"""TiQuAD: Tigrinya Question-Answering Dataset.""" import json import datasets _HOMEPAGE = "https://github.com/fgaim/tiquad" _DESCRIPTION = """\ TiQuAD is a manually annotated extractive Question-Answering (QA) dataset for the Tigrinya language. """ _CITATION = """\ @inproceedings{gaim-etal-2023-tiquad, title = "{Question-Answering in a Low-resourced Language: Benchmark Dataset and Models for Tigrinya}", author = "Fitsum Gaim and Wonsuk Yang and Hancheol Park and Jong C. Park", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-long.661", pages = "11857--11870", } """ _LICENSE = "Creative Commons Attribution-ShareAlike 4.0" _DATA_PATHS = { "train": "data/TiQuAD-v1-train.json", "dev": "data/TiQuAD-v1-dev.json", } class TiQuADConfig(datasets.BuilderConfig): """BuilderConfig for TiQuAD""" def __init__(self, **kwargs): """BuilderConfig for TiQuAD. Args: **kwargs: keyword arguments forwarded to super. """ super(TiQuADConfig, self).__init__(**kwargs) class TiQuAD(datasets.GeneratorBasedBuilder): """TiQuAD dataset.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), } ), homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_files = dl_manager.download_and_extract(_DATA_PATHS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}, ) ] def _generate_examples(self, filepath): """Yields TiQuAD examples.""" with open(filepath, encoding="utf-8") as fin: _quad = json.load(fin) for example in _quad["data"]: title = example.get("title", "") for paragraph in example["paragraphs"]: context = paragraph["context"] for qa in paragraph["qas"]: _id = qa["id"] answers = [ { "text": answer["text"], "answer_start": answer["answer_start"], } for answer in qa["answers"] ] yield ( _id, { "id": _id, "title": title, "context": context, "question": qa["question"], "answers": answers, }, )