File size: 9,417 Bytes
cf18add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75fed2b
 
 
cf18add
 
 
a5e676c
 
cf18add
 
 
 
 
 
 
a5e676c
 
 
 
 
 
 
 
 
 
cf18add
 
 
 
 
 
 
fcc7f02
6ee4fc7
31b96a0
6c3bbe7
e772a6c
67c9441
e5caffa
67cecc8
1acfffd
561e7ae
dba1a96
374bf8a
3db767a
7ef388e
6a3a411
980b8bf
f389d72
5c74d3d
f8c91b0
effd791
a7d1d9b
de53054
d12cffe
f530f7a
220bd51
bd204bc
8779ff6
f07fb9b
c60e2b2
c4fd10a
b4ab936
6d23dcd
c16c6ef
e6f9dce
3f7fca5
9652afb
1619b32
01c4659
441f795
f18defc
fc7d386
5779369
d40e200
ca52f20
6dd8c40
35a4f78
63175b9
fb8fa84
95388fb
ddc2b89
7dad456
01516bd
f1e4171
1b4b056
f4cba00
ed27ea0
1f0255b
18accbb
4782cf3
c993611
634c986
26cbaa3
0aab941
dc6db43
de83b79
256597f
8320ba6
979fe92
b6576f5
e2ad150
5fbe3cc
c893fc9
f7998df
93f7888
1fd0b02
38376f6
fe871c2
f29523c
a5e676c
ac2642d
5cb7a4f
75fed2b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 Reddit Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>


## Dataset Description

- **Repository:** gsjcm/reddit_dataset_28
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5EX9Q4ZCuYDCBGcGiyFBDp6uCqqnhyUcyfmoRzEvRzujzwxk

### Miner Data Compliance Agreement 

In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). 

### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:

- Sentiment Analysis
- Topic Modeling
- Community Analysis
- Content Categorization

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single Reddit post or comment with the following fields:


### Data Fields

- `text` (string): The main content of the Reddit post or comment.
- `label` (string): Sentiment or topic category of the content.
- `dataType` (string): Indicates whether the entry is a post or a comment.
- `communityName` (string): The name of the subreddit where the content was posted.
- `datetime` (string): The date when the content was posted or commented.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the content.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the nature of media sources.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public subreddits and does not include private or restricted communities.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{gsjcm2025datauniversereddit_dataset_28,
        title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
        author={gsjcm},
        year={2025},
        url={https://huggingface.co/datasets/gsjcm/reddit_dataset_28},
        }
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 26263890
- **Date Range:** 2025-06-10T00:00:00Z to 2025-08-12T00:00:00Z
- **Last Updated:** 2025-09-11T03:29:53Z

### Data Distribution

- Posts: 4.50%
- Comments: 95.50%

### Top 10 Subreddits

For full statistics, please refer to the `stats.json` file in the repository.

| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | r/AskReddit | 335319 | 1.28% |
| 2 | r/SquaredCircle | 143011 | 0.54% |
| 3 | r/nba | 136228 | 0.52% |
| 4 | r/AITAH | 123597 | 0.47% |
| 5 | r/AmIOverreacting | 117745 | 0.45% |
| 6 | r/BigBrother | 106153 | 0.40% |
| 7 | r/LoveIslandUSA | 104186 | 0.40% |
| 8 | r/RedditGames | 101994 | 0.39% |
| 9 | r/politics | 97945 | 0.37% |
| 10 | r/NoStupidQuestions | 86776 | 0.33% |


