fgaim commited on
Commit
3e30404
·
1 Parent(s): e1389e2

Support latest HF datasets loading changes

Browse files
README.md CHANGED
@@ -28,9 +28,9 @@ configs:
28
  - config_name: default
29
  data_files:
30
  - split: train
31
- path: "data/TiQuAD-v1-train-*"
32
  - split: validation
33
- path: "data/TiQuAD-v1-dev-*"
34
  ---
35
 
36
  # TiQuAD: Tigrinya Question Answering Dataset
@@ -74,22 +74,30 @@ The dataset was constructed through a careful multi-stage process:
74
 
75
  ## How to Load TiQuAD
76
 
 
 
 
 
 
 
77
  ```python
78
  from datasets import load_dataset
79
 
80
  # Load the dataset
81
- tiquad = load_dataset("fgaim/tiquad", trust_remote_code=True)
82
  print(tiquad)
83
  ```
84
 
 
 
85
  ```python
86
  DatasetDict({
87
  train: Dataset({
88
- features: ['id', 'title', 'context', 'question', 'answers'],
89
  num_rows: 4452
90
- }),
91
  validation: Dataset({
92
- features: ['id', 'title', 'context', 'question', 'answers'],
93
  num_rows: 934
94
  })
95
  })
@@ -97,13 +105,14 @@ DatasetDict({
97
 
98
  ### Data Fields
99
 
100
- - **`id`**: Unique identifier for each question-answer pair
101
- - **`title`**: Title of the source news article
102
  - **`context`**: The paragraph containing the answer (in Tigrinya)
103
- - **`question`**: The question to be answered (in Tigrinya)
104
- - **`answers`**: Dictionary containing:
105
- - `text`: List of answer strings (multiple annotations for validation/test)
106
- - `answer_start`: List of positions where answers begin in the context
 
107
 
108
  ### Sample Entry
109
 
 
28
  - config_name: default
29
  data_files:
30
  - split: train
31
+ path: "train.parquet"
32
  - split: validation
33
+ path: "dev.parquet"
34
  ---
35
 
36
  # TiQuAD: Tigrinya Question Answering Dataset
 
74
 
75
  ## How to Load TiQuAD
76
 
77
+ Install the `datasets` library installed by running `pip install -U datasets` in the terminal.
78
+
79
+ > Make sure the latest `datasets` library is installed as older versions may not properly load the data.
80
+
81
+ Then pull and load the dataset using Python, as follows:
82
+
83
  ```python
84
  from datasets import load_dataset
85
 
86
  # Load the dataset
87
+ tiquad = load_dataset("fgaim/tiquad")
88
  print(tiquad)
89
  ```
90
 
91
+ That will print the dataset features:
92
+
93
  ```python
94
  DatasetDict({
95
  train: Dataset({
96
+ features: ['id', 'question', 'context', 'answers', 'article_title', 'context_id'],
97
  num_rows: 4452
98
+ })
99
  validation: Dataset({
100
+ features: ['id', 'question', 'context', 'answers', 'article_title', 'context_id'],
101
  num_rows: 934
102
  })
103
  })
 
105
 
106
  ### Data Fields
107
 
108
+ - **`id`**: Unique identifier for each question
109
+ - **`question`**: The question to be answered (in Tigrinya)
110
  - **`context`**: The paragraph containing the answer (in Tigrinya)
111
+ - **`answers`**: A list of dictionaries of candidate answers, each entry containing:
112
+ - `text`: An answer string (training data has one answer per question)
113
+ - `answer_start`: A starting position of answer string in the context
114
+ - **`article_title`**: Title of the source article
115
+ - **`context_id`**: Unique identifier of the context in the data split
116
 
117
  ### Sample Entry
118
 
data/TiQuAD-v1-dev.json → dev.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9091f3cb889b774778bcbef94543b5d58ccf8e33a5491e0f03b2c8ff7ef7dd08
3
- size 1131964
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10488d8c729d3bea063c08888a8751391f77c0c5305d8fd786aa8eb32dd6d117
3
+ size 160568
tiquad.py DELETED
@@ -1,115 +0,0 @@
1
- """TiQuAD: Tigrinya Question-Answering Dataset."""
2
-
3
- import json
4
-
5
- import datasets
6
-
7
-
8
- _HOMEPAGE = "https://github.com/fgaim/tiquad"
9
-
10
- _DESCRIPTION = """\
11
- TiQuAD is a manually annotated extractive Question-Answering (QA) dataset for the Tigrinya language.
12
- """
13
-
14
- _CITATION = """\
15
- @inproceedings{gaim-etal-2023-tiquad,
16
- title = "{Question-Answering in a Low-resourced Language: Benchmark Dataset and Models for Tigrinya}",
17
- author = "Fitsum Gaim and Wonsuk Yang and Hancheol Park and Jong C. Park",
18
- booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
19
- month = jul,
20
- year = "2023",
21
- address = "Toronto, Canada",
22
- publisher = "Association for Computational Linguistics",
23
- url = "https://aclanthology.org/2023.acl-long.661",
24
- pages = "11857--11870",
25
- }
26
- """
27
-
28
- _LICENSE = "Creative Commons Attribution-ShareAlike 4.0"
29
-
30
- _DATA_PATHS = {
31
- "train": "data/TiQuAD-v1-train.json",
32
- "dev": "data/TiQuAD-v1-dev.json",
33
- }
34
-
35
-
36
- class TiQuADConfig(datasets.BuilderConfig):
37
- """BuilderConfig for TiQuAD"""
38
-
39
- def __init__(self, **kwargs):
40
- """BuilderConfig for TiQuAD.
41
- Args:
42
- **kwargs: keyword arguments forwarded to super.
43
- """
44
- super(TiQuADConfig, self).__init__(**kwargs)
45
-
46
-
47
- class TiQuAD(datasets.GeneratorBasedBuilder):
48
- """TiQuAD dataset."""
49
-
50
- VERSION = datasets.Version("1.0.0")
51
-
52
- def _info(self):
53
- return datasets.DatasetInfo(
54
- description=_DESCRIPTION,
55
- features=datasets.Features(
56
- {
57
- "id": datasets.Value("string"),
58
- "title": datasets.Value("string"),
59
- "context": datasets.Value("string"),
60
- "question": datasets.Value("string"),
61
- "answers": datasets.features.Sequence(
62
- {
63
- "text": datasets.Value("string"),
64
- "answer_start": datasets.Value("int32"),
65
- }
66
- ),
67
- }
68
- ),
69
- homepage=_HOMEPAGE,
70
- citation=_CITATION,
71
- license=_LICENSE,
72
- )
73
-
74
- def _split_generators(self, dl_manager):
75
- """Returns SplitGenerators."""
76
- downloaded_files = dl_manager.download_and_extract(_DATA_PATHS)
77
-
78
- return [
79
- datasets.SplitGenerator(
80
- name=datasets.Split.TRAIN,
81
- gen_kwargs={"filepath": downloaded_files["train"]},
82
- ),
83
- datasets.SplitGenerator(
84
- name=datasets.Split.VALIDATION,
85
- gen_kwargs={"filepath": downloaded_files["dev"]},
86
- )
87
- ]
88
-
89
- def _generate_examples(self, filepath):
90
- """Yields TiQuAD examples."""
91
- with open(filepath, encoding="utf-8") as fin:
92
- _quad = json.load(fin)
93
- for example in _quad["data"]:
94
- title = example.get("title", "")
95
- for paragraph in example["paragraphs"]:
96
- context = paragraph["context"]
97
- for qa in paragraph["qas"]:
98
- _id = qa["id"]
99
- answers = [
100
- {
101
- "text": answer["text"],
102
- "answer_start": answer["answer_start"],
103
- }
104
- for answer in qa["answers"]
105
- ]
106
- yield (
107
- _id,
108
- {
109
- "id": _id,
110
- "title": title,
111
- "context": context,
112
- "question": qa["question"],
113
- "answers": answers,
114
- },
115
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/TiQuAD-v1-train.json → train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:34543746774ee6371ee332b051dbfaea58b0cd78b827e5e4daf2795c316bf55d
3
- size 3099483
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:def707dcc1bb14400a05b6e4e0acdec07f9d32a81433a5c04bd0c0de894679b2
3
+ size 704162