Datasets:

License:
File size: 6,463 Bytes
7271056
 
 
 
767436c
 
 
 
7271056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""SVQ data reading."""

import io
import os
try:
  from array_record.python import array_record_module as array_record
except:
  import array_record
import datasets
import librosa
import numpy as np
import pandas as pd
from scipy.io import wavfile


def read_wav_bytes_to_normalized_float(
    wav_bytes, resample_hz: float | None = None
):
  """Reads WAV bytes object and returns normalized float numpy array.

  Args:
    wav_bytes: WAV bytes object.
    resample_hz: Optional resample rate.
  Returns:
    (waveform, original sample rate before any resample)
  """
  rate, data = wavfile.read(io.BytesIO(wav_bytes))

  if data.ndim > 1 and data.shape[1] > 1:
    raise ValueError("Only mono WAV files are supported.")

  # Convert data to float and normalize
  if data.dtype == np.int16:
    x = data.astype(np.float32) / np.iinfo(np.int16).max
  elif data.dtype == np.int32:
    x = data.astype(np.float32) / np.iinfo(np.int32).max
  elif data.dtype == np.float32:
    x = data
  else:
    raise TypeError(f"Unsupported data type: {data.dtype}")
  if resample_hz is not None and resample_hz != rate:
    x = librosa.resample(x, orig_sr=rate, target_sr=resample_hz)
  return x, rate


def read_utt_index(basepath):
  """Read utt_index.jsonl file to a dict of {uttid: path:index}."""
  df = pd.read_json(os.path.join(basepath, "utt_index.jsonl"), lines=True)
  return dict(zip(df["utt_id"], df["index"]))


class UttLookup:
  """Lookup utterances by utt_id with optional resampling.

  Usage:
    utt_lookup = UttLookup(basepath)
    waveform = utt_lookup(utt_id)
  """

  def __init__(self, basepath, resample_hz: float | None = None):
    self.basepath = basepath
    self.resample_hz = resample_hz
    self.utt_id_to_path_idx = read_utt_index(basepath)
    self.readers = {}
    self.orig_sample_rate_ = None

  @property
  def orig_sample_rate(self):
    if self.orig_sample_rate_ is None:
      utt_id = next(iter(self.utt_id_to_path_idx))
      self(utt_id)
    return self.orig_sample_rate_

  def __call__(self, utt_id: str):
    path, idx = self.utt_id_to_path_idx[utt_id].split(":")
    if path not in self.readers:
      array_record_path = os.path.join(self.basepath, f"{path}.array_record")
      self.readers[path] = array_record.ArrayRecordReader(
          array_record_path
      )
    b = self.readers[path].read([int(idx)])
    waveform, sample_rate = read_wav_bytes_to_normalized_float(
        b[0], resample_hz=self.resample_hz
    )
    if self.orig_sample_rate_ is None:
      self.orig_sample_rate_ = sample_rate
    if sample_rate != self.orig_sample_rate_:
      raise ValueError(
          f"Sample rate mismatch: {sample_rate} != {self.orig_sample_rate_}"
      )
    return waveform


def generate_examples(filepath, resample_hz: float | None = None):
  """Generate examples from a jsonl task file."""
  basepath = os.path.dirname(filepath)
  utt_lookup = UttLookup(basepath, resample_hz=resample_hz)
  task = pd.read_json(filepath, lines=True)
  for ex in task.to_dict(orient="records"):
    utt = utt_lookup(ex["utt_id"])
    ex["waveform"] = utt
    yield ex


_CITATION = """\
@InProceedings{mseb,
title = {Massive Sound Embedding Benchmark (MSEB)},
author={Georg Heigold, Ehsan Variani, Tom Bagby, Ji Ma, Cyril Allauzen, Shankar Kumar, Michael Riley}
year={2025}
}
"""

_NUM_SHARDS = 128  # Internal sharding for parallel data loading.


class SvqDataset(datasets.GeneratorBasedBuilder):
  """SVQ dataset."""

  VERSION = datasets.Version("1.1.0")

  BUILDER_CONFIGS = [
      datasets.BuilderConfig(name=name, description=desc)
      for name, desc in [
          ("span_reasoning_in_lang", "Span reasoning in language."),
          ("span_retrieval_in_lang", "Span retrieval in language."),
          ("span_reasoning_cross_lang", "Span reasoning cross language."),
          ("span_retrieval_cross_lang", "Span retrieval cross language."),
          ("passage_retrieval_in_lang", "Passage retrieval in language."),
          ("passage_retrieval_cross_lang", "Passage retrieval cross language."),
          ("document_retrieval_in_lang", "Document retrieval in language."),
          (
              "document_retrieval_cross_lang",
              "Document retrieval cross language.",
          ),
      ]
  ]

  DEFAULT_WRITER_BATCH_SIZE = 64

  def _info(self):
    task = self.config.name
    features = {
        "utt_id": datasets.Value("string"),
        "waveform": datasets.Sequence(datasets.Value("float32")),
        "text": datasets.Value("string"),
        "locale": datasets.Value("string"),
        "environment": datasets.Value("string"),
        "speaker_id": datasets.Value("string"),
        "speaker_age": datasets.Value("int32"),
        "speaker_gender": datasets.Value("string"),
        "page_id": datasets.Value("string"),
        "page_title": datasets.Value("string"),
        "passage_id": datasets.Value("string"),
        "passage_text": datasets.Value("string"),
    }
    if "span" in task:
      features["span"] = datasets.Value("string")
    return datasets.DatasetInfo(
        description=(
            "Simple Voice Queries (SVQ) dataset, Task: span reasoning in"
            " language."
        ),
        features=datasets.Features(**features),
        homepage="https://huggingface.co/datasets/google/svq",
        license="Apache 2.0",
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager):
    basepath = os.getcwd()
    task = self.config.name
    return [
        datasets.SplitGenerator(
            name="eval",
            gen_kwargs={
                "filepath": os.path.join(
                    basepath, f"{task}.jsonl"
                ),
                "shards": list(range(_NUM_SHARDS)),
                "resample_hz": 16000,
                "task_name": task,
            },
        ),
    ]

  def _generate_examples(
      self, filepath=None, shards=None, resample_hz=None, task_name=None
  ):
    basepath = os.path.dirname(filepath)
    utt_lookup = UttLookup(basepath, resample_hz=resample_hz)
    task = pd.read_json(filepath, lines=True)
    task = np.array_split(task, _NUM_SHARDS)
    task_shards = [task[idx].to_dict(orient="records") for idx in shards]
    del task
    for shard in task_shards:
      for ex in shard:
        utt = utt_lookup(ex["utt_id"])
        ex["waveform"] = utt
        del ex["task"]
        if "span" not in task_name:
          del ex["span"]
        yield "_".join([ex["utt_id"], ex["passage_id"]]), ex