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-07-10T10:16:49Z | 341038 | 341038 |
| 2025-07-11T04:17:49Z | 328904 | 669942 |
| 2025-07-11T22:05:19Z | 456602 | 1126544 |
| 2025-07-12T15:17:32Z | 442480 | 1569024 |
| 2025-07-13T09:18:50Z | 457805 | 2026829 |
| 2025-07-14T04:06:33Z | 435952 | 2462781 |
| 2025-07-14T22:11:34Z | 435952 | 2898733 |
| 2025-07-15T16:15:01Z | 324806 | 3223539 |
| 2025-07-16T10:16:07Z | 316222 | 3539761 |
| 2025-07-17T04:18:58Z | 344904 | 3884665 |
| 2025-07-17T22:20:08Z | 344904 | 4229569 |
| 2025-07-18T16:21:26Z | 342799 | 4572368 |
| 2025-07-19T10:22:33Z | 332630 | 4904998 |
| 2025-07-20T04:23:37Z | 330339 | 5235337 |
| 2025-07-20T22:24:55Z | 330339 | 5565676 |
| 2025-07-21T16:25:58Z | 319509 | 5885185 |
| 2025-07-22T10:27:16Z | 325717 | 6210902 |
| 2025-07-23T04:28:29Z | 346473 | 6557375 |
| 2025-07-23T22:29:59Z | 346473 | 6903848 |
| 2025-07-24T16:08:53Z | 335127 | 7238975 |
| 2025-07-25T10:10:14Z | 341426 | 7580401 |
| 2025-07-26T04:11:35Z | 349125 | 7929526 |
| 2025-07-26T22:12:49Z | 349125 | 8278651 |
| 2025-07-27T16:13:55Z | 329228 | 8607879 |
| 2025-07-28T10:14:58Z | 321271 | 8929150 |
| 2025-07-29T04:16:25Z | 313028 | 9242178 |
| 2025-07-29T22:22:42Z | 313028 | 9555206 |
| 2025-07-30T16:24:02Z | 313145 | 9868351 |
| 2025-07-31T10:25:19Z | 325888 | 10194239 |
| 2025-08-01T04:26:44Z | 320870 | 10515109 |
| 2025-08-01T21:36:57Z | 320870 | 10835979 |
| 2025-08-02T15:38:05Z | 308413 | 11144392 |
| 2025-08-03T09:39:16Z | 306749 | 11451141 |
| 2025-08-04T03:40:37Z | 276452 | 11727593 |
| 2025-08-04T21:41:53Z | 276452 | 12004045 |
| 2025-08-05T15:43:10Z | 289849 | 12293894 |
| 2025-08-06T09:44:31Z | 310639 | 12604533 |
| 2025-08-07T03:46:08Z | 330549 | 12935082 |
| 2025-08-07T21:48:07Z | 330549 | 13265631 |
| 2025-08-08T15:49:39Z | 354694 | 13620325 |
| 2025-08-09T09:50:58Z | 324323 | 13944648 |
| 2025-08-10T03:52:33Z | 322834 | 14267482 |
| 2025-08-10T21:54:19Z | 322834 | 14590316 |
| 2025-08-11T15:55:39Z | 311926 | 14902242 |
| 2025-08-12T09:57:03Z | 304189 | 15206431 |
| 2025-08-13T03:58:40Z | 316130 | 15522561 |
| 2025-08-13T22:00:27Z | 316130 | 15838691 |
| 2025-08-14T16:01:50Z | 322042 | 16160733 |
| 2025-08-15T10:03:12Z | 319620 | 16480353 |
| 2025-08-16T04:04:46Z | 329284 | 16809637 |
| 2025-08-16T22:06:47Z | 329284 | 17138921 |
| 2025-08-17T16:08:07Z | 315294 | 17454215 |
| 2025-08-18T10:09:31Z | 304192 | 17758407 |
| 2025-08-19T04:11:13Z | 299357 | 18057764 |
| 2025-08-19T22:13:55Z | 299357 | 18357121 |
| 2025-08-20T16:15:26Z | 299082 | 18656203 |
| 2025-08-21T10:16:52Z | 320402 | 18976605 |
| 2025-08-22T04:18:42Z | 325197 | 19301802 |
| 2025-08-22T22:20:41Z | 325197 | 19626999 |
| 2025-08-23T16:21:51Z | 319951 | 19946950 |
| 2025-08-24T10:23:21Z | 315800 | 20262750 |
| 2025-08-25T04:25:07Z | 305135 | 20567885 |
| 2025-08-25T22:27:35Z | 305135 | 20873020 |
| 2025-08-26T16:29:00Z | 287436 | 21160456 |
| 2025-08-27T10:31:12Z | 296393 | 21456849 |
| 2025-08-28T04:32:38Z | 318134 | 21774983 |
| 2025-08-28T22:33:47Z | 318134 | 22093117 |
| 2025-08-29T16:34:55Z | 313845 | 22406962 |
| 2025-08-30T10:36:22Z | 307217 | 22714179 |
| 2025-08-31T04:39:01Z | 314080 | 23028259 |
| 2025-08-31T22:40:47Z | 314080 | 23342339 |
| 2025-09-01T16:42:00Z | 297894 | 23640233 |
| 2025-09-02T10:44:01Z | 287944 | 23928177 |
| 2025-09-03T04:45:56Z | 303990 | 24232167 |
| 2025-09-03T22:48:15Z | 303990 | 24536157 |
| 2025-09-04T16:50:01Z | 316972 | 24853129 |
| 2025-09-05T10:51:46Z | 345889 | 25199018 |
| 2025-09-06T04:53:14Z | 354589 | 25553607 |
| 2025-09-06T22:56:32Z | 354589 | 25908196 |
| 2025-09-07T16:58:23Z | 351212 | 26259408 |
| 2025-09-09T15:29:20Z | 602 | 26260010 |
| 2025-09-10T09:29:37Z | 1318 | 26261328 |
| 2025-09-11T03:29:53Z | 2562 | 26263890 |