"""SVQ data reading.""" import io import os try: from array_record.python import array_record_module as array_record except: import array_record import datasets import librosa import numpy as np import pandas as pd from scipy.io import wavfile def read_wav_bytes_to_normalized_float( wav_bytes, resample_hz: float | None = None ): """Reads WAV bytes object and returns normalized float numpy array. Args: wav_bytes: WAV bytes object. resample_hz: Optional resample rate. Returns: (waveform, original sample rate before any resample) """ rate, data = wavfile.read(io.BytesIO(wav_bytes)) if data.ndim > 1 and data.shape[1] > 1: raise ValueError("Only mono WAV files are supported.") # Convert data to float and normalize if data.dtype == np.int16: x = data.astype(np.float32) / np.iinfo(np.int16).max elif data.dtype == np.int32: x = data.astype(np.float32) / np.iinfo(np.int32).max elif data.dtype == np.float32: x = data else: raise TypeError(f"Unsupported data type: {data.dtype}") if resample_hz is not None and resample_hz != rate: x = librosa.resample(x, orig_sr=rate, target_sr=resample_hz) return x, rate def read_utt_index(basepath): """Read utt_index.jsonl file to a dict of {uttid: path:index}.""" df = pd.read_json(os.path.join(basepath, "utt_index.jsonl"), lines=True) return dict(zip(df["utt_id"], df["index"])) class UttLookup: """Lookup utterances by utt_id with optional resampling. Usage: utt_lookup = UttLookup(basepath) waveform = utt_lookup(utt_id) """ def __init__(self, basepath, resample_hz: float | None = None): self.basepath = basepath self.resample_hz = resample_hz self.utt_id_to_path_idx = read_utt_index(basepath) self.readers = {} self.orig_sample_rate_ = None @property def orig_sample_rate(self): if self.orig_sample_rate_ is None: utt_id = next(iter(self.utt_id_to_path_idx)) self(utt_id) return self.orig_sample_rate_ def __call__(self, utt_id: str): path, idx = self.utt_id_to_path_idx[utt_id].split(":") if path not in self.readers: array_record_path = os.path.join(self.basepath, f"{path}.array_record") self.readers[path] = array_record.ArrayRecordReader( array_record_path ) b = self.readers[path].read([int(idx)]) waveform, sample_rate = read_wav_bytes_to_normalized_float( b[0], resample_hz=self.resample_hz ) if self.orig_sample_rate_ is None: self.orig_sample_rate_ = sample_rate if sample_rate != self.orig_sample_rate_: raise ValueError( f"Sample rate mismatch: {sample_rate} != {self.orig_sample_rate_}" ) return waveform def generate_examples(filepath, resample_hz: float | None = None): """Generate examples from a jsonl task file.""" basepath = os.path.dirname(filepath) utt_lookup = UttLookup(basepath, resample_hz=resample_hz) task = pd.read_json(filepath, lines=True) for ex in task.to_dict(orient="records"): utt = utt_lookup(ex["utt_id"]) ex["waveform"] = utt yield ex _CITATION = """\ @InProceedings{mseb, title = {Massive Sound Embedding Benchmark (MSEB)}, author={Georg Heigold, Ehsan Variani, Tom Bagby, Ji Ma, Cyril Allauzen, Shankar Kumar, Michael Riley} year={2025} } """ _NUM_SHARDS = 128 # Internal sharding for parallel data loading. class SvqDataset(datasets.GeneratorBasedBuilder): """SVQ dataset.""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name=name, description=desc) for name, desc in [ ("span_reasoning_in_lang", "Span reasoning in language."), ("span_retrieval_in_lang", "Span retrieval in language."), ("span_reasoning_cross_lang", "Span reasoning cross language."), ("span_retrieval_cross_lang", "Span retrieval cross language."), ("passage_retrieval_in_lang", "Passage retrieval in language."), ("passage_retrieval_cross_lang", "Passage retrieval cross language."), ("document_retrieval_in_lang", "Document retrieval in language."), ( "document_retrieval_cross_lang", "Document retrieval cross language.", ), ] ] DEFAULT_WRITER_BATCH_SIZE = 64 def _info(self): task = self.config.name features = { "utt_id": datasets.Value("string"), "waveform": datasets.Sequence(datasets.Value("float32")), "text": datasets.Value("string"), "locale": datasets.Value("string"), "environment": datasets.Value("string"), "speaker_id": datasets.Value("string"), "speaker_age": datasets.Value("int32"), "speaker_gender": datasets.Value("string"), "page_id": datasets.Value("string"), "page_title": datasets.Value("string"), "passage_id": datasets.Value("string"), "passage_text": datasets.Value("string"), } if "span" in task: features["span"] = datasets.Value("string") return datasets.DatasetInfo( description=( "Simple Voice Queries (SVQ) dataset, Task: span reasoning in" " language." ), features=datasets.Features(**features), homepage="https://huggingface.co/datasets/google/svq", license="Apache 2.0", citation=_CITATION, ) def _split_generators(self, dl_manager): basepath = os.getcwd() task = self.config.name return [ datasets.SplitGenerator( name="eval", gen_kwargs={ "filepath": os.path.join( basepath, f"{task}.jsonl" ), "shards": list(range(_NUM_SHARDS)), "resample_hz": 16000, "task_name": task, }, ), ] def _generate_examples( self, filepath=None, shards=None, resample_hz=None, task_name=None ): basepath = os.path.dirname(filepath) utt_lookup = UttLookup(basepath, resample_hz=resample_hz) task = pd.read_json(filepath, lines=True) task = np.array_split(task, _NUM_SHARDS) task_shards = [task[idx].to_dict(orient="records") for idx in shards] del task for shard in task_shards: for ex in shard: utt = utt_lookup(ex["utt_id"]) ex["waveform"] = utt del ex["task"] if "span" not in task_name: del ex["span"] yield "_".join([ex["utt_id"], ex["passage_id"]]), ex