Datasets:
Commit
Β·
466f219
1
Parent(s):
a2f2049
uP
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- ami-ihm-kaldi-chunked.py +403 -0
- audio/{dev β ihm/dev}/ES2011a.tar.gz +0 -0
- audio/{dev β ihm/dev}/ES2011b.tar.gz +0 -0
- audio/{dev β ihm/dev}/ES2011c.tar.gz +0 -0
- audio/{dev β ihm/dev}/ES2011d.tar.gz +0 -0
- audio/{dev β ihm/dev}/IB4001.tar.gz +0 -0
- audio/{dev β ihm/dev}/IB4002.tar.gz +0 -0
- audio/{dev β ihm/dev}/IB4003.tar.gz +0 -0
- audio/{dev β ihm/dev}/IB4004.tar.gz +0 -0
- audio/{dev β ihm/dev}/IB4010.tar.gz +0 -0
- audio/{dev β ihm/dev}/IB4011.tar.gz +0 -0
- audio/{dev β ihm/dev}/IS1008a.tar.gz +0 -0
- audio/{dev β ihm/dev}/IS1008b.tar.gz +0 -0
- audio/{dev β ihm/dev}/IS1008c.tar.gz +0 -0
- audio/{dev β ihm/dev}/IS1008d.tar.gz +0 -0
- audio/{dev β ihm/dev}/TS3004a.tar.gz +0 -0
- audio/{dev β ihm/dev}/TS3004b.tar.gz +0 -0
- audio/{dev β ihm/dev}/TS3004c.tar.gz +0 -0
- audio/{dev β ihm/dev}/TS3004d.tar.gz +0 -0
- audio/{eval β ihm/eval}/EN2002a.tar.gz +0 -0
- audio/{eval β ihm/eval}/EN2002b.tar.gz +0 -0
- audio/{eval β ihm/eval}/EN2002c.tar.gz +0 -0
- audio/{eval β ihm/eval}/EN2002d.tar.gz +0 -0
- audio/{eval β ihm/eval}/ES2004a.tar.gz +0 -0
- audio/{eval β ihm/eval}/ES2004b.tar.gz +0 -0
- audio/{eval β ihm/eval}/ES2004c.tar.gz +0 -0
- audio/{eval β ihm/eval}/ES2004d.tar.gz +0 -0
- audio/{eval β ihm/eval}/IS1009a.tar.gz +0 -0
- audio/{eval β ihm/eval}/IS1009b.tar.gz +0 -0
- audio/{eval β ihm/eval}/IS1009c.tar.gz +0 -0
- audio/{eval β ihm/eval}/IS1009d.tar.gz +0 -0
- audio/{eval β ihm/eval}/TS3003a.tar.gz +0 -0
- audio/{eval β ihm/eval}/TS3003b.tar.gz +0 -0
- audio/{eval β ihm/eval}/TS3003c.tar.gz +0 -0
- audio/{eval β ihm/eval}/TS3003d.tar.gz +0 -0
- audio/{train β ihm/train}/EN2001a.tar.gz +0 -0
- audio/{train β ihm/train}/EN2001b.tar.gz +0 -0
- audio/{train β ihm/train}/EN2001d.tar.gz +0 -0
- audio/{train β ihm/train}/EN2001e.tar.gz +0 -0
- audio/{train β ihm/train}/EN2003a.tar.gz +0 -0
- audio/{train β ihm/train}/EN2004a.tar.gz +0 -0
- audio/{train β ihm/train}/EN2005a.tar.gz +0 -0
- audio/{train β ihm/train}/EN2006a.tar.gz +0 -0
- audio/{train β ihm/train}/EN2006b.tar.gz +0 -0
- audio/{train β ihm/train}/EN2009b.tar.gz +0 -0
- audio/{train β ihm/train}/EN2009c.tar.gz +0 -0
- audio/{train β ihm/train}/EN2009d.tar.gz +0 -0
- audio/{train β ihm/train}/ES2002a.tar.gz +0 -0
- audio/{train β ihm/train}/ES2002b.tar.gz +0 -0
- audio/{train β ihm/train}/ES2002c.tar.gz +0 -0
ami-ihm-kaldi-chunked.py
ADDED
|
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
"""
|
| 15 |
+
GigaSpeech is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality
|
| 16 |
+
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised
|
| 17 |
+
and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts
|
| 18 |
