config_example.yaml ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ civitai_setting: # civitai API token
2
+ token:
3
+ - You token here
4
+ model:
5
+ ''
6
+ proxy:
7
+ -
8
+ a1111webui_setting: # sd_webui 设置
9
+ backend_url: # 后端地址
10
+ - http://127.0.0.1:7860
11
+ - http://127.0.0.1:7861
12
+ name: # 后端备注名称
13
+ - 后端1
14
+ - 后端2
15
+ auth: # 是否需要登录
16
+ - false
17
+ - false
18
+ username: # 用户名
19
+ - admin
20
+ - admin
21
+ password: # 密码
22
+ - admin
23
+ - admin
24
+ max_resolution: # 最大分辨率,这个功能没写,暂时不生效
25
+ - null
26
+ - 1572864
27
+ fal_ai_setting: # {"token": []}
28
+ token: #
29
+ - You token here
30
+ model:
31
+ ''
32
+ replicate_setting: # {"token": []}
33
+ token: # https://replicate.com/black-forest-labs/flux-schnell
34
+ - You token here
35
+ model:
36
+ ''
37
+ liblibai_setting:
38
+ # https://www.liblib.art/ # 按下F12 -> 应用 -> cookies -> https://www.liblib.art -> usertoken 的值 d812c12d83c640.....
39
+ token: #
40
+ - d812c12d83c640...
41
+ - 只要token填上了也算一个后端哦
42
+ - token3
43
+ # 模型id获取方法 https://www.liblib.art/sd 先选择喜欢的模型 先按下F12 再 生图
44
+ # 回到开发者控制台,网络选项 -> 找到名为 image 的请求,点击 负载 , 请求负载 找到 checkpointId
45
+ model: # 模型id
46
+ - 2332049
47
+ - 2676318
48
+ - 2675606
49
+ model_name: # 模型名字,仅用作标记
50
+ - "liblib.art/modelinfo/d2f55cf374a7431cac13382182aed20c"
51
+ - "liblib.art/modelinfo/5ecc3218f1ef483ab63eeb4e4cff30cc"
52
+ - "liblib.art/modelinfo/fe3aac47589d4a20b24d0a6b045d607e"
53
+ xl: # 是否为XL模型
54
+ - false
55
+ - true
56
+ - false
57
+ flux: # 是否为FLUX模型
58
+ - false
59
+ - false
60
+ - false
61
+ preference:
62
+ - pretags: # 内置prompt
63
+ 1.5: # 1.5模式下的预设词条,上面为正面,下面为负面
64
+ - '' # prompt
65
+ - '' # negative prompt
66
+ xl: # xl 同上
67
+ - ""
68
+ - ""
69
+ flux:
70
+ - ''
71
+ - ''
72
+ steps: 20 # 步数
73
+ - pretags:
74
+ 1.5:
75
+ - ''
76
+ - ''
77
+ xl:
78
+ - ""
79
+ - ""
80
+ flux:
81
+ - ''
82
+ - ''
83
+ steps: 20
84
+ - pretags:
85
+ 1.5:
86
+ - ''
87
+ - ''
88
+ xl:
89
+ - ""
90
+ - ""
91
+ flux:
92
+ - ''
93
+ - ''
94
+ steps: 20
95
+
96
+ tusiart_setting:
97
+ # 注意,有两个必填项,一个是token,一个是referer
98
+ # https://tusiart.com/
99
+ # 按下F12 -> 应用 -> cookies -> https://tusiart.com -> ta_token_prod 的值 eyJhbGciOiJI....
100
+ token: #
101
+ - eyJhbGciOiJI....
102
+ model: # 例如 https://tusiart.com/models/756170434619145524 # 取后面的数字
103
+ - 708770380971558251
104
+ note:
105
+ - 备注
106
+ referer: # 你的用户首页! 点击右上角头像,复制链接 必填!!
107
+ - https://tusiart.com/u/759763664390847335
108
+ seaart_setting:
109
+ # https://www.seaart.ai/ # 登录 按下F12 -> 应用 -> cookies -> https://www.seaart.ai -> T 的值 eyJhbGciOiJI....
110
+ token:
111
+ - You token here
112
+ model:
113
+ -
114
+ yunjie_setting:
115
+ # https://www.yunjie.art/ # 登录 按下F12 -> 应用 -> cookies -> https://www.yunjie.art -> rayvision_aigc_token 的值 rsat:9IS5EH6vY
116
+ token:
117
+ - You token here
118
+ model:
119
+ -
120
+ note:
121
+ - 移动
122
+
123
+ comfyui_setting:
124
+ backend_url:
125
+ - http://10.147.20.155:8188
126
+ name:
127
+ - default
128
+ model:
129
+ - models\\1053-S.ckpt
130
+ default_workflows:
131
+ - 'sdbase_txt2img'
132
+
133
+ novelai_setting:
134
+ token:
135
+ - eyJhbGciOi...
