himanshu-bhatnagar-exl-2302 commited on
Commit
71f0b71
·
1 Parent(s): 4b44b40

Upload SAS_to_Python_clean_v1.csv

Browse files
Files changed (1) hide show
  1. SAS_to_Python_clean_v1.csv +413 -0
SAS_to_Python_clean_v1.csv ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SAS Code,Converted Python Code
2
+ "
3
+
4
+ PROC IMPORT DATAFILE = ""/path/to/dataset.csv""
5
+ DBMS = CSV OUT = WORK.MYDATA;
6
+ RUN;
7
+
8
+ ","
9
+
10
+ import pandas as pd
11
+ df = pd.read_csv('/path/to/dataset.csv')
12
+
13
+
14
+
15
+ "
16
+ "
17
+
18
+ PROC EXPORT DATA = WORK.MYDATA
19
+ OUTFILE = ""/path/to/output.csv""
20
+ DBMS = CSV;
21
+ RUN;
22
+
23
+ ","
24
+
25
+ df.to_csv('/path/to/output.csv')
26
+
27
+
28
+
29
+ "
30
+ "
31
+
32
+ PROC PRINT DATA = WORK.MYDATA(OBS=5);
33
+ RUN;
34
+
35
+ ","
36
+
37
+ df.head(5)
38
+
39
+
40
+
41
+ "
42
+ "
43
+
44
+ PROC CONTENTS DATA = WORK.MYDATA;
45
+ RUN;
46
+
47
+ ","
48
+
49
+ df.info()
50
+
51
+
52
+
53
+ "
54
+ "
55
+
56
+ PROC SQL;
57
+ SELECT COUNT(*) FROM WORK.MYDATA;
58
+ QUIT;
59
+
60
+ ","
61
+
62
+ df.shape[0]
63
+
64
+
65
+
66
+ "
67
+ "
68
+
69
+ PROC DATASETS LIB=WORK;
70
+ MODIFY MYDATA;
71
+ RENAME old_name = new_name;
72
+ QUIT;
73
+
74
+ ","
75
+
76
+ df.rename(columns={'old_name': 'new_name'}, inplace=True)
77
+
78
+
79
+
80
+ "
81
+ "
82
+
83
+ DATA WORK.MYDATA2;
84
+ SET WORK.MYDATA;
85
+ KEEP col1 col2 col3;
86
+ RUN;
87
+
88
+ ","
89
+
90
+ df2 = df[['col1', 'col2', 'col3']]
91
+
92
+
93
+
94
+ "
95
+ "
96
+
97
+ DATA WORK.MYDATA2;
98
+ SET WORK.MYDATA;
99
+ WHERE col1 > 0 AND col2 < 0;
100
+ RUN;
101
+
102
+ ","
103
+
104
+ df2 = df[(df['col1'] > 0) & (df['col2'] < 0)]
105
+
106
+
107
+
108
+ "
109
+ "
110
+
111
+ DATA WORK.MYDATA2;
112
+ SET WORK.MYDATA;
113
+ new_col = col1 + col2;
114
+ RUN;
115
+
116
+ ","
117
+
118
+ df['new_col'] = df['col1'] + df['col2']
119
+
120
+
121
+
122
+ "
123
+ "
124
+
125
+ PROC SORT DATA = WORK.MYDATA;
126
+ BY descending col1;
127
+ RUN;
128
+
129
+ ","
130
+
131
+ df.sort_values('col1', ascending=False, inplace=True)
132
+
133
+
134
+
135
+ "
136
+ "
137
+
138
+ DATA WORK.MYDATA_TOTAL;
139
+ MERGE WORK.MYDATA1 WORK.MYDATA2;
140
+ BY key_col;
141
+ RUN;
142
+
143
+ ","
144
+
145
+ df_total = pd.merge(df1, df2, on='key_col')
146
+
147
+
148
+
149
+ "
150
+ "
151
+
152
+ DATA MYDATA_SQRT;
153
+ SET MYDATA;
154
+ SQRT_VAL = sqrt(VALUE);
155
+ RUN;
156
+
157
+ ","
158
+