+
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science,
|
| 19 |
+
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable
|
| 20 |
+
for speech recognition training, and to filter out segments with low-quality transcription. For system training,
|
| 21 |
+
GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
|
| 22 |
+
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
|
| 23 |
+
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
|
| 24 |
+
are re-processed by professional human transcribers to ensure high transcription quality.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
import csv
|
| 28 |
+
import os
|
| 29 |
+
|
| 30 |
+
import datasets
|
| 31 |
+
|
| 32 |
+
_CITATION = """\
|
| 33 |
+
@article{DBLP:journals/corr/abs-2106-06909,
|
| 34 |
+
author = {Guoguo Chen and
|
| 35 |
+
Shuzhou Chai and
|
| 36 |
+
Guanbo Wang and
|
| 37 |
+
Jiayu Du and
|
| 38 |
+
Wei{-}Qiang Zhang and
|
| 39 |
+
Chao Weng and
|
| 40 |
+
Dan Su and
|
| 41 |
+
Daniel Povey and
|
| 42 |
+
Jan Trmal and
|
| 43 |
+
Junbo Zhang and
|
| 44 |
+
Mingjie Jin and
|
| 45 |
+
Sanjeev Khudanpur and
|
| 46 |
+
Shinji Watanabe and
|
| 47 |
+
Shuaijiang Zhao and
|
| 48 |
+
Wei Zou and
|
| 49 |
+
Xiangang Li and
|
| 50 |
+
Xuchen Yao and
|
| 51 |
+
Yongqing Wang and
|
| 52 |
+
Yujun Wang and
|
| 53 |
+
Zhao You and
|
| 54 |
+
Zhiyong Yan},
|
| 55 |
+
title = {GigaSpeech: An Evolving, Multi-domain {ASR} Corpus with 10, 000 Hours
|
| 56 |
+
of Transcribed Audio},
|
| 57 |
+
journal = {CoRR},
|
| 58 |
+
volume = {abs/2106.06909},
|
| 59 |
+
year = {2021},
|
| 60 |
+
url = {https://arxiv.org/abs/2106.06909},
|
| 61 |
+
eprinttype = {arXiv},
|
| 62 |
+
eprint = {2106.06909},
|
| 63 |
+
timestamp = {Wed, 29 Dec 2021 14:29:26 +0100},
|
| 64 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2106-06909.bib},
|
| 65 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 66 |
+
}
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
_DESCRIPTION = """\
|
| 70 |
+
GigaSpeech is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality
|
| 71 |
+
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised
|
| 72 |
+
and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts
|
| 73 |
+
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science,
|
| 74 |
+
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable
|
| 75 |
+
for speech recognition training, and to filter out segments with low-quality transcription. For system training,
|
| 76 |
+
GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
|
| 77 |
+
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
|
| 78 |
+
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
|
| 79 |
+
are re-processed by professional human transcribers to ensure high transcription quality.
