fqa-cyber
commited on
Commit
·
809eb72
1
Parent(s):
8767446
Upload Dataset Builder
Browse files- Handwritten_Khatt.py +77 -0
Handwritten_Khatt.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
import logging
|
5 |
+
|
6 |
+
_DESCRIPTION = """\
|
7 |
+
Arabic Handwritten dataset.
|
8 |
+
"""
|
9 |
+
|
10 |
+
_REPO = "https://huggingface.co/datasets/eDaraty/Handwritten_Khatt"
|
11 |
+
|
12 |
+
|
13 |
+
# logging.basicConfig(level=logging.INFO)
|
14 |
+
# logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
class Khatt(datasets.GeneratorBasedBuilder):
|
18 |
+
"""Handwritten arabic image-text pairs"""
|
19 |
+
|
20 |
+
def _info(self):
|
21 |
+
return datasets.DatasetInfo(
|
22 |
+
description=_DESCRIPTION,
|
23 |
+
features=datasets.Features(
|
24 |
+
{
|
25 |
+
'image': datasets.Image(),
|
26 |
+
'text': datasets.Value("string"),
|
27 |
+
}
|
28 |
+
),
|
29 |
+
# supervised_keys=None,
|
30 |
+
homepage=_REPO,
|
31 |
+
# citation=_CITATION,
|
32 |
+
)
|
33 |
+
|
34 |
+
def _split_generators(self, dl_manager):
|
35 |
+
train_archive = dl_manager.download(f"{_REPO}/resolve/main/data/train.zip")
|
36 |
+
test_archive = dl_manager.download(f"{_REPO}/resolve/main/data/test.zip")
|
37 |
+
val_archive = dl_manager.download(f"{_REPO}/resolve/main/data/validation.zip")
|
38 |
+
# split_metadata_paths = dl_manager.download(_METADATA_URLS)
|
39 |
+
|
40 |
+
return [
|
41 |
+
datasets.SplitGenerator(
|
42 |
+
name=datasets.Split.TRAIN,
|
43 |
+
gen_kwargs={
|
44 |
+
"images": dl_manager.iter_archive(train_archive)
|
45 |
+
},
|
46 |
+
),
|
47 |
+
|
48 |
+
datasets.SplitGenerator(
|
49 |
+
name=datasets.Split.TEST,
|
50 |
+
gen_kwargs={
|
51 |
+
"images": dl_manager.iter_archive(test_archive)
|
52 |
+
},
|
53 |
+
),
|
54 |
+
|
55 |
+
datasets.SplitGenerator(
|
56 |
+
name=datasets.Split.VALIDATION,
|
57 |
+
gen_kwargs={
|
58 |
+
"images": dl_manager.iter_archive(val_archive)
|
59 |
+
},
|
60 |
+
),
|
61 |
+
]
|
62 |
+
|
63 |
+
def _generate_examples(self, images):
|
64 |
+
""" This function returns the examples in the raw (text) form."""
|
65 |
+
df = pd.read_csv(f"{_REPO}/resolve/main/data/metadata.csv")
|
66 |
+
|
67 |
+
for idx, (filepath, image) in enumerate(images):
|
68 |
+
image_name = os.path.basename(filepath)
|
69 |
+
# logger.info(" filename of image is '%s' ", image_name)
|
70 |
+
|
71 |
+
description = df[df["file_name"] == image_name]['text'].values.tolist()[0]
|
72 |
+
# logger.info(" text of image is '%s' ", description)
|
73 |
+
# logger.info(" type of image is '%s' ", type(description))
|
74 |
+
yield idx, {
|
75 |
+
"image": {"path": filepath, "bytes": image.read()},
|
76 |
+
"text": description,
|
77 |
+
}
|