|  |  | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  | import pathlib | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | import fsspec | 
					
						
						|  | from datasets import DatasetInfo, Value, Features | 
					
						
						|  |  | 
					
						
						|  | logger = datasets.logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _INFO = DatasetInfo( | 
					
						
						|  | description='Automatically generated for wikitext (wikitext-103-raw-v1), split into 8 shards, detokenized.\n\nOriginal Description:\n The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n', | 
					
						
						|  | citation='@misc{merity2016pointer,\n      title={Pointer Sentinel Mixture Models},\n      author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n      year={2016},\n      eprint={1609.07843},\n      archivePrefix={arXiv},\n      primaryClass={cs.CL}\n}\n', | 
					
						
						|  | homepage='https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/', | 
					
						
						|  | license='Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)', | 
					
						
						|  | version="1.0.0", | 
					
						
						|  | features=Features.from_dict({'text': {'dtype': 'string', 'id': None, '_type': 'Value'}}), | 
					
						
						|  | supervised_keys=None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AutoDataset(datasets.GeneratorBasedBuilder): | 
					
						
						|  | BUILDER_CONFIGS = [datasets.BuilderConfig()] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, **kwargs): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | return _INFO | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dataset_dir(self): | 
					
						
						|  | return pathlib.Path(__file__).parent | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | metadata = json.load(open(dl_manager.download("metadata.json"), 'rt')) | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=split, | 
					
						
						|  | gen_kwargs={"filepaths": dl_manager.download(split_metadata["files"])}, | 
					
						
						|  | ) | 
					
						
						|  | for split, split_metadata in metadata["splits"].items() | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, filepaths): | 
					
						
						|  | """This function returns the examples in the raw (text) form by iterating on all the files.""" | 
					
						
						|  | id_: int = 0 | 
					
						
						|  | for filepath in filepaths: | 
					
						
						|  | logger.info(f"Generating examples from {filepath}") | 
					
						
						|  | with fsspec.open(filepath, mode="rt", compression="infer", encoding="utf-8") as f: | 
					
						
						|  | for line in f: | 
					
						
						|  | if line: | 
					
						
						|  | example = json.loads(line) | 
					
						
						|  | yield id_, example | 
					
						
						|  | id_ += 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | AutoDataset().download_and_prepare() |