Commit
·
699f518
1
Parent(s):
0b94f9c
add readme
Browse files- .gitignore +7 -0
- README.md +170 -0
- vcms_example.jpg +3 -0
- vcms_example_mask.jpg +3 -0
- vpim_example.jpg +3 -0
- vpim_example_mask.jpg +3 -0
- vpvm_example.jpg +3 -0
- vpvm_example_mask.jpg +3 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vscode
|
2 |
+
vcms/
|
3 |
+
vpvm/
|
4 |
+
vpim/
|
5 |
+
|
6 |
+
*__pycache__*
|
7 |
+
*scratch*
|
README.md
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license:
|
3 |
+
- cc-by-4.0
|
4 |
+
pretty_name: VSM
|
5 |
+
category:
|
6 |
+
- vcms (Video Camera Model Splicing)
|
7 |
+
- vpvm (Video Perceptually Visible Manipulation)
|
8 |
+
- vpim (Video Perceptually Invisible Manipulation)
|
9 |
+
category_size:
|
10 |
+
videos: 4000
|
11 |
+
frames: 120000
|
12 |
+
task_categories:
|
13 |
+
- standard video manipulation detection and localization
|
14 |
+
task_ids:
|
15 |
+
- video-manipulation-detection
|
16 |
+
- video-manipulation-localization
|
17 |
+
---
|
18 |
+
|
19 |
+
# Video Standard Manipulation Dataset
|
20 |
+
|
21 |
+
## Dataset Description
|
22 |
+
|
23 |
+
- **Paper:** [VideoFACT: Detecting Video Forgeries Using Attention, Scene Context, and Forensic Traces](https://openaccess.thecvf.com/content/WACV2024/papers/Nguyen_VideoFACT_Detecting_Video_Forgeries_Using_Attention_Scene_Context_and_Forensic_WACV_2024_paper.pdf)
|
24 |
+
- **Total amount of data used:** approx. 15GB
|
25 |
+
|
26 |
+
This dataset is a collection of simple and traditional localized video manipulations, such as: splicing, color correction, contrast enhancement, bluring, and noise addition. The dataset is designed to be used for training and evaluating video manipulation detection models. We used this dataset to train the VideoFACT model, which is a deep learning model that uses attention, scene context, and forensic traces to detect a wide variety of video forgery types, i.e. splicing, editing, deepfake, inpainting. The dataset is divided into three parts: Video Camera Model Splicing (VCMS), Video Perceptually Visible Manipulation (VPVM), and Video Perceptually Invisible Manipulation (VPIM). Each part has a total of 4000 videos, each video is 1 second, or 30 frames, has a resolution of 1920 x 1080, and encoded using FFmpeg with the H.264 codec at CRF 23. Additionally, each part is splited into training, validation, and testing sets that consists of 3200, 200, 600 videos, respectively. More details about the dataset can be found in the paper.
|
27 |
+
|
28 |
+
## Example
|
29 |
+
|
30 |
+
The Video Standard Manipulation (VSM) Dataset can be downloaded and used as follows:
|
31 |
+
|
32 |
+
```py
|
33 |
+
import torch
|
34 |
+
from torch.utils.data import Dataset, IterableDataset, DataLoader
|
35 |
+
import datasets
|
36 |
+
import decord
|
37 |
+
import fsspec
|
38 |
+
|
39 |
+
decord.bridge.set_bridge("torch")
|
40 |
+
|
41 |
+
vsm_ds = datasets.load_dataset("ductai199x/video_std_manip", "vcms", trust_remote_code=True) # or "vpvm" or "vpim"
|
42 |
+
|
43 |
+
# see structure
|
44 |
+
print(vsm_ds)
|
45 |
+
|
46 |
+
# custom dataset wrapper to load video faster
|
47 |
+
class VsmDsWrapper(Dataset):
|
48 |
+
def __init__(self, ds: datasets.Dataset):
|
49 |
+
self.ds = ds
|
50 |
+
|
51 |
+
def __len__(self):
|
52 |
+
return len(self.ds)
|
53 |
+
|
54 |
+
def __getitem__(self, idx):
|
55 |
+
example = self.ds[idx]
|
56 |
+
vid_path = example["vid_path"]
|
57 |
+
mask_path = example["mask_path"]
|
58 |
+
label = example["label"]
|
59 |
+
vid = decord.VideoReader(vid_path)[:].float() / 255.0
|
60 |
+
if label == 1:
|
61 |
+
mask = decord.VideoReader(mask_path)[:].float() / 255.0
|
62 |
+
else:
|
63 |
+
mask = torch.zeros_like(vid)
|
64 |
+
mask = (mask.mean(3) > 0.5).float() # T, H, W
|
65 |
+
vid = vid.permute(0, 3, 1, 2) # T, H, W, C -> T, C, H, W
|
66 |
+
return {
|
67 |
+
"vid": vid,
|
68 |
+
"mask": mask,
|
69 |
+
"label": label,
|
70 |
+
}
|
71 |
+
|
72 |
+
# custom iterable dataset wrapper in case you want to stream the dataset
|
73 |
+
class VsmIterDsWrapper(IterableDataset):
|
74 |
+
def __init__(self, ds: datasets.IterableDataset):
|
75 |
+
self.ds = ds
|
76 |
+
|
77 |
+
def __iter__(self):
|
78 |
+
for example in self.ds:
|
79 |
+
vid_path = example["vid_path"]
|
80 |
+
mask_path = example["mask_path"]
|
81 |
+
label = example["label"]
|
82 |
+
vid = decord.VideoReader(fsspec.open(vid_path, "rb").open())[:].float() / 255.0
|
83 |
+
if label == 1:
|
84 |
+
mask = decord.VideoReader(fsspec.open(mask_path, "rb").open())[:].float() / 255.0
|
85 |
+
else:
|
86 |
+
mask = torch.zeros_like(vid)
|
87 |
+
mask = (mask.mean(3) > 0.5).float() # T, H, W
|
88 |
+
vid = vid.permute(0, 3, 1, 2) # T, H, W, C -> T, C, H, W
|
89 |
+
yield {
|
90 |
+
"vid": vid,
|
91 |
+
"mask": mask,
|
92 |
+
"label": label,
|
93 |
+
}
|
94 |
+
|
95 |
+
# Highly recommend you using Dataloader to load the dataset faster
|
96 |
+
vsm_dl = DataLoader(VsmDsWrapper(vsm_ds["train"]), batch_size=2, num_workers=14, persistent_workers=True)
|
97 |
+
for batch in vsm_dl:
|
98 |
+
vid = batch["vid"]
|
99 |
+
mask = batch["mask"]
|
100 |
+
label = batch["label"]
|
101 |
+
print(vid.shape, mask.shape, label)
|
102 |
+
|
103 |
+
```
|
104 |
+
|
105 |
+
## Dataset Structure
|
106 |
+
|
107 |
+
### Data Instances
|
108 |
+
|
109 |
+
Some frame examples from this dataset:
|
110 |
+
|
111 |
+
#### VCMS
|
112 |
+