136
+ model:
137
+ - nai-diffusion-3
138
+
139
+ midjourney_setting:
140
+ backend_url:
141
+ - http://192.168.5.206:8081
142
+ name:
143
+ - default-mj-api
144
+ auth_toekn:
145
+ - null
146
+
147
+ server_settings:
148
+ # 重点! 需要启动的后端, 有些后端你没配置的话依然启动会导致API报错(虽然API会将它锁定,之后请求就不会到它)
149
+ # 怎么数呢? 比如在这个配置文件中 civitai 的第一个token是 0 a1111 的第一个后端是 1 , 第二个是2
150
+ # 所以 enable_txt2img_backends: [0,1] 表示启动 civitai第一个token 和 a1111的第一个后端
151
+ # 再比如 enable_txt2img_backends: [3, 4, 5] 表示启动 liblib 的所有两个token 和 tusiart的第一个token
152
+ enable_txt2img_backends: [13]
153
+ enable_img2img_backends: [1]
154
+ enable_sdapi_backends: [1]
155
+ redis_server: # 必填 Redis服务器
156
+ - 127.0.0.1 # 地址
157
+ - 6379 # 端口
158
+ - null # redis 密码
159
+ - 4 # redis数据库编号
160
+ enable_nsfw_check:
161
+ false
162
+ save_image: # 是否直接保存图片
163
+ true
164
+ build_in_tagger:
165
+ false
166
+ llm_caption: # 使用llm用自然语言打标
167
+ enable:
168
+ false
169
+ clip:
170
+ google/siglip-so400m-patch14-384
171
+ llm:
172
+ unsloth/Meta-Llama-3.1-8B-bnb-4bit
173
+ image_adapter: # https://huggingface.co/spaces/fancyfeast/joy-caption-pre-alpha/tree/main/wpkklhc6
174
+ image_adapter.pt
175
+ build_in_photoai:
176
+ exec_path:
177
+ "C:\\Program Files\\Topaz Labs LLC\\Topaz Photo AI\\tpai.exe"
178
+ proxy:
179
+ "http://127.0.0.1:7890"
180
+
181
+ start_gradio:
182
+ False
183
+ same_port_with_api:
184
+ False
185
+ prompt_audit:
186
+ enable:
187
+ False
188
+ site:
189
+ api.openai.com
190
+ api_key:
191
+ null
192
+ http_proxy:
193
+ null
194
+
195
+
196
+ backend_name_list: # 不要动!
197
+ - civitai
198
+ - a1111
199
+ - falai
200
+ - replicate
201
+ - liblibai
202
+ - tusiart
203
+ - seaart
204
+ - yunjie
205
+ - comfyui
206
+ - novelai
207
+ - midjourney
208
+
DrawBridgeAPI/locales/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gettext
3
+
4
+ locale_dir = os.path.join(os.path.dirname(__file__))
5
+
6
+ lang = gettext.translation('messages', localedir=locale_dir, languages=['zh'], fallback=True)
7
+ lang.install()
8
+
9
+ _ = lang.gettext
10
+ i18n = _
DrawBridgeAPI/locales/zh/LC_MESSAGES/messages.po ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ msgid "Loading config file completed"
2
+ msgstr "加载配置文件完成"
3
+
4
+ msgid "Redis connection successful"
5
+ msgstr "Redis连接成功"
6
+
7
+ msgid "Exec TXT2IMG"
8
+ msgstr "开始进行文生图"
9
+
10
+ msgid "IMG2IMG Requires image to start"
11
+ msgstr "图生图需要图片来启动"
12
+
13
+ msgid "Exec IMG2IMG"
14
+ msgstr "开始进行图生图"
15
+
16
+ msgid "Caption Successful"
17
+ msgstr "打标成功"
18
+
19
+ msgid "Lock to backend has configured"
20
+ msgstr "设置已经锁定后端"
21
+
22
+ msgid "URL detected"
23
+ msgstr "检测到url"
24
+
25
+ msgid "Image download failed!"
26
+ msgstr "图片下载失败!"
27
+
28
+ msgid "Exec forwarding"
29
+ msgstr "开始进行转发"
30
+
31
+ msgid "Waiting for API initialization"
32
+ msgstr "请等待API初始化"
33
+
34
+ msgid "Loading LLM"
35
+ msgstr "LLM加载中"
36
+
37
+ msgid "LLM loading completed, waiting for command"
38
+ msgstr "LLM加载完成,等待命令"
39
+
40
+ msgid "Loading Checkpoint"
41
+ msgstr "模型加载中"
42
+
43
+ msgid "Checkpoint loading completed, waiting for command"
44
+ msgstr "模型加载完成,等待命令"
45
+
46
+ msgid "Server is ready!"
47
+ msgstr "服务器准备就绪!"
48
+
49
+ msgid "Manually select model"
50
+ msgstr "手动选择模型"
51
+
52
+ msgid "Backend select"
53
+ msgstr "已选择后端"
54
+
55
+ msgid "Backend locked"
56
+ msgstr "已锁定后端"
57
+
58
+ msgid "Starting backend selection"
59
+ msgstr "开始进行后端选择"
60
+
61
+ msgid "Backend %s is down"
62
+ msgstr "后端%s掉线"
63
+
64
+ msgid "Backend %s is failed or locked"
65
+ msgstr "后端%s出错或者锁定中"
66
+
67
+ msgid "No available backend"
68
+ msgstr "没有可用后端"
69
+
70
+ msgid "Backend: %s Average work time: %s seconds, Current tasks: %s"
71
+ msgstr "后端: %s 平均工作时间: %s秒, 现在进行中的任务: %s"
72
+
73
+ msgid "Extra time weight"
74
+ msgstr "额外的时间权重"
75
+
76
+ msgid "Backend %s is the fastest, has been selected"
77
+ msgstr "后端%s最快, 已经选择"
78
+
79
+ msgid "Task completed successfully"
80
+ msgstr "任务成功完成"
81
+
82
+ msgid "Task failed"
83
+ msgstr "任务失败"
84
+
85
+ msgid "Remaining tasks in the queue"
86
+ msgstr "队列中的剩余任务"
87
+
88
+ msgid "No remaining tasks in the queue"
89
+ msgstr "队列中已无任务"
90
+
91
+ msgid "Forwarding request"
92
+ msgstr "已转发请求"
93
+
94
+ msgid "Backend returned error"
95
+ msgstr "后端返回错误"
96
+
97
+ msgid "Comfyui Backend, not using built-in multi-image generation management"
98
+ msgstr "Comfyui后端, 不使用内置多图生成管理"
99
+
100
+ msgid "A1111 Backend, not using built-in multi-image generation management"
101
+ msgstr "A1111后端, 不使用内置多图生成管理"
102
+
103
+ msgid "Over maximum retry times, posting still failed"
104
+ msgstr "超过最大重试次数之后依然失败"