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
_HOMEPAGE = "https://groups.inf.ed.ac.uk/ami/corpus/"
|
| 83 |
+
|
| 84 |
+
_LICENSE = "CC BY 4.0"
|
| 85 |
+
|
| 86 |
+
_TRAIN_SAMPLE_IDS = [
|
| 87 |
+
"EN2001a",
|
| 88 |
+
"EN2001b",
|
| 89 |
+
"EN2001d",
|
| 90 |
+
"EN2001e",
|
| 91 |
+
"EN2003a",
|
| 92 |
+
"EN2004a",
|
| 93 |
+
"EN2005a",
|
| 94 |
+
"EN2006a",
|
| 95 |
+
"EN2006b",
|
| 96 |
+
"EN2009b",
|
| 97 |
+
"EN2009c",
|
| 98 |
+
"EN2009d",
|
| 99 |
+
"ES2002a",
|
| 100 |
+
"ES2002b",
|
| 101 |
+
"ES2002c",
|
| 102 |
+
"ES2002d",
|
| 103 |
+
"ES2003a",
|
| 104 |
+
"ES2003b",
|
| 105 |
+
"ES2003c",
|
| 106 |
+
"ES2003d",
|
| 107 |
+
"ES2005a",
|
| 108 |
+
"ES2005b",
|
| 109 |
+
"ES2005c",
|
| 110 |
+
"ES2005d",
|
| 111 |
+
"ES2006a",
|
| 112 |
+
"ES2006b",
|
| 113 |
+
"ES2006c",
|
| 114 |
+
"ES2006d",
|
| 115 |
+
"ES2007a",
|
| 116 |
+
"ES2007b",
|
| 117 |
+
"ES2007c",
|
| 118 |
+
"ES2007d",
|
| 119 |
+
"ES2008a",
|
| 120 |
+
"ES2008b",
|
| 121 |
+
"ES2008c",
|
| 122 |
+
"ES2008d",
|
| 123 |
+
"ES2009a",
|
| 124 |
+
"ES2009b",
|
| 125 |
+
"ES2009c",
|
| 126 |
+
"ES2009d",
|
| 127 |
+
"ES2010a",
|
| 128 |
+
"ES2010b",
|
| 129 |
+
"ES2010c",
|
| 130 |
+
"ES2010d",
|
| 131 |
+
"ES2012a",
|
| 132 |
+
"ES2012b",
|
| 133 |
+
"ES2012c",
|
| 134 |
+
"ES2012d",
|
| 135 |
+
"ES2013a",
|
| 136 |
+
"ES2013b",
|
| 137 |
+
"ES2013c",
|
| 138 |
+
"ES2013d",
|
| 139 |
+
"ES2014a",
|
| 140 |
+
"ES2014b",
|
| 141 |
+
"ES2014c",
|
| 142 |
+
"ES2014d",
|
| 143 |
+
"ES2015a",
|
| 144 |
+
"ES2015b",
|
| 145 |
+
"ES2015c",
|
| 146 |
+
"ES2015d",
|
| 147 |
+
"ES2016a",
|
| 148 |
+
"ES2016b",
|
| 149 |
+
"ES2016c",
|
| 150 |
+
"ES2016d",
|
| 151 |
+
"IB4005",
|
| 152 |
+
"IN1001",
|
| 153 |
+
"IN1002",
|
| 154 |
+
"IN1005",
|
| 155 |
+
"IN1007",
|
| 156 |
+
"IN1008",
|
| 157 |
+
"IN1009",
|
| 158 |
+
"IN1012",
|
| 159 |
+
"IN1013",
|
| 160 |
+
"IN1014",
|
| 161 |
+
"IN1016",
|
| 162 |
+
"IS1000a",
|
| 163 |
+
"IS1000b",
|
| 164 |
+
"IS1000c",
|
| 165 |
+
"IS1000d",
|
| 166 |
+
"IS1001a",
|
| 167 |
+
"IS1001b",
|
| 168 |
+
"IS1001c",
|
| 169 |
+
"IS1001d",
|
| 170 |
+
"IS1002b",
|
| 171 |
+
"IS1002c",
|
| 172 |
+
"IS1002d",
|
| 173 |
+
"IS1003a",
|
| 174 |
+
"IS1003b",
|
| 175 |
+
"IS1003c",
|
| 176 |
+
"IS1003d",
|
| 177 |
+
"IS1004a",
|
| 178 |
+
"IS1004b",
|
| 179 |
+
"IS1004c",
|
| 180 |
+
"IS1004d",
|
| 181 |
+
"IS1005a",
|
| 182 |
+
"IS1005b",
|
| 183 |
+
"IS1005c",
|
| 184 |
+
"IS1006a",
|
| 185 |
+
"IS1006b",
|
| 186 |
+
"IS1006c",
|
| 187 |
+
"IS1006d",
|
| 188 |
+
"IS1007a",
|
| 189 |
+
"IS1007b",
|
| 190 |
+
"IS1007c",
|
| 191 |
+
"IS1007d",
|
| 192 |
+
"TS3005a",
|
| 193 |
+
"TS3005b",
|
| 194 |
+
"TS3005c",
|
| 195 |
+
"TS3005d",
|
| 196 |
+
"TS3006a",
|
| 197 |
+
"TS3006b",
|
| 198 |
+
"TS3006c",
