Datasets:
File size: 1,966 Bytes
bc79b30 b6da94f bc79b30 0cb293c bc79b30 b6da94f bc79b30 b6da94f bc79b30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: mit
task_categories:
- text-classification
- feature-extraction
- image-feature-extraction
- image-classification
language:
- en
tags:
- not-for-all-audiences
pretty_name: Perfume dataset
size_categories:
- 10K<n<100K
---
## Perfume dataset, over 26k perfumes
### Dataset Description
RAW Perfume dataset (2024 Year), over 26k perfumes. Images, ingredients, description, etc.
## How to use
```Python
from huggingface_hub import hf_hub_download
# download raw archive file
zip_file = hf_hub_download(
repo_id='doevent/perfume',
repo_type='dataset',
filename='images.zip',
)
```
```Python
import zipfile
# extract files to your directory
dataset_dir = 'images'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
```
## Dataset Structure
**RAW data: SQLlite, JSON, CSV**
SQL:
```
id,
brand TEXT,
name_perfume TEXT,
family TEXT,
subfamily TEXT,
fragrances TEXT,
ingredients TEXT,
origin TEXT,
gender TEXT,
years TEXT,
description TEXT,
image_name TEXT,
image_id TEXT
```
JSON:
```JSON
[
{
"brand": "Fiorucci",
"name_perfume": "Wallstreet",
"family": "FLORAL",
"subfamily": "AMBERY (ORIENTAL)",
"fragrances": "Floral Amber Fresher",
"ingredients": [
"Jasmine",
"Lemon",
"Spicy Notes",
"Gardenia",
"Rose",
"Bergamot",
"Mint",
"Pepper"
],
"origin": "Brazil",
"gender": "Male",
"years": "2015",
"description": "A modern aroma, ideal for urban men and that highlights their strengths in everyday life.",
"image_name": "jsunc6exf3hcx3bfbnx0jw5f2s4zske1770lzwplo5hn2v4ky2qh4lxan392-w500-q85.jpg"
},
]
```
## Dataset Creation
01.05.2024
## Dataset Card Authors
Max Skobeev
[Twitter](https://twitter.com/DoEvent)
[Telegram](https://t.me/neuralpony) |