105
+
106
+ msgid "Request completed, took %s seconds"
107
+ msgstr "请求完成,共耗%s秒"
108
+
109
+ msgid "VRAM OOM detected, auto model unload and reload"
110
+ msgstr "检测到爆显存,执行自动模型释放并加载"
111
+
112
+ msgid "Get a respond image, processing"
113
+ msgstr "获取到返回图片,正在处理"
114
+
115
+ msgid "Request failed, error message:"
116
+ msgstr "请求失败,错误信息:"
117
+
118
+ msgid "Downloading image successful"
119
+ msgstr "图片下载成功"
120
+
121
+ msgid "Selected ComfyUI style"
122
+ msgstr "已选择ComfyUI工作流"
DrawBridgeAPI/ui/__init__.py ADDED
File without changes
DrawBridgeAPI/utils/__init__.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ import httpx
4
+ from fastapi.exceptions import HTTPException
5
+ from ..base_config import init_instance
6
+ config = init_instance.config
7
+ import asyncio
8
+
9
+
10
+ async def http_request(
11
+ method,
12
+ target_url,
13
+ headers=None,
14
+ params=None,
15
+ content=None,
16
+ format=True
17
+ ):
18
+ async with httpx.AsyncClient() as client:
19
+
20
+ response = await client.request(
21
+ method,
22
+ target_url,
23
+ headers=headers,
24
+ params=params,
25
+ content=content
26
+ )
27
+
28
+ if response.status_code != 200:
29
+ raise HTTPException(500)
30
+ if format:
31
+ return response.json()
32
+ else:
33
+ return response
34
+
35
+
36
+ async def run_later(func, delay=1):
37
+ loop = asyncio.get_running_loop()
38
+ loop.call_later(
39
+ delay,
40
+ lambda: loop.create_task(
41
+ func
42
+ )
43
+ )
44
+
45
+
46
+ async def txt_audit(
47
+ msg,
48
+ prompt='''
49
+ 接下来请你对一些聊天内容进行审核,
50
+ 如果内容出现政治/暴恐内容(特别是我国的政治人物/或者和我国相关的政治)则请你输出<yes>,
51
+ 如果没有则输出<no>
52
+ '''
53
+ ):
54
+
55
+ from ..backend import Backend
56
+
57
+ system = [
58
+ {"role": "system",
59
+ "content": prompt}
60
+ ]
61
+
62
+ prompt = [{"role": "user", "content": msg}]
63
+
64
+ try:
65
+ resp = Backend.http_request(
66
+ "POST",
67
+ f"http://{config['prompt_audit']['site']}/v1/chat/completions",
68
+ {"Authorization": config['prompt_audit']['api_key']},
69
+ timeout=300,
70
+ format=True,
71
+ content= json.dumps(
72
+ {
73
+ "model": "gpt-3.5-turbo",
74
+ "messages": system + prompt,
75
+ "max_tokens": 4000,
76
+ }
77
+ )
78
+ )
79
+ except:
80
+ return "yes"
81
+ else:
82
+ res: str = remove_punctuation(resp['choices'][0]['message']['content'].strip())
83
+ return res
84
+
85
+
86
+ def remove_punctuation(text):
87
+ import string
88
+ for i in range(len(text)):
89
+ if text[i] not in string.punctuation:
90
+ return text[i:]
91
+ return ""
DrawBridgeAPI/utils/custom_class.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fal_client.client import AsyncClient
2
+ from fal_client.auth import fetch_credentials
3
+
4
+ import httpx
5
+ import os
6
+
7
+ USER_AGENT = "fal-client/0.2.2 (python)"
8
+
9
+
10
+ class CustomAsyncClient(AsyncClient):
11
+ def __init__(self, key=None, default_timeout=120.0):
12
+ if key is None:
13
+ key = os.getenv("FAL_KEY")
14
+ super().__init__(key=key, default_timeout=default_timeout)
15
+
16
+ @property
17
+ def _client(self):
18
+ key = self.key
19
+ if key is None:
20
+ key = fetch_credentials()
21
+
22
+ return httpx.AsyncClient(
23
+ headers={
24
+ "Authorization": f"Key {key}",
25
+ "User-Agent": USER_AGENT,
26
+ },
27
+ timeout=self.default_timeout,
28
+ )
DrawBridgeAPI/utils/exceptions.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class DrawBridgeAPIException(Exception):
2
+
3
+ class DBAPIExceptions(Exception):
4
+ pass
5
+
6
+ class TokenExpired(DBAPIExceptions):
7
+ def __init__(self, message="Token expired."):
8
+ self.message = message
9
+ super().__init__(self.message)
10
+
11
+ class NeedRecaptcha(DBAPIExceptions):
12
+ def __init__(self, message="Need Recaptcha."):
13
+ self.message = message
14
+ super().__init__(self.message)
15
+
DrawBridgeAPI/utils/llm_caption_requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ numpy
3
+ pillow
4
+ transformers>=4.43.3
5
+ huggingface_hub
6
+ protobuf
7
+ bitsandbytes
8
+ sentencepiece
9
+ accelerate
DrawBridgeAPI/utils/llm_captions.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import base64
3
+ import warnings
4
+ warnings.simplefilter(action='ignore', category=UserWarning)
5
+ from torch import nn
6
+ from io import BytesIO
7
+ from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, \
8
+ AutoModelForCausalLM
9
+ import torch
10
+ import torch.amp.autocast_mode
11
+ from PIL import Image
12
+ import numpy as np
13
+ from io import BytesIO
14
+
15
+ from ..base_config import init_instance , setup_logger
16
+ from ..locales import _
17
+
18
+ llm_logger = setup_logger('[LLM-Caption]')
19
+
20
+ class JoyPipeline:
21
+ def __init__(self):
22
+ self.clip_model = None
23
+ self.clip_processor = None
24
+ self.tokenizer = None
25
+ self.text_model = None
26
+ self.image_adapter = None
27
+ self.parent = None
28
+
29
+ def clearCache(self):
30
+ self.clip_model = None
31
+ self.clip_processor = None
32
+ self.tokenizer = None
33
+ self.text_model = None
34
+ self.image_adapter = None
35
+
36
+
37
+ class ImageAdapter(nn.Module):
38
+ def __init__(self, input_features: int, output_features: int):
39
+ super().__init__()
40
+ self.linear1 = nn.Linear(input_features, output_features)
41
+ self.activation = nn.GELU()
42
+ self.linear2 = nn.Linear(output_features, output_features)
43
+
44
+ def forward(self, vision_outputs: torch.Tensor):
45
+ x = self.linear1(vision_outputs)
46
+ x = self.activation(x)
47
+ x = self.linear2(x)
48
+ return x
49
+
50
+
51
+ class Joy_caption_load:
52
+
53
+ def __init__(self):
54
+ self.model = None
55
+ self.pipeline = JoyPipeline()
56
+ self.pipeline.parent = self
57
+ self.config = init_instance.config
58
+ pass
59
+
60
+ def loadCheckPoint(self):
61
+ # 清除一波
62
+ if self.pipeline != None:
63
+ self.pipeline.clearCache()
64
+
65
+ # clip
66
+ model_id = self.config.server_settings['llm_caption']['clip']
67
+
68
+ model = AutoModel.from_pretrained(model_id)
69
+ clip_processor = AutoProcessor.from_pretrained(model_id)
70
+ clip_model = AutoModel.from_pretrained(
71
+ model_id,
72
+ trust_remote_code=True
73
+ )
74
+
75
+ clip_model = clip_model.vision_model
76
+ clip_model.eval()
77
+ clip_model.requires_grad_(False)
78
+ clip_model.to("cuda")
79
+
80
+ # LLM
81
+ model_path_llm = self.config.server_settings['llm_caption']['llm']
82
+ tokenizer = AutoTokenizer.from_pretrained(model_path_llm, use_fast=False)
83
+ assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer,
84
+ PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
85
+
86
+ text_model = AutoModelForCausalLM.from_pretrained(model_path_llm, device_map="auto", trust_remote_code=True)
87
+ text_model.eval()
88
+
89
+ # Image Adapte
90
+
91
+ image_adapter = ImageAdapter(clip_model.config.hidden_size,
92
+ text_model.config.hidden_size) # ImageAdapter(clip_model.config.hidden_size, 4096)
93
+ image_adapter.load_state_dict(torch.load(self.config.server_settings['llm_caption']['image_adapter'], map_location="cpu", weights_only=True))
94
+ adjusted_adapter = image_adapter # AdjustedImageAdapter(image_adapter, text_model.config.hidden_size)
95
+ adjusted_adapter.eval()
96
+ adjusted_adapter.to("cuda")
97
+
98
+ self.pipeline.clip_model = clip_model
99
+ self.pipeline.clip_processor = clip_processor
100
+ self.pipeline.tokenizer = tokenizer
101
+ self.pipeline.text_model = text_model
102
+ self.pipeline.image_adapter = adjusted_adapter
103
+
104
+ def clearCache(self):
105
+ if self.pipeline != None:
106
+ self.pipeline.clearCache()
107
+
108
+ def gen(self, model):
109
+ if self.model == None or self.model != model or self.pipeline == None:
110
+ self.model = model
111
+ self.loadCheckPoint()
112
+ return (self.pipeline,)
113
+
114
+
115
+ class Joy_caption:
116
+
117
+ def __init__(self):
118
+ pass
119
+
120
+ @staticmethod
121
+ def tensor2pil(t_image: torch.Tensor) -> Image:
122
+ return Image.fromarray(np.clip(255.0 * t_image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
123
+
124
+ def gen(
125
+ self,
126
+ joy_pipeline=JoyPipeline,
127
+ image=Image,
128
+ prompt="A descriptive caption for this image",
129
+ max_new_tokens=300,
130
+ temperature=0.5,
131
+ cache=False
132
+ ):
133
+
134
+ if joy_pipeline.clip_processor == None:
135
+ joy_pipeline.parent.loadCheckPoint()
136
+
137
+ clip_processor = joy_pipeline.clip_processor
138
+ tokenizer = joy_pipeline.tokenizer
139
+ clip_model = joy_pipeline.clip_model
140
+ image_adapter = joy_pipeline.image_adapter
141
+ text_model = joy_pipeline.text_model
142
+
143
+ input_image = image
144
+
145
+ # Preprocess image
146
+ pImge = clip_processor(images=input_image, return_tensors='pt').pixel_values
147
+ pImge = pImge.to('cuda')
148
+
149
+ # Tokenize the prompt
150
+ prompt = tokenizer.encode(prompt, return_tensors='pt', padding=False, truncation=False,
151
+ add_special_tokens=False)
152
+ # Embed image
153
+ with torch.amp.autocast_mode.autocast('cuda', enabled=True):
154
+ vision_outputs = clip_model(pixel_values=pImge, output_hidden_states=True)
155
+ image_features = vision_outputs.hidden_states[-2]
156
+ embedded_images = image_adapter(image_features)
157
+ embedded_images = embedded_images.to('cuda')
158
+
159
+ # Embed prompt
160
+ prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
161
+ assert prompt_embeds.shape == (1, prompt.shape[1],
162
+ text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
163
+ embedded_bos = text_model.model.embed_tokens(
164
+ torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
165
+
166
+ # Construct prompts
167
+ inputs_embeds = torch.cat([
168
+ embedded_bos.expand(embedded_images.shape[0], -1, -1),
169
+ embedded_images.to(dtype=embedded_bos.dtype),
170
+ prompt_embeds.expand(embedded_images.shape[0], -1, -1),
171
+ ], dim=1)
172
+
173
+ input_ids = torch.cat([
174
+ torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
175
+ torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
176
+ prompt,
177
+ ], dim=1).to('cuda')
178
+ attention_mask = torch.ones_like(input_ids)
179
+
180
+ generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask,
181
+ max_new_tokens=max_new_tokens, do_sample=True, top_k=10,
182
+ temperature=temperature, suppress_tokens=None)
183
+
184
+ # Trim off the prompt
185
+ generate_ids = generate_ids[:, input_ids.shape[1]:]
186
+ if generate_ids[0][-1] == tokenizer.eos_token_id:
187
+ generate_ids = generate_ids[:, :-1]
188
+
189
+ caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
190
+ r = caption.strip()
191
+
192
+ if cache == False:
193
+ joy_pipeline.parent.clearCache()
194
+
195
+ return (r,)
196
+
197
+
198
+ class JoyCaptionHandler:
199
+ def __init__(self, config):
200
+ self.config = config
201
+ self.pipeline, self.joy_caption = self._initialize()
202
+
203
+ def _initialize(self):
204
+ llm_logger.info(_("Loading LLM"))
205
+ joy_caption_load = Joy_caption_load()
206
+ model_path = self.config.server_settings['llm_caption']['llm']
207
+ pipeline, = joy_caption_load.gen(model_path)
208
+ joy_caption = Joy_caption()
209
+ llm_logger.info(_("LLM loading completed, waiting for command"))
210
+ return pipeline, joy_caption
211
+
212
+ async def get_caption(self, image, ntags=[]):
213
+ if image.startswith(b"data:image/png;base64,"):
214
+ image = image.replace("data:image/png;base64,", "")
215
+ image = Image.open(BytesIO(base64.b64decode(image))).convert(mode="RGB")
216
+
217
+ extra_ = f"do not describe {','.join(ntags)} if it exist" if ntags else ''
218
+ loop = asyncio.get_event_loop()
219
+
220
+ caption = await loop.run_in_executor(
221
+ None,
222
+ self.joy_caption.gen,
223
+ self.pipeline,
224
+ image,
225
+ f"A descriptive caption for this image, do not describe a signature or text in the image,{extra_}",
226
+ 300,
227
+ 0.5,
228
+ True
229
+ )
230
+
231
+ return caption[0]
232
+
233
+
234
+ config = init_instance.config
235
+ if config.server_settings['llm_caption']['enable']:
236
+ joy_caption_handler = JoyCaptionHandler(config)
DrawBridgeAPI/utils/request_model.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pydantic import BaseModel, conint
2
+ from dataclasses import field
3
+ from typing import Optional, List, Dict, Any
4
+ from pathlib import Path
5
+ import random
6
+
7
+
8
+ class RequetModelClass(BaseModel):
9
+ pass
10
+
11
+
12
+ class Txt2ImgRequest(RequetModelClass):
13
+ prompt: Optional[str] = ""
14
+ negative_prompt: Optional[str] = ""
15
+ styles: List[str] = []
16
+ seed: int = random.randint(0, 4294967295)
17
+ subseed: int = random.randint(0, 4294967295)
18
+ subseed_strength: float = 0
19
+ seed_resize_from_h: int = -1
20
+ seed_resize_from_w: int = -1
21
+ sampler_name: str = "Euler a"
22
+ batch_size: int = 1
23
+ n_iter: int = 1
24
+ steps: int = 20
25
+ cfg_scale: float = 7
26
+ width: int = 512
27
+ height: int = 512
28
+ restore_faces: bool = False
29
+ tiling: bool = False
30
+ do_not_save_samples: bool = False
31
+ do_not_save_grid: bool = False
32
+ eta: float = 0
33
+ denoising_strength: float = 1
34
+ s_min_uncond: float = 0
35
+ s_churn: float = 0
36
+ s_tmax: float = 0
37
+ s_tmin: float = 0
38
+ s_noise: float = 0
39
+ override_settings: Dict[str, Any] = {}
40
+ override_settings_restore_afterwards: bool = False
41
+ refiner_checkpoint: str = ""
42
+ refiner_switch_at: int = 0
43
+ disable_extra_networks: bool = False
44
+ comments: Dict[str, Any] = {}
45
+ enable_hr: bool = False
46
+ firstphase_width: int = 0
47
+ firstphase_height: int = 0
48
+ hr_scale: float = 2
49
+ hr_upscaler: str = ""
50
+ hr_second_pass_steps: int = 10
51
+ hr_resize_x: int = 0
52
+ hr_resize_y: int = 0
53
+ hr_checkpoint_name: str = ""
54
+ hr_sampler_name: str = ""
55
+ hr_prompt: str = ""
56
+ hr_negative_prompt: str = ""
57
+ sampler_index: str = "Euler a"
58
+ script_name: str = ""
59
+ script_args: List[Any] = []
60
+ send_images: bool = True
61
