File size: 1,705 Bytes
84e2d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99aeaaf
 
 
84e2d70
 
 
 
 
99aeaaf
84e2d70
 
 
99aeaaf
84e2d70
 
 
 
 
99aeaaf
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0
task_categories:
- text-to-image
tags:
- personalization
- multi-subject
- msdiffusion
---
# Dataset Card for MS-Bench

<!-- Provide a quick summary of the dataset. -->

This dataset card is about the multi-subject personalization benchmark used in [MS-Diffusion](https://arxiv.org/pdf/2406.07209).

## Dataset Details

- **Repository:** https://github.com/MS-Diffusion/MS-Diffusion
- **Paper[ICLR 2025]:** https://arxiv.org/pdf/2406.07209
- **Model:** https://huggingface.co/doge1516/MS-Diffusion

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

This benchmark contains 7 categories, 40 subjects, and 13 combinations. Details of the data structure are defined in the paper and `msbench.py`.

## Dataset Source

The subjects in MS-Bench are collected from [DreamBench](https://github.com/google/dreambooth), [CustomConcept101](https://github.com/adobe-research/custom-diffusion/tree/main/customconcept101), and the Internet. **This benchmark is for research use only.**

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

```bibtex
@inproceedings{
  wang2025msdiffusion,
  title={{MS}-Diffusion: Multi-subject Zero-shot Image Personalization with Layout Guidance},
  author={Xierui Wang and Siming Fu and Qihan Huang and Wanggui He and Hao Jiang},
  booktitle={The Thirteenth International Conference on Learning Representations},
  year={2025},
  url={https://openreview.net/forum?id=PJqP0wyQek}
}
```