|
| 199 |
+
"TS3006d",
|
| 200 |
+
"TS3007a",
|
| 201 |
+
"TS3007b",
|
| 202 |
+
"TS3007c",
|
| 203 |
+
"TS3007d",
|
| 204 |
+
"TS3008a",
|
| 205 |
+
"TS3008b",
|
| 206 |
+
"TS3008c",
|
| 207 |
+
"TS3008d",
|
| 208 |
+
"TS3009a",
|
| 209 |
+
"TS3009b",
|
| 210 |
+
"TS3009c",
|
| 211 |
+
"TS3009d",
|
| 212 |
+
"TS3010a",
|
| 213 |
+
"TS3010b",
|
| 214 |
+
"TS3010c",
|
| 215 |
+
"TS3010d",
|
| 216 |
+
"TS3011a",
|
| 217 |
+
"TS3011b",
|
| 218 |
+
"TS3011c",
|
| 219 |
+
"TS3011d",
|
| 220 |
+
"TS3012a",
|
| 221 |
+
"TS3012b",
|
| 222 |
+
"TS3012c",
|
| 223 |
+
"TS3012d",
|
| 224 |
+
]
|
| 225 |
+
|
| 226 |
+
_VALIDATION_SAMPLE_IDS = [
|
| 227 |
+
"ES2011a",
|
| 228 |
+
"ES2011c",
|
| 229 |
+
"IB4001",
|
| 230 |
+
"IB4003",
|
| 231 |
+
"IB4010",
|
| 232 |
+
"IS1008a",
|
| 233 |
+
"IS1008c",
|
| 234 |
+
"TS3004a",
|
| 235 |
+
"TS3004c",
|
| 236 |
+
"ES2011b",
|
| 237 |
+
"ES2011d",
|
| 238 |
+
"IB4002",
|
| 239 |
+
"IB4004",
|
| 240 |
+
"IB4011",
|
| 241 |
+
"IS1008b",
|
| 242 |
+
"IS1008d",
|
| 243 |
+
"TS3004b",
|
| 244 |
+
"TS3004d",
|
| 245 |
+
]
|
| 246 |
+
|
| 247 |
+
_EVAL_SAMPLE_IDS = [
|
| 248 |
+
"EN2002a",
|
| 249 |
+
"EN2002b",
|
| 250 |
+
"EN2002c",
|
| 251 |
+
"EN2002d",
|
| 252 |
+
"ES2004a",
|
| 253 |
+
"ES2004b",
|
| 254 |
+
"ES2004c",
|
| 255 |
+
"ES2004d",
|
| 256 |
+
"IS1009a",
|
| 257 |
+
"IS1009b",
|
| 258 |
+
"IS1009c",
|
| 259 |
+
"IS1009d",
|
| 260 |
+
"TS3003a",
|
| 261 |
+
"TS3003b",
|
| 262 |
+
"TS3003c",
|
| 263 |
+
"TS3003d",
|
| 264 |
+
]
|
| 265 |
+
|
| 266 |
+
_SUBSETS = ("ihm",)
|
| 267 |
+
|
| 268 |
+
_BASE_DATA_URL = "https://huggingface.co/datasets/patrickvonplaten/ami-ihm-kaldi-chunked/resolve/main/"
|
| 269 |
+
|
| 270 |
+
_AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "audio/{subset}/{split}/{_id}.tar.gz"
|
| 271 |
+
|
| 272 |
+
_ANNOTATIONS_ARCHIVE_URL = _BASE_DATA_URL + "annotations/{split}/text"
|
| 273 |
+
|
| 274 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class AMIConfig(datasets.BuilderConfig):
|
| 278 |
+
"""BuilderConfig for AMI."""
|
| 279 |
+
|
| 280 |
+
def __init__(self, name, *args, **kwargs):
|
| 281 |
+
"""BuilderConfig for AMI"""
|
| 282 |
+
super().__init__(name=name, *args, **kwargs)
|
| 283 |
+
if name not in {"dev", "test"}:
|
| 284 |
+
self.subsets_to_download = _SUBSETS[: _SUBSETS.index(name) + 1]
|
| 285 |
+
else:
|
| 286 |
+
self.subsets_to_download = (name,)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class AMI(datasets.GeneratorBasedBuilder):
|
| 290 |
+
"""
|
| 291 |
+
GigaSpeech is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality
|
| 292 |
+
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised
|
| 293 |
+
and unsupervised training (this implementation contains only labelled data for now).