+ save_images: bool = True
62
+ alwayson_scripts: Dict[str, Any] = {}
63
+ scheduler: str = "Automatic"
64
+
65
+
66
+ class Img2ImgRequest(RequetModelClass):
67
+ prompt: Optional[str] = ""
68
+ negative_prompt: Optional[str] = ""
69
+ styles: List[str] = []
70
+ seed: int = random.randint(0, 4294967295)
71
+ subseed: int = random.randint(0, 4294967295)
72
+ subseed_strength: float = 0
73
+ seed_resize_from_h: int = -1
74
+ seed_resize_from_w: int = -1
75
+ sampler_name: str = "Euler a"
76
+ batch_size: int = 1
77
+ n_iter: int = 1
78
+ steps: int = 50
79
+ cfg_scale: float = 7
80
+ width: int = 512
81
+ height: int = 512
82
+ restore_faces: bool = False
83
+ tiling: bool = False
84
+ do_not_save_samples: bool = False
85
+ do_not_save_grid: bool = False
86
+ eta: float = 0
87
+ denoising_strength: float = 0.75
88
+ s_min_uncond: float = 0
89
+ s_churn: float = 0
90
+ s_tmax: float = 0
91
+ s_tmin: float = 0
92
+ s_noise: float = 0
93
+ override_settings: Dict[str, Any] = {}
94
+ override_settings_restore_afterwards: bool = False
95
+ refiner_checkpoint: str = ""
96
+ refiner_switch_at: int = 0
97
+ disable_extra_networks: bool = False
98
+ comments: Dict[str, Any] = {}
99
+ init_images: List[str] = [""]
100
+ resize_mode: int = 0
101
+ image_cfg_scale: float = 0
102
+ mask: str = None
103
+ mask_blur_x: int = 4
104
+ mask_blur_y: int = 4
105
+ mask_blur: int = 0
106
+ inpainting_fill: int = 0
107
+ inpaint_full_res: bool = True
108
+ inpaint_full_res_padding: int = 0
109
+ inpainting_mask_invert: int = 0
110
+ initial_noise_multiplier: float = 0
111
+ latent_mask: str = ""
112
+ sampler_index: str = "Euler a"
113
+ include_init_images: bool = False
114
+ script_name: str = ""
115
+ script_args: List[Any] = []
116
+ send_images: bool = True
117
+ save_images: bool = True
118
+ alwayson_scripts: Dict[str, Any] = {}
119
+ scheduler: str = "Automatic"
120
+ # 以下为拓展
121
+
122
+
123
+ class TaggerRequest(RequetModelClass):
124
+ image: str = '',
125
+ model: Optional[str] = 'wd14-vit-v2'
126
+ threshold: Optional[float] = 0.35,
127
+ exclude_tags: Optional[List[str]] = []
128
+
129
+
130
+ class TopazAiRequest(BaseModel):
131
+ image: Optional[str] = None
132
+ input_folder: Optional[str or Path]
133
+ output_folder: Optional[str] = None
134
+ overwrite: Optional[bool] = False
135
+ recursive: Optional[bool] = False
136
+ format: Optional[str] = "preserve" # 可选值: jpg, jpeg, png, tif, tiff, dng, preserve
137
+ quality: Optional[conint(ge=0, le=100)] = 95 # JPEG 质量,0到100之间
138
+ compression: Optional[conint(ge=0, le=10)] = 2 # PNG 压缩,0到10之间
139
+ bit_depth: Optional[conint(strict=True, ge=8, le=16)] = 16 # TIFF 位深度,8或16
140
+ tiff_compression: Optional[str] = "zip" # 可选值: none, lzw, zip
141
+ show_settings: Optional[bool] = False
142
+ skip_processing: Optional[bool] = False
143
+ verbose: Optional[bool] = False
144
+ upscale: Optional[bool] = None
145
+ noise: Optional[bool] = None
146
+ sharpen: Optional[bool] = None
147
+ lighting: Optional[bool] = None
148
+ color: Optional[bool] = None
149
+
150
+
151
+ class SetConfigRequest(BaseModel):
152
+ class Config:
153
+ extra = "allow"
DrawBridgeAPI/utils/shared.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import os
3
+
4
+ PATH_TO_COMFYUI_WORKFLOWS = Path(f"{os.path.dirname(os.path.abspath(__file__))}/../comfyui_workflows")
5
+
DrawBridgeAPI/utils/tagger-requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pandas
2
+ numpy
3
+ pillow
4
+ huggingface_hub
5
+ onnxruntime
DrawBridgeAPI/utils/tagger.py ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import asyncio
3
+
4
+ import pandas as pd
5
+ import numpy as np
6
+ import base64
7
+
8
+ from typing import Tuple, List, Dict
9
+ from io import BytesIO
10
+ from PIL import Image
11
+
12
+ from pathlib import Path
13
+ from huggingface_hub import hf_hub_download
14
+
15
+ from ..base_config import setup_logger, init_instance
16
+ from ..locales import _
17
+
18
+
19
+ use_cpu = True
20
+ tf_device_name = '/gpu:0' if not use_cpu else '/cpu:0'
21
+
22
+ wd_logger = setup_logger('[TAGGER]')
23
+ # https://github.com/toriato/stable-diffusion-webui-wd14-tagger
24
+
25
+
26
+ class Interrogator:
27
+ @staticmethod
28
+ def postprocess_tags(
29
+ tags: Dict[str, float],
30
+ threshold=0.35,
31
+ additional_tags: List[str] = [],
32
+ exclude_tags: List[str] = [],
33
+ sort_by_alphabetical_order=False,
34
+ add_confident_as_weight=False,
35
+ replace_underscore=False,
36
+ replace_underscore_excludes: List[str] = [],
37
+ escape_tag=False
38
+ ) -> Dict[str, float]:
39
+ for t in additional_tags:
40
+ tags[t] = 1.0
