Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K - 1M
License:
Commit
·
d420fa6
1
Parent(s):
1ac27ab
Delete loading script
Browse files- food101.py +0 -217
food101.py
DELETED
|
@@ -1,217 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""Dataset class for Food-101 dataset."""
|
| 16 |
-
|
| 17 |
-
import datasets
|
| 18 |
-
from datasets.tasks import ImageClassification
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
_BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz"
|
| 22 |
-
|
| 23 |
-
_METADATA_URLS = {
|
| 24 |
-
"train": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/train.txt",
|
| 25 |
-
"test": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/test.txt",
|
| 26 |
-
}
|
| 27 |
-
|
| 28 |
-
_HOMEPAGE = "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/"
|
| 29 |
-
|
| 30 |
-
_DESCRIPTION = (
|
| 31 |
-
"This dataset consists of 101 food categories, with 101'000 images. For "
|
| 32 |
-
"each class, 250 manually reviewed test images are provided as well as 750"
|
| 33 |
-
" training images. On purpose, the training images were not cleaned, and "
|
| 34 |
-
"thus still contain some amount of noise. This comes mostly in the form of"
|
| 35 |
-
" intense colors and sometimes wrong labels. All images were rescaled to "
|
| 36 |
-
"have a maximum side length of 512 pixels."
|
| 37 |
-
)
|
| 38 |
-
|
| 39 |
-
_CITATION = """\
|
| 40 |
-
@inproceedings{bossard14,
|
| 41 |
-
title = {Food-101 -- Mining Discriminative Components with Random Forests},
|
| 42 |
-
author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
|
| 43 |
-
booktitle = {European Conference on Computer Vision},
|
| 44 |
-
year = {2014}
|
| 45 |
-
}
|
| 46 |
-
"""
|
| 47 |
-
|
| 48 |
-
_LICENSE = """\
|
| 49 |
-
LICENSE AGREEMENT
|
| 50 |
-
=================
|
| 51 |
-
- The Food-101 data set consists of images from Foodspotting [1] which are not
|
| 52 |
-
property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond
|
| 53 |
-
scientific fair use must be negociated with the respective picture owners
|
| 54 |
-
according to the Foodspotting terms of use [2].
|
| 55 |
-
|
| 56 |
-
[1] http://www.foodspotting.com/
|
| 57 |
-
[2] http://www.foodspotting.com/terms/
|
| 58 |
-
"""
|
| 59 |
-
|
| 60 |
-
_NAMES = [
|
| 61 |
-
"apple_pie",
|
| 62 |
-
"baby_back_ribs",
|
| 63 |
-
"baklava",
|
| 64 |
-
"beef_carpaccio",
|
| 65 |
-
"beef_tartare",
|
| 66 |
-
"beet_salad",
|
| 67 |
-
"beignets",
|
| 68 |
-
"bibimbap",
|
| 69 |
-
"bread_pudding",
|
| 70 |
-
"breakfast_burrito",
|
| 71 |
-
"bruschetta",
|
| 72 |
-
"caesar_salad",
|
| 73 |
-
"cannoli",
|
| 74 |
-
"caprese_salad",
|
| 75 |
-
"carrot_cake",
|
| 76 |
-
"ceviche",
|
| 77 |
-
"cheesecake",
|
| 78 |
-
"cheese_plate",
|
| 79 |
-
"chicken_curry",
|
| 80 |
-
"chicken_quesadilla",
|
| 81 |
-
"chicken_wings",
|
| 82 |
-
"chocolate_cake",
|
| 83 |
-
"chocolate_mousse",
|
| 84 |
-
"churros",
|
| 85 |
-
"clam_chowder",
|
| 86 |
-
"club_sandwich",
|
| 87 |
-
"crab_cakes",
|
| 88 |
-
"creme_brulee",
|
| 89 |
-
"croque_madame",
|
| 90 |
-
"cup_cakes",
|
| 91 |
-
"deviled_eggs",
|
| 92 |
-
"donuts",
|
| 93 |
-
"dumplings",
|
| 94 |
-
"edamame",
|
| 95 |
-
"eggs_benedict",
|
| 96 |
-
"escargots",
|
| 97 |
-
"falafel",
|
| 98 |
-
"filet_mignon",
|
| 99 |
-
"fish_and_chips",
|
| 100 |
-
"foie_gras",
|
| 101 |
-
"french_fries",
|
| 102 |
-
"french_onion_soup",
|
| 103 |
-
"french_toast",
|
| 104 |
-
"fried_calamari",
|
| 105 |
-
"fried_rice",
|
| 106 |
-
"frozen_yogurt",
|
| 107 |
-
"garlic_bread",
|
| 108 |
-
"gnocchi",
|
| 109 |
-
"greek_salad",
|
| 110 |
-
"grilled_cheese_sandwich",
|
| 111 |
-
"grilled_salmon",
|
| 112 |
-
"guacamole",
|
| 113 |
-
"gyoza",
|
| 114 |
-
"hamburger",
|
| 115 |
-
"hot_and_sour_soup",
|
| 116 |
-
"hot_dog",
|
| 117 |
-
"huevos_rancheros",
|
| 118 |
-
"hummus",
|
| 119 |
-
"ice_cream",
|
| 120 |
-
"lasagna",
|
| 121 |
-
"lobster_bisque",
|
| 122 |
-
"lobster_roll_sandwich",
|
| 123 |
-
"macaroni_and_cheese",
|
| 124 |
-
"macarons",
|
| 125 |
-
"miso_soup",
|
| 126 |
-
"mussels",
|
| 127 |
-
"nachos",
|
| 128 |
-
"omelette",
|
| 129 |
-
"onion_rings",
|
| 130 |
-
"oysters",
|
| 131 |
-
"pad_thai",
|
| 132 |
-
"paella",
|
| 133 |
-
"pancakes",
|
| 134 |
-
"panna_cotta",
|
| 135 |
-
"peking_duck",
|
| 136 |
-
"pho",
|
| 137 |
-
"pizza",
|
| 138 |
-
"pork_chop",
|
| 139 |
-
"poutine",
|
| 140 |
-
"prime_rib",
|
| 141 |
-
"pulled_pork_sandwich",
|
| 142 |
-
"ramen",
|
| 143 |
-
"ravioli",
|
| 144 |
-
"red_velvet_cake",
|
| 145 |
-
"risotto",
|
| 146 |
-
"samosa",
|
| 147 |
-
"sashimi",
|
| 148 |
-
"scallops",
|
| 149 |
-
"seaweed_salad",
|
| 150 |
-
"shrimp_and_grits",
|
| 151 |
-
"spaghetti_bolognese",
|
| 152 |
-
"spaghetti_carbonara",
|
| 153 |
-
"spring_rolls",
|
| 154 |
-
"steak",
|
| 155 |
-
"strawberry_shortcake",
|
| 156 |
-
"sushi",
|
| 157 |
-
"tacos",
|
| 158 |
-
"takoyaki",
|
| 159 |
-
"tiramisu",
|
| 160 |
-
"tuna_tartare",
|
| 161 |
-
"waffles",
|
| 162 |
-
]
|
| 163 |
-
|
| 164 |
-
_IMAGES_DIR = "food-101/images/"
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
class Food101(datasets.GeneratorBasedBuilder):
|
| 168 |
-
"""Food-101 Images dataset."""
|
| 169 |
-
|
| 170 |
-
def _info(self):
|
| 171 |
-
return datasets.DatasetInfo(
|
| 172 |
-
description=_DESCRIPTION,
|
| 173 |
-
features=datasets.Features(
|
| 174 |
-
{
|
| 175 |
-
"image": datasets.Image(),
|
| 176 |
-
"label": datasets.ClassLabel(names=_NAMES),
|
| 177 |
-
}
|
| 178 |
-
),
|
| 179 |
-
supervised_keys=("image", "label"),
|
| 180 |
-
homepage=_HOMEPAGE,
|
| 181 |
-
citation=_CITATION,
|
| 182 |
-
license=_LICENSE,
|
| 183 |
-
task_templates=[ImageClassification(image_column="image", label_column="label")],
|
| 184 |
-
)
|
| 185 |
-
|
| 186 |
-
def _split_generators(self, dl_manager):
|
| 187 |
-
archive_path = dl_manager.download(_BASE_URL)
|
| 188 |
-
split_metadata_paths = dl_manager.download(_METADATA_URLS)
|
| 189 |
-
return [
|
| 190 |
-
datasets.SplitGenerator(
|
| 191 |
-
name=datasets.Split.TRAIN,
|
| 192 |
-
gen_kwargs={
|
| 193 |
-
"images": dl_manager.iter_archive(archive_path),
|
| 194 |
-
"metadata_path": split_metadata_paths["train"],
|
| 195 |
-
},
|
| 196 |
-
),
|
| 197 |
-
datasets.SplitGenerator(
|
| 198 |
-
name=datasets.Split.VALIDATION,
|
| 199 |
-
gen_kwargs={
|
| 200 |
-
"images": dl_manager.iter_archive(archive_path),
|
| 201 |
-
"metadata_path": split_metadata_paths["test"],
|
| 202 |
-
},
|
| 203 |
-
),
|
| 204 |
-
]
|
| 205 |
-
|
| 206 |
-
def _generate_examples(self, images, metadata_path):
|
| 207 |
-
"""Generate images and labels for splits."""
|
| 208 |
-
with open(metadata_path, encoding="utf-8") as f:
|
| 209 |
-
files_to_keep = set(f.read().split("\n"))
|
| 210 |
-
for file_path, file_obj in images:
|
| 211 |
-
if file_path.startswith(_IMAGES_DIR):
|
| 212 |
-
if file_path[len(_IMAGES_DIR) : -len(".jpg")] in files_to_keep:
|
| 213 |
-
label = file_path.split("/")[2]
|
| 214 |
-
yield file_path, {
|
| 215 |
-
"image": {"path": file_path, "bytes": file_obj.read()},
|
| 216 |
-
"label": label,
|
| 217 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|