|
| 294 |
+
Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts
|
| 295 |
+
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science,
|
| 296 |
+
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable
|
| 297 |
+
for speech recognition training, and to filter out segments with low-quality transcription. For system training,
|
| 298 |
+
GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
|
| 299 |
+
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
|
| 300 |
+
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
|
| 301 |
+
are re-processed by professional human transcribers to ensure high transcription quality.
|
| 302 |
+
"""
|
| 303 |
+
|
| 304 |
+
VERSION = datasets.Version("1.0.0")
|
| 305 |
+
|
| 306 |
+
BUILDER_CONFIGS = [
|
| 307 |
+
AMIConfig(name=subset) for subset in _SUBSETS
|
| 308 |
+
]
|
| 309 |
+
|
| 310 |
+
DEFAULT_WRITER_BATCH_SIZE = 128
|
| 311 |
+
|
| 312 |
+
def _info(self):
|
| 313 |
+
features = datasets.Features(
|
| 314 |
+
{
|
| 315 |
+
"segment_id": datasets.Value("string"),
|
| 316 |
+
"audio_id": datasets.Value("string"),
|
| 317 |
+
"text": datasets.Value("string"),
|
| 318 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 319 |
+
"begin_time": datasets.Value("float32"),
|
| 320 |
+
"end_time": datasets.Value("float32"),
|
| 321 |
+
"microphone_id": datasets.Value("string"),
|
| 322 |
+
"speaker_id": datasets.Value("string"),
|
| 323 |
+
}
|
| 324 |
+
)
|
| 325 |
+
return datasets.DatasetInfo(
|
| 326 |
+
description=_DESCRIPTION,
|
| 327 |
+
features=features,
|
| 328 |
+
homepage=_HOMEPAGE,
|
| 329 |
+
license=_LICENSE,
|
| 330 |
+
citation=_CITATION,
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
def _split_generators(self, dl_manager):
|
| 334 |
+
train_audio_files = [_AUDIO_ARCHIVE_URL.format(subset=self.name, split="train", _id=m) for m in _TRAIN_SAMPLE_IDS]
|
| 335 |
+
dev_audio_files = [_AUDIO_ARCHIVE_URL.format(subset=self.name, split="dev", _id=m) for m in _VALIDATION_SAMPLE_IDS]
|
| 336 |
+
eval_audio_files = [_AUDIO_ARCHIVE_URL.format(subset=self.name, split="eval", _id=m) for m in _EVAL_SAMPLE_IDS]
|
| 337 |
+
|
| 338 |
+
train_audio_archives = dl_manager.download_and_extract(train_audio_files)
|
| 339 |
+
dev_audio_archives = dl_manager.download_and_extract(dev_audio_files)
|
| 340 |
+
eval_audio_archives = dl_manager.download_and_extract(eval_audio_files)
|
| 341 |
+
|
| 342 |
+
train_annotation = dl_manager.download_and_extract(_ANNOTATIONS_ARCHIVE_URL.format(split="train"))
|
| 343 |
+
dev_annotation = dl_manager.download_and_extract(_ANNOTATIONS_ARCHIVE_URL.format(split="dev"))
|
| 344 |
+
eval_annotation = dl_manager.download_and_extract(_ANNOTATIONS_ARCHIVE_URL.format(split="eval"))
|
| 345 |
+
|
| 346 |
+
import ipdb; ipdb.set_trace()
|
| 347 |
+
|
| 348 |
+
return [
|
| 349 |
+
datasets.SplitGenerator(
|
| 350 |
+
name=datasets.Split.TRAIN,
|
| 351 |
+
gen_kwargs={"audio": train_audio_archives, "annotation": train_annotation},
|
| 352 |
+
),
|
| 353 |
+
datasets.SplitGenerator(
|
| 354 |
+
name=datasets.Split.VALIDATION,
|
| 355 |
+
gen_kwargs={"audio": dev_audio_archives, "annotation": dev_annotation},
|
| 356 |
+
),
|
| 357 |
+
datasets.SplitGenerator(
|
| 358 |
+
name=datasets.Split.TEST,
|
| 359 |
+
gen_kwargs={"audio": eval_audio_archives, "annotation": eval_annotation},
|
| 360 |
+
),
|
| 361 |
+
]
|
| 362 |
+
|
| 363 |
+
def _generate_examples(self, audio, annotation):
|
| 364 |
+
import ipdb; ipdb.set_trace()
|
| 365 |
+
# assert len(audio_archives_iterators) == len(meta_paths)
|
| 366 |
+
# if local_audio_archives_paths:
|
| 367 |
+
# assert len(audio_archives_iterators) == len(local_audio_archives_paths)
|
| 368 |
+
#
|
| 369 |
+
# for i, (meta_path, audio_archive_iterator) in enumerate(
|
| 370 |
+
# zip(meta_paths, audio_archives_iterators)
|
| 371 |
+
# ):
|
| 372 |
+
# meta_dict = dict()
|
| 373 |
+
# with open(meta_path) as csvfile:
|
| 374 |
+
# meta_csv = csv.DictReader(csvfile)
|
| 375 |
+
# for line in meta_csv:
|
| 376 |
+
# meta_dict[line["sid"]] = line
|
| 377 |
+
#
|
| 378 |
+
# for audio_path_in_archive, audio_file in audio_archive_iterator:
|
| 379 |
+
