Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,3 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Quantum Lean Hard VVUQ Dataset
|
| 2 |
|
| 3 |
## Overview
|
|
@@ -25,10 +52,52 @@ This dataset contains challenging Lean 4 verification and repair problems design
|
|
| 25 |
- **Method E** (LLM + W3): Should handle most problems successfully
|
| 26 |
- **Clear gradient**: Performance should improve from A→B→C→D→E
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
## Usage
|
| 29 |
This dataset is designed for NeurIPS experiments demonstrating PWM effectiveness in formal verification tasks.
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
## Requirements
|
| 32 |
- Lean 4 with Mathlib
|
| 33 |
- Enhanced diagnostics: `set_option diagnostics true`
|
| 34 |
- Actual compilation verification (RequirementLEAN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-generation
|
| 5 |
+
- text2text-generation
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
tags:
|
| 9 |
+
- lean
|
| 10 |
+
- formal-verification
|
| 11 |
+
- mathematics
|
| 12 |
+
- physics
|
| 13 |
+
- theorem-proving
|
| 14 |
+
- code-repair
|
| 15 |
+
size_categories:
|
| 16 |
+
- n<1K
|
| 17 |
+
configs:
|
| 18 |
+
- config_name: default
|
| 19 |
+
data_files:
|
| 20 |
+
- split: train
|
| 21 |
+
path: train.jsonl
|
| 22 |
+
- split: validation
|
| 23 |
+
path: validation.jsonl
|
| 24 |
+
- split: test
|
| 25 |
+
path: test.jsonl
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
# Quantum Lean Hard VVUQ Dataset
|
| 29 |
|
| 30 |
## Overview
|
|
|
|
| 52 |
- **Method E** (LLM + W3): Should handle most problems successfully
|
| 53 |
- **Clear gradient**: Performance should improve from A→B→C→D→E
|
| 54 |
|
| 55 |
+
## Dataset Structure
|
| 56 |
+
|
| 57 |
+
Each example contains:
|
| 58 |
+
- `id`: Unique problem identifier
|
| 59 |
+
- `category`: Problem category (type_theory, tactic_sequence, proof_strategy, etc.)
|
| 60 |
+
- `difficulty`: Difficulty level (easy, hard, expert)
|
| 61 |
+
- `corrupted_code`: Lean code with intentional errors
|
| 62 |
+
- `repair_target`: Correct version of the code
|
| 63 |
+
- `error_info`: Detailed error information
|
| 64 |
+
- `domain_knowledge_required`: List of concepts needed to solve
|
| 65 |
+
- `pwm_level`: Required Physics World Model knowledge level
|
| 66 |
+
|
| 67 |
## Usage
|
| 68 |
This dataset is designed for NeurIPS experiments demonstrating PWM effectiveness in formal verification tasks.
|
| 69 |
|
| 70 |
+
```python
|
| 71 |
+
from datasets import load_dataset
|
| 72 |
+
|
| 73 |
+
# Load the dataset
|
| 74 |
+
dataset = load_dataset("englund/quantum-lean-hard-vvuq-dataset")
|
| 75 |
+
|
| 76 |
+
# Access train split
|
| 77 |
+
train_data = dataset["train"]
|
| 78 |
+
|
| 79 |
+
# Example usage
|
| 80 |
+
for example in train_data:
|
| 81 |
+
print(f"Problem: {example['id']}")
|
| 82 |
+
print(f"Corrupted: {example['corrupted_code']}")
|
| 83 |
+
print(f"Target: {example['repair_target']}")
|
| 84 |
+
print(f"Difficulty: {example['difficulty']}")
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
## Requirements
|
| 88 |
- Lean 4 with Mathlib
|
| 89 |
- Enhanced diagnostics: `set_option diagnostics true`
|
| 90 |
- Actual compilation verification (RequirementLEAN)
|
| 91 |
+
|
| 92 |
+
## Citation
|
| 93 |
+
|
| 94 |
+
If you use this dataset, please cite:
|
| 95 |
+
|
| 96 |
+
```bibtex
|
| 97 |
+
@dataset{englund2025quantum,
|
| 98 |
+
title={Quantum Lean Hard VVUQ Dataset},
|
| 99 |
+
author={Englund, Dirk},
|
| 100 |
+
year={2025},
|
| 101 |
+
url={https://huggingface.co/datasets/englund/quantum-lean-hard-vvuq-dataset}
|
| 102 |
+
}
|
| 103 |
+
```
|