|
113 |
+

|
114 |
+
|
115 |
+
#### VPVM
|
116 |
+

|
117 |
+

|
118 |
+
|
119 |
+
#### VPIM
|
120 |
+

|
121 |
+

|
122 |
+
|
123 |
+
### Data Fields
|
124 |
+
The data fields are the same among all splits.
|
125 |
+
|
126 |
+
- **vid_path** (str): Path to the video file
|
127 |
+
- **mask_path** (str): Path to the mask file. This will equal to empty string if the video is not manipulated.
|
128 |
+
- **label** (int): 1 if the video is manipulated, 0 otherwise.
|
129 |
+
|
130 |
+
|
131 |
+
### Data Splits
|
132 |
+
Each part (vcms, vpvm, vpim) has a total of 4000 videos, each video is 1 second, or 30 frames, has a resolution of 1920 x 1080, and encoded using FFmpeg with the H.264 codec at CRF 23. Additionally, each part is splited into training, validation, and testing sets that consists of 3200, 200, 600 videos, respectively.
|
133 |
+
|
134 |
+
## Dataset Creation
|
135 |
+
|
136 |
+
Each part in this dataset was made by applying different sets of standard manipulations to videos from the Video-ACID dataset. All three parts were made using a common procedure. First, we created binary ground-truth masks specifying the tamper regions for each video. These tamper regions correspond to multiple randomly chosen shapes with random sizes, orientations, and placements within a frame. Fake videos were created by choosing a mask, then manipulating content within the tamper region.
|
137 |
+
Original videos were retained to form the set of authentic videos.
|
138 |
+
All real and manipulated video frames were re-encoded as H.264 videos using FFmpeg with 30 FPS and constant rate factor of 23.
|
139 |
+
|
140 |
+
Each part in this dataset corresponds to a different manipulation type. The Video Camera Model Splicing (VCMS) part contains videos with content spliced in from other videos. The Video Perceptually Visible Manipulation (VPVM) part contains content modified using common editing operations, e.g. contrast enhancement, smoothing, sharpening, blurring, etc. applied with strengths that can be visually detected. The Video Perceptually Invisible Manipulation (VPIM) part was made in a similar fashion to VPVM, but with much smaller manipulation strengths to create challenging forgeries. For each dataset, we made 3200 videos (96000 frames) for training, 200 videos (15600 frames) for validation, 600 videos (8400 frames) for testing. More details can be found in the paper.
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
## Additional Information
|
145 |
+
|
146 |
+
|
147 |
+
### Licensing Information
|
148 |
+
|
149 |
+
All datasets are licensed under the [Creative Commons Attribution, Non-Commercial, Share-alike license (CC BY-NC-SA)](https://creativecommons.org/licenses/by-nc-sa/4.0/).
|
150 |
+
|
151 |
+
### Citation Information
|
152 |
+
|
153 |
+
```
|
154 |
+
@InProceedings{Nguyen_2024_WACV,
|
155 |
+
author = {Nguyen, Tai D. and Fang, Shengbang and Stamm, Matthew C.},
|
156 |
+
title = {VideoFACT: Detecting Video Forgeries Using Attention, Scene Context, and Forensic Traces},
|
157 |
+
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
|
158 |
+
month = {January},
|
159 |
+
year = {2024},
|
160 |
+
pages = {8563-8573}
|
161 |
+
}
|
162 |
+
```
|
163 |
+
|
164 |
+
### Contribution
|
165 |
+
|
166 |
+
We thank the authors of the Video-ACID dataset (https://ieee-dataport.org/documents/video-acid) for their work.
|
167 |
+
|
168 |
+
### Contact
|
169 |
+
|
170 |
+
For any questions, please contact Tai Nguyen at [@ductai199x](https://github.com/ductai199x) or by [email](mailto:[email protected]).
|
vcms_example.jpg
ADDED
![]() |
Git LFS Details
|
vcms_example_mask.jpg
ADDED
![]() |
Git LFS Details
|
vpim_example.jpg
ADDED
![]() |
Git LFS Details
|
vpim_example_mask.jpg
ADDED
![]() |
Git LFS Details
|
vpvm_example.jpg
ADDED
![]() |
Git LFS Details
|
vpvm_example_mask.jpg
ADDED
![]() |
Git LFS Details
|