# `audio_path_in_archive` is like "dev_chunks_0000/YOU1000000029_S0000095.wav"
|
| 380 |
+
# audio_filename = os.path.split(audio_path_in_archive)[1]
|
| 381 |
+
# audio_id = audio_filename.split(".wav")[0]
|
| 382 |
+
# audio_meta = meta_dict[audio_id]
|
| 383 |
+
# audio_meta["segment_id"] = audio_meta.pop("sid")
|
| 384 |
+
# audio_meta["original_full_path"] = audio_meta.pop("path")
|
| 385 |
+
# audio_meta["text"] = audio_meta.pop("text_tn")
|
| 386 |
+
# audio_meta["audio_id"] = audio_meta.pop("aid")
|
| 387 |
+
# if not audio_meta["category"]:
|
| 388 |
+
# audio_meta["category"] = "N/A"
|
| 389 |
+
#
|
| 390 |
+
# path = (
|
| 391 |
+
# os.path.join(local_audio_archives_paths[i], audio_path_in_archive)
|
| 392 |
+
# if local_audio_archives_paths
|
| 393 |
+
# else audio_path_in_archive
|
| 394 |
+
# )
|
| 395 |
+
|
| 396 |
+
# yield audio_id, {
|
| 397 |
+
# "audio": {"path": path, "bytes": audio_file.read()},
|
| 398 |
+
# **{
|
| 399 |
+
# feature: value
|
| 400 |
+
# for feature, value in audio_meta.items()
|
| 401 |
+
# if feature in self.info.features
|
| 402 |
+
# },
|
| 403 |
+
# }
|
audio/{dev β ihm/dev}/ES2011a.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/ES2011b.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/ES2011c.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/ES2011d.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/IB4001.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/IB4002.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/IB4003.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/IB4004.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/IB4010.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/IB4011.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/IS1008a.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/IS1008b.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/IS1008c.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/IS1008d.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/TS3004a.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/TS3004b.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/TS3004c.tar.gz
RENAMED
|
File without changes
|
audio/{dev β ihm/dev}/TS3004d.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/EN2002a.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/EN2002b.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/EN2002c.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/EN2002d.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/ES2004a.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/ES2004b.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/ES2004c.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/ES2004d.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/IS1009a.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/IS1009b.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/IS1009c.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/IS1009d.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/TS3003a.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/TS3003b.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/TS3003c.tar.gz
RENAMED
|
File without changes
|
audio/{eval β ihm/eval}/TS3003d.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2001a.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2001b.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2001d.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2001e.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2003a.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2004a.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2005a.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2006a.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2006b.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2009b.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2009c.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/EN2009d.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/ES2002a.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/ES2002b.tar.gz
RENAMED
|
File without changes
|
audio/{train β ihm/train}/ES2002c.tar.gz
RENAMED
|
File without changes
|