File size: 4,836 Bytes
bac6217
 
 
206ea42
 
bac6217
206ea42
bac6217
206ea42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ed90b0
206ea42
 
 
0ed90b0
206ea42
0ed90b0
206ea42
 
 
0ed90b0
206ea42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: mit
task_categories:
  - text-generation
  - text-classification
language:
  - my
tags:
  - MyanmarSentences
  - Burmese
  - BurmeseSentences
---

# 🧠 1_pattern_10Kplus_myanmar_sentences

A structured dataset of **11,452 Myanmar sentences** generated from a single, powerful grammar pattern:

### 📌 Pattern:
**`Verb လည်း Verb တယ်။`**  
> A natural way to express repetition, emphasis, or causal connection in Myanmar.

---

## 💡 About the Dataset

This dataset demonstrates how applying just **one syntactic pattern** to a curated verb list — combined with syllable-aware rules — can produce a high-quality corpus of over **10,000 valid Myanmar sentences**.

Each sentence is:
- Grammatically valid
- Syllable-tokenized
- Pattern-consistent
- Cleaned and filtered

---

## 🔁 Pattern in Use

Examples:
- ချစ်လည်း ချစ်တယ်။
- ကစားလည်း ကစားတယ်။
- ကံကြီးလည်း ထိုက်တယ်။
- ခေါင်းချင်းဆိုင်လည်း တိုက်တယ်။

---

## 📏 Rules in Use

| Syllable Count | Rule Name         | Sentence Format                            | # of Sentences Generated |
|----------------|-------------------|---------------------------------------------|---------------------------|
| 1              | Rule_1_Syllable   | `Aလည်း Aတယ်။`                              | 1                         |
| 2              | Rule_2_Syllable   | `Aလည်း Bတယ်။` and `Aလည်း ABတယ်။`          | 2 (dual sentences)        |
| 3              | Rule_3_Syllable   | `ABလည်း Cတယ်။`                             | 1                         |
| 4              | Rule_4_Syllable   | `ABCလည်း Dတယ်။`                            | 1                         |
| 5+             | Rule_{N}_Syllable | `ABCD...လည်း Zတယ်။`                        | 1 per item                |

---

## 📁 Dataset Format

Each row in the CSV contains:

| Column           | Description                                      |
|------------------|--------------------------------------------------|
| `my_sentence`    | The full generated Myanmar sentence              |
| `my_word`        | The original verb the sentence is based on       |
| `my_subword`     | List of syllable-level tokens (as a string list) |
| `subword_number` | Number of syllables in `my_word`                 |

**Example:**

```text
my_sentence: ကလည်း ကတယ်။
my_word: က
my_subword: ["က"]
subword_number: 1
```
## 🤯 Why It’s Special
```
	•	✅ Only one pattern → yet over 11,000 real Myanmar sentences
	•	✅ Rule logic scales across syllable complexity
	•	✅ Cleaned, structured, and easy to extend
	•	✅ Represents real grammar, not artificial templates
```
---

## 😅 Problems We Faced

We started with a large list of Myanmar verbs and applied a syllable-level tokenizer to break each verb into structured chunks. Based on syllable count, we applied one of six rules to generate sentences.

Challenges included:
```
	•	Unicode inconsistencies (e.g., ဥ် vs ဉ်, န့် vs န့်)
	•	Visually similar characters causing mis-splitting
	•	Manual review needed for edge cases
	•	Some grammatically valid outputs lacked semantic sense

```

## 🔮 Future Plans

This is just Pattern 1.

Coming soon:
	•	မ V နဲ့။

We aim to build a full-scale, pattern-rich Myanmar corpus — one rule at a time.

⸻

## 🎯 Use Cases
	•	Fine-tune sentence generation models
	•	Train grammar correction systems
	•	Build linguistic datasets for Myanmar NLP
	•	Teach Myanmar grammar through concrete patterns
	•	Benchmark syllable tokenizers
## 🧪 Quality & Manual Review

Even though all sentences were generated using grammatical rules, not all combinations may sound natural or meaningful in everyday Myanmar.

📝 This dataset should be manually reviewed by native speakers to ensure each sentence:
```
	•	Sounds natural
	•	Makes semantic sense
	•	Feels appropriate for real-world use
```
That said — even if you:
```
	•	Remove awkward or illogical samples
	•	Filter or adjust by context
	•	Expand with more rules and patterns
```

➡️ You’ll still retain 10K+ high-quality, structured Myanmar sentences.

### ⚠️ Please don’t use this dataset blindly for production training without native review.## 📜 License

MIT — free to use, adapt, remix, or improve.
But give credit where it’s due 💛

⸻

## 🔗 Citation

```
@dataset{myanmar_verb_pattern_2025,
  title={1 Pattern 10K+ Myanmar Sentences},
  author={freococo},
  year={2025},
  url={https://huggingface.co/datasets/freococo/1_pattern_10Kplus_myanmar_sentences}
}
```