--- task_categories: - graph-ml license: mit tags: - multi-agent-systems - benchmark - llms dataset_info: features: - name: 'Unnamed: 0' dtype: int64 - name: graph_generator dtype: string - name: num_nodes dtype: int64 - name: index dtype: int64 - name: graph dtype: string splits: - name: train num_bytes: 517975 num_examples: 117 download_size: 127270 dataset_size: 517975 configs: - config_name: default data_files: - split: train path: data/train-* --- # AgentsNet This repository contains the graph instances used in the [AgentsNet: Coordination and Collaborative Reasoning in Multi-Agent LLMs](https://huggingface.co/papers/2507.08616) paper. AgentsNet is a new benchmark for multi-agent reasoning, designed to measure the ability of multi-agent systems to collaboratively form strategies for problem-solving, self-organization, and effective communication given a network topology. It draws inspiration from classical problems in distributed systems and graph theory. * **Paper**: [AgentsNet: Coordination and Collaborative Reasoning in Multi-Agent LLMs](https://huggingface.co/papers/2507.08616) * **Project Page**: [https://agentsnet.graphben.ch](https://agentsnet.graphben.ch) * **GitHub Repository**: [https://github.com/ashleve/lightning-hydra-template](https://github.com/ashleve/lightning-hydra-template) ## Dataset The dataset consists of synthetic graphs generated using various random graph models. It serves as the input for all experiments in the benchmark. ## Citation If you use this dataset, please cite the associated paper: ```bibtex @misc{grötschla2025agentsnetcoordinationcollaborativereasoning, title={AgentsNet: Coordination and Collaborative Reasoning in Multi-Agent LLMs}, author={Florian Grötschla and Luis Müller and Jan Tönshoff and Mikhail Galkin and Bryan Perozzi}, year={2025}, eprint={2507.08616}, archivePrefix={arXiv}, primaryClass={cs.MA}, url={https://arxiv.org/abs/2507.08616}, } ```