--- license: mit task_categories: - text-generation - text-classification language: - my tags: - MyanmarSentences - Burmese - BurmeseSentences --- # 🧠 1_pattern_10Kplus_myanmar_sentences A structured dataset of **11,452 Myanmar sentences** generated from a single, powerful grammar pattern: ### 📌 Pattern: **`Verb လည်း Verb တယ်။`** > A natural way to express repetition, emphasis, or causal connection in Myanmar. --- ## 💡 About the Dataset This dataset demonstrates how applying just **one syntactic pattern** to a curated verb list — combined with syllable-aware rules — can produce a high-quality corpus of over **10,000 valid Myanmar sentences**. Each sentence is: - Grammatically valid - Syllable-tokenized - Pattern-consistent - Cleaned and filtered --- ## 🔁 Pattern in Use Examples: - ချစ်လည်း ချစ်တယ်။ - ကစားလည်း ကစားတယ်။ - ကံကြီးလည်း ထိုက်တယ်။ - ခေါင်းချင်းဆိုင်လည်း တိုက်တယ်။ --- ## 📏 Rules in Use | Syllable Count | Rule Name | Sentence Format | # of Sentences Generated | |----------------|-------------------|---------------------------------------------|---------------------------| | 1 | Rule_1_Syllable | `Aလည်း Aတယ်။` | 1 | | 2 | Rule_2_Syllable | `Aလည်း Bတယ်။` and `Aလည်း ABတယ်။` | 2 (dual sentences) | | 3 | Rule_3_Syllable | `ABလည်း Cတယ်။` | 1 | | 4 | Rule_4_Syllable | `ABCလည်း Dတယ်။` | 1 | | 5+ | Rule_{N}_Syllable | `ABCD...လည်း Zတယ်။` | 1 per item | --- ## 📁 Dataset Format Each row in the CSV contains: | Column | Description | |------------------|--------------------------------------------------| | `my_sentence` | The full generated Myanmar sentence | | `my_word` | The original verb the sentence is based on | | `my_subword` | List of syllable-level tokens (as a string list) | | `subword_number` | Number of syllables in `my_word` | **Example:** ```text my_sentence: ကလည်း ကတယ်။ my_word: က my_subword: ["က"] subword_number: 1 ``` ## 🤯 Why It’s Special ``` • ✅ Only one pattern → yet over 11,000 real Myanmar sentences • ✅ Rule logic scales across syllable complexity • ✅ Cleaned, structured, and easy to extend • ✅ Represents real grammar, not artificial templates ``` --- ## 😅 Problems We Faced We started with a large list of Myanmar verbs and applied a syllable-level tokenizer to break each verb into structured chunks. Based on syllable count, we applied one of six rules to generate sentences. Challenges included: ``` • Unicode inconsistencies (e.g., ဥ် vs ဉ်, န့် vs န့်) • Visually similar characters causing mis-splitting • Manual review needed for edge cases • Some grammatically valid outputs lacked semantic sense ``` ## 🔮 Future Plans This is just Pattern 1. Coming soon: • မ V နဲ့။ We aim to build a full-scale, pattern-rich Myanmar corpus — one rule at a time. ⸻ ## 🎯 Use Cases • Fine-tune sentence generation models • Train grammar correction systems • Build linguistic datasets for Myanmar NLP • Teach Myanmar grammar through concrete patterns • Benchmark syllable tokenizers ⸻ ## 🧪 Quality & Manual Review Even though all sentences were generated using grammatical rules, not all combinations may sound natural or meaningful in everyday Myanmar. 📝 This dataset should be manually reviewed by native speakers to ensure each sentence: ``` • Sounds natural • Makes semantic sense • Feels appropriate for real-world use ``` That said — even if you: ``` • Remove awkward or illogical samples • Filter or adjust by context • Expand with more rules and patterns ``` ➡️ You’ll still retain 10K+ high-quality, structured Myanmar sentences. ### ⚠️ Please don’t use this dataset blindly for production training without native review. ⸻ ## 📜 License MIT — free to use, adapt, remix, or improve. But give credit where it’s due 💛 ⸻ ## 🔗 Citation ``` @dataset{myanmar_verb_pattern_2025, title={1 Pattern 10K+ Myanmar Sentences}, author={freococo}, year={2025}, url={https://huggingface.co/datasets/freococo/1_pattern_10Kplus_myanmar_sentences} } ```