41
+
42
+ tags = {
43
+ t: c
44
+ for t, c in sorted(
45
+ tags.items(),
46
+ key=lambda i: i[0 if sort_by_alphabetical_order else 1],
47
+ reverse=not sort_by_alphabetical_order
48
+ )
49
+ if (
50
+ c >= threshold
51
+ and t not in exclude_tags
52
+ )
53
+ }
54
+
55
+ new_tags = []
56
+ for tag in list(tags):
57
+ new_tag = tag
58
+
59
+ if replace_underscore and tag not in replace_underscore_excludes:
60
+ new_tag = new_tag.replace('_', ' ')
61
+
62
+ if escape_tag:
63
+ new_tag = tag.replace('_', '\\_')
64
+
65
+ if add_confident_as_weight:
66
+ new_tag = f'({new_tag}:{tags[tag]})'
67
+
68
+ new_tags.append((new_tag, tags[tag]))
69
+ tags = dict(new_tags)
70
+
71
+ return tags
72
+
73
+ def __init__(self, name: str) -> None:
74
+ self.name = name
75
+
76
+ def load(self):
77
+ raise NotImplementedError()
78
+
79
+ def unload(self) -> bool:
80
+ unloaded = False
81
+
82
+ if hasattr(self, 'model') and self.model is not None:
83
+ del self.model
84
+ unloaded = True
85
+ print(f'Unloaded {self.name}')
86
+
87
+ if hasattr(self, 'tags'):
88
+ del self.tags
89
+
90
+ return unloaded
91
+
92
+ def interrogate(
93
+ self,
94
+ image: Image
95
+ ) -> Tuple[
96
+ Dict[str, float], # rating confidents
97
+ Dict[str, float] # tag confidents
98
+ ]:
99
+ raise NotImplementedError()
100
+
101
+
102
+ class WaifuDiffusionInterrogator(Interrogator):
103
+ def __init__(
104
+ self,
105
+ name: str,
106
+ model_path='model.onnx',
107
+ tags_path='selected_tags.csv',
108
+ **kwargs
109
+ ) -> None:
110
+ super().__init__(name)
111
+ self.model_path = model_path
112
+ self.tags_path = tags_path
113
+ self.kwargs = kwargs
114
+
115
+ def download(self) -> Tuple[os.PathLike, os.PathLike]:
116
+ wd_logger.info(f"Loading {self.name} model file from {self.kwargs['repo_id']}")
117
+
118
+ model_path = Path(hf_hub_download(
119
+ **self.kwargs, filename=self.model_path))
120
+ tags_path = Path(hf_hub_download(
121
+ **self.kwargs, filename=self.tags_path))
122
+ return model_path, tags_path
123
+
124
+ def load(self) -> None:
125
+ model_path, tags_path = self.download()
126
+
127
+ from onnxruntime import InferenceSession
128
+
129
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
130
+ if use_cpu:
131
+ providers.pop(0)
132
+
133
+ self.model = InferenceSession(str(model_path), providers=providers)
134
+
135
+ wd_logger.info(f'Loaded {self.name} model from {model_path}')
136
+
137
+ self.tags = pd.read_csv(tags_path)
138
+
139
+ def interrogate(
140
+ self,
141
+ image: Image
142
+ ) -> Tuple[
143
+ Dict[str, float], # rating confidents
144
+ Dict[str, float] # tag confidents
145
+ ]:
146
+ if not hasattr(self, 'model') or self.model is None:
147
+ self.load()
148
+
149
+ _, height, _, _ = self.model.get_inputs()[0].shape
150
+
151
+ image = image.convert('RGBA')
152
+ new_image = Image.new('RGBA', image.size, 'WHITE')
153
+ new_image.paste(image, mask=image)
154
+ image = new_image.convert('RGB')
155
+ image = np.asarray(image)
156
+
157
+ image = image[:, :, ::-1]
158
+
159
+ # 模拟`dbimutils`的make_square和smart_resize功能
160
+ image = self.make_square(image, height)
161
+ image = self.smart_resize(image, height)
162
+ image = image.astype(np.float32)
163
+ image = np.expand_dims(image, 0)
164
+
165
+ input_name = self.model.get_inputs()[0].name
166
+ label_name = self.model.get_outputs()[0].name
167
+ confidents = self.model.run([label_name], {input_name: image})[0]
168
+
169
+ tags = self.tags[:][['name']]
170
+ tags['confidents'] = confidents[0]
171
+
172
+ ratings = dict(tags[:4].values)
173
+ tags = dict(tags[4:].values)
174
+
175
+ return ratings, tags
176
+
177
+ @staticmethod
178
+ def make_square(image, size):
179
+ old_size = image.shape[:2]
180
+ ratio = float(size) / max(old_size)
181
+ new_size = tuple([int(x * ratio) for x in old_size])
182
+ image = Image.fromarray(image)
183
+ image = image.resize(new_size, Image.LANCZOS)
184
+ new_image = Image.new("RGB", (size, size))
185
+ new_image.paste(image, ((size - new_size[0]) // 2,
186
+ (size - new_size[1]) // 2))
187
+ return np.array(new_image)
188
+
189
+ @staticmethod
190
+ def smart_resize(image, size):
191
+ image = Image.fromarray(image)
192
+ image = image.resize((size, size), Image.LANCZOS)
193
+ return np.array(image)
194
+
195
+
196
+ class WaifuDiffusionTaggerHandler:
197
+ def __init__(self, name, repo_id, revision, model_path, tags_path):
198
+ self.name = name
199
+ self.repo_id = repo_id
200
+ self.revision = revision
201
+ self.model_path = model_path
202
+ self.tags_path = tags_path
203
+ self.wd_instance = self._initialize()
204
+
205
+ def _initialize(self):
206
+ wd_instance = WaifuDiffusionInterrogator(
207
+ name=self.name,
208
+ repo_id=self.repo_id,
209
+ revision=self.revision,
210
+ model_path=self.model_path,
211
+ tags_path=self.tags_path
212
+ )
213
+ wd_logger.info(_("Loading Checkpoint"))
214
+ wd_instance.load()
215
+ wd_logger.info(_("Checkpoint loading completed, waiting for command"))
216
+ return wd_instance
217
+
218
+ async def tagger_main(self, base64_img, threshold, ntags=[], audit=False, ratings=False):
219
+ if base64_img.startswith("data:image/png;base64,"):
220
+ base64_img = base64_img.replace("data:image/png;base64,", "")
221
+
222
+ image_data = base64.b64decode(base64_img)
223
+ image = Image.open(BytesIO(image_data))
224
+
225
+ loop = asyncio.get_event_loop()
226
+ ratings, tags = await loop.run_in_executor(
227
+ None,
228
+ self.wd_instance.interrogate,
229
+ image
230
+ )
231
+ if ratings:
232
+ return ratings
233
+ if audit:
234
+ possibilities = ratings
235
+ value = list(possibilities.values())
236
+ value.sort(reverse=True)
237
+ reverse_dict = {value: key for key, value in possibilities.items()}
238
+ return True if reverse_dict[value[0]] == "questionable" or reverse_dict[value[0]] == "explicit" else False
239
+
240
+ # 处理标签
241
+ processed_tags = Interrogator.postprocess_tags(
242
+ tags=tags,
243
+ threshold=threshold,
244
+ additional_tags=['best quality', 'highres'],
245
+ exclude_tags=['lowres'] + ntags,
246
+ sort_by_alphabetical_order=False,
247
+ add_confident_as_weight=True,
248
+ replace_underscore=True,
249
+ replace_underscore_excludes=[],
250
+ escape_tag=False
251
+ )
252
+
253
+ def process_dict(input_dict):
254
+ processed_dict = {}
255
+ for key, value in input_dict.items():
256
+ cleaned_key = key.strip('()').split(':')[0]
257
+ processed_dict[cleaned_key] = value
258
+ return processed_dict
259
+
260
+ processed_tags = process_dict(processed_tags)
261
+ return {**ratings, **processed_tags}
262
+
263
+
264
+ config = init_instance.config
265
+ if config.server_settings['build_in_tagger']:
266
+ wd_tagger_handler = WaifuDiffusionTaggerHandler(
267
+ name='WaifuDiffusion',
268
+ repo_id='SmilingWolf/wd-v1-4-convnextv2-tagger-v2',
269
+ revision='v2.0',
270
+ model_path='model.onnx',
271
+ tags_path='selected_tags.csv'
272
+ )
DrawBridgeAPI/utils/topaz.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess
2
+ from ..base_config import init_instance, setup_logger
3
+
4
+ topazai_logger = setup_logger('[TopaAI]')
5
+
6
+
7
+ def run_tpai(
8
+ input_folder, output_folder=None, overwrite=False, recursive=False,
9
+ format="preserve", quality=95, compression=2, bit_depth=16,
10
+ tiff_compression="zip", show_settings=False, skip_processing=False,
11
+ verbose=False, upscale=None, noise=None, sharpen=None,
12
+ lighting=None, color=None, **kwargs
13
+ ):
14
+ # 基本命令和输入文件夹
15
+ command = [rf'"{init_instance.config.server_settings["build_in_photoai"]["exec_path"]}"', f'"{input_folder}"']
16
+
17
+ # 输出文件夹
18
+ if output_folder:
19
+ command.extend(["--output", f'"{output_folder}"'])
20
+
21
+ # 覆盖现有文件
22
+ if overwrite:
23
+ command.append("--overwrite")
24
+
25
+ # 递归处理子文件夹
26
+ if recursive:
27
+ command.append("--recursive")
28
+
29
+ # 文件格式选项
30
+ if format:
31
+ command.extend(["--format", format])
32
+ if quality is not None:
33
+ command.extend(["--quality", str(quality)])
34
+ if compression is not None:
35
+ command.extend(["--compression", str(compression)])
36
+ if bit_depth is not None:
37
+ command.extend(["--bit-depth", str(bit_depth)])
38
+ if tiff_compression:
39
+ command.extend(["--tiff-compression", tiff_compression])
40
+
41
+ # 调试选项
42
+ if show_settings:
43
+ command.append("--showSettings")
44
+ if skip_processing:
45
+ command.append("--skipProcessing")
46
+ if verbose:
47
+ command.append("--verbose")
48
+
49
+ # 设置选项(实验性)
50
+ if upscale is not None:
51
+ command.extend(["--upscale", f"enabled={str(upscale).lower()}"])
52
+ if noise is not None:
53
+ command.extend(["--noise", f"enabled={str(noise).lower()}"])
54
+ if sharpen is not None:
55
+ command.extend(["--sharpen", f"enabled={str(sharpen).lower()}"])
56
+ if lighting is not None:
57
+ command.extend(["--lighting", f"enabled={str(lighting).lower()}"])
58
+ if color is not None:
59
+ command.extend(["--color", f"enabled={str(color).lower()}"])
60
+
61
+ # 打印并执行命令
62
+ topazai_logger.info(str(" ".join(command)))
63
+ result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
64
+ # 返回结果,并忽略无法解码的字符
65
+ return result.stdout.decode(errors='ignore'), result.stderr.decode(errors='ignore'), result.returncode
66
+