fqa-cyber commited on
Commit
809eb72
·
1 Parent(s): 8767446

Upload Dataset Builder

Browse files
Files changed (1) hide show
  1. Handwritten_Khatt.py +77 -0
Handwritten_Khatt.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import pandas as pd
3
+ import os
4
+ import logging
5
+
6
+ _DESCRIPTION = """\
7
+ Arabic Handwritten dataset.
8
+ """
9
+
10
+ _REPO = "https://huggingface.co/datasets/eDaraty/Handwritten_Khatt"
11
+
12
+
13
+ # logging.basicConfig(level=logging.INFO)
14
+ # logger = logging.getLogger(__name__)
15
+
16
+
17
+ class Khatt(datasets.GeneratorBasedBuilder):
18
+ """Handwritten arabic image-text pairs"""
19
+
20
+ def _info(self):
21
+ return datasets.DatasetInfo(
22
+ description=_DESCRIPTION,
23
+ features=datasets.Features(
24
+ {
25
+ 'image': datasets.Image(),
26
+ 'text': datasets.Value("string"),
27
+ }
28
+ ),
29
+ # supervised_keys=None,
30
+ homepage=_REPO,
31
+ # citation=_CITATION,
32
+ )
33
+
34
+ def _split_generators(self, dl_manager):
35
+ train_archive = dl_manager.download(f"{_REPO}/resolve/main/data/train.zip")
36
+ test_archive = dl_manager.download(f"{_REPO}/resolve/main/data/test.zip")
37
+ val_archive = dl_manager.download(f"{_REPO}/resolve/main/data/validation.zip")
38
+ # split_metadata_paths = dl_manager.download(_METADATA_URLS)
39
+
40
+ return [
41
+ datasets.SplitGenerator(
42
+ name=datasets.Split.TRAIN,
43
+ gen_kwargs={
44
+ "images": dl_manager.iter_archive(train_archive)
45
+ },
46
+ ),
47
+
48
+ datasets.SplitGenerator(
49
+ name=datasets.Split.TEST,
50
+ gen_kwargs={
51
+ "images": dl_manager.iter_archive(test_archive)
52
+ },
53
+ ),
54
+
55
+ datasets.SplitGenerator(
56
+ name=datasets.Split.VALIDATION,
57
+ gen_kwargs={
58
+ "images": dl_manager.iter_archive(val_archive)
59
+ },
60
+ ),
61
+ ]
62
+
63
+ def _generate_examples(self, images):
64
+ """ This function returns the examples in the raw (text) form."""
65
+ df = pd.read_csv(f"{_REPO}/resolve/main/data/metadata.csv")
66
+
67
+ for idx, (filepath, image) in enumerate(images):
68
+ image_name = os.path.basename(filepath)
69
+ # logger.info(" filename of image is '%s' ", image_name)
70
+
71
+ description = df[df["file_name"] == image_name]['text'].values.tolist()[0]
72
+ # logger.info(" text of image is '%s' ", description)
73
+ # logger.info(" type of image is '%s' ", type(description))
74
+ yield idx, {
75
+ "image": {"path": filepath, "bytes": image.read()},
76
+ "text": description,
77
+ }