159
+ df['sqrt_val'] = df['value'].apply(np.sqrt)
160
+
161
+
162
+
163
+ "
164
+ "
165
+
166
+ PROC SQL;
167
+ SELECT DISTINCT COL1
168
+ FROM MYDATA;
169
+ QUIT;
170
+
171
+ ","
172
+
173
+ df['col1'].unique()
174
+
175
+
176
+
177
+ "
178
+ "
179
+
180
+ PROC SQL;
181
+ SELECT COL1, COUNT(*)
182
+ FROM MYDATA
183
+ GROUP BY COL1;
184
+ QUIT;
185
+
186
+ ","
187
+
188
+ df['col1'].value_counts()
189
+
190
+
191
+
192
+ "
193
+ "
194
+
195
+ DATA MYDATA;
196
+ SET MYDATA;
197
+ IF COL1 = 'OLD' THEN COL1 = 'NEW';
198
+ RUN;
199
+
200
+ ","
201
+
202
+ df['col1'].replace('OLD', 'NEW', inplace=True)
203
+
204
+
205
+
206
+ "
207
+ "
208
+
209
+ PROC SQL;
210
+ DELETE FROM WORK.MYDATA
211
+ WHERE col1 < 0;
212
+ QUIT;
213
+
214
+ ","
215
+
216
+ df = df[df['col1'] >= 0]
217
+
218
+
219
+
220
+ "
221
+ "
222
+
223
+ DATA WORK.MYDATA;
224
+ SET WORK.MYDATA;
225
+ DROP col1;
226
+ RUN;
227
+
228
+ ","
229
+
230
+ df.drop('col1', axis=1, inplace=True)
231
+
232
+
233
+
234
+ "
235
+ "
236
+
237
+ PROC TRANSPOSE DATA=WORK.MYDATA OUT=WORK.TRANPOSED;
238
+ BY subject;
239
+ VAR scores;
240
+ RUN;
241
+
242
+ ","
243
+
244
+ transposed = df.pivot(index='subject', columns='scores')
245
+
246
+
247
+
248
+ "
249
+ "
250
+
251
+ DATA MYDATA;
252
+ SET MYDATA;
253
+ IF COL1 > 0 THEN NEW_COL = 'POSITIVE';
254
+ ELSE IF COL1 < 0 THEN NEW_COL = 'NEGATIVE';
255
+ ELSE NEW_COL = 'NEUTRAL';
256
+ RUN;
257
+
258
+ ","
259
+
260
+ conditions = [(df['col1'] > 0), (df['col1'] < 0)]
261
+ choices = ['POSITIVE', 'NEGATIVE']
262
+ df['new_col'] = np.select(conditions, choices, default='NEUTRAL')
263
+
264
+
265
+
266
+ "
267
+ "
268
+
269
+ PROC STDIZE DATA=WORK.MYDATA OUT=WORK.NEW_MYDATA
270
+ REPLEV=MISSING METHOD=MEAN;
271
+ RUN;
272
+
273
+ ","
274
+
275
+ df.fillna(df.mean(), inplace=True)
276
+
277
+
278
+
279
+ "
280
+ "
281
+
282
+ PROC GLMMOD DATA=WORK.MYDATA OUTDESIGN=WORK.DESIGN;
283
+ CLASS COL1;
284
+ MODEL COL2 = COL1 / SOLUTION;
285
+ RUN;
286
+
287
+ ","
288
+
289
+ design = pd.get_dummies(df, columns=['col1'])
290
+
291
+
292
+
293
+ "
294
+ "
295
+
296
+ PROC FREQ DATA=WORK.MYDATA;
297
+ TABLES COL1;
298
+ RUN;
299
+
300
+ ","
301
+
302
+ pd.crosstab(index=df['col1'], columns=""count"")
303
+
304
+
305
+
306
+ "
307
+ "
308
+
309
+ DATA MYDATA_SUB;
310
+ SET MYDATA;
311
+ IF COL1 > 0 AND COL2 <= 50;
312
+ RUN;
313
+
314
+ ","
315
+
316
+ df_sub = df[(df['col1'] > 0) