Datasets:
File size: 2,867 Bytes
de4397c 98b4919 de4397c 380c8b4 de4397c b41508f de4397c b41508f de4397c b41508f de4397c b41508f de4397c b41508f de4397c b41508f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
license: cc-by-4.0
task_categories:
- question-answering
language:
- en
size_categories:
- 10M<n<100M
---
# Perceptual Constancy
**Perceptual Constancy** is a multimodal benchmark designed to evaluate high-level perceptual invariance in large vision-language models (VLMs). It probes a modelβs understanding of physical and geometric stability under varying sensory appearances. This dataset is part of the [Grow AI Like a Child](https://huggingface.co/grow-ai-like-a-child) benchmark initiative.
---
## π§ Dataset Overview
The Perceptual Constancy dataset focuses on **appearance-invariant reasoning** using both static images and short video clips. Each question tests whether the model can generalize consistent properties across transformations such as viewpoint, color, orientation, size, or occlusion.
The dataset contains:
- **253 samples**
- **Two modalities**: `image` or `video`
- **Two question formats**: `multiple-choice` (MC) or `true/false` (TF)
---
## π Dataset Format
Each sample includes:
| Field | Description |
|------------------|-------------|
| `Index` | Unique ID (e.g., `a0031`) |
| `Data.Type` | Either `image` or `video` |
| `Qustion.Type` | Either `MC` or `TF` |
| `Sec..Label` | Integer from 1 to 3 (see section mapping below) |
| `Question` | Natural language question with embedded options (for MC) |
| `Correct.Answer` | The correct response (e.g., `A`, `B`, `Yes`, `No`) |
### π’ `Sec..Label` Categories
| Label | Category |
|-------|------------------|
| 1 | Color Constancy |
| 2 | Size Constancy |
| 3 | Shape Constancy |
---
## π Folder Structure
```
data/
βββ data.csv
βββ images/
β βββ *.png / *.jpg / *.avif
β βββ metadata.jsonl
βββ videos/
β βββ *.mp4 / *.gif / *.mov
β βββ metadata.jsonl
```
- The `metadata.jsonl` files store structured entries for each modality.
- `.gif` files are stored in `videos/` and marked as `media_type = video`.
---
## π‘ Example
```json
{
"file_name": "a0033.JPG",
"media_type": "image",
"question_type": "TF",
"sec_label": 1.0,
"question": "In the picture, has the actual color of the bridge itself changed?",
"correct_answer": "No"
}
```
---
## π Citation
If you use this dataset, please cite:
```bibtex
@misc{sun2025probingperceptualconstancylarge,
title={Probing Perceptual Constancy in Large Vision Language Models},
author={Haoran Sun and Suyang Yu and Yijiang Li and Qingying Gao and Haiyun Lyu and Hokin Deng and Dezhi Luo},
year={2025},
eprint={2502.10273},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2502.10273},
}
```
---
## π€ Acknowledgments
This dataset is developed by the Grow AI Like a Child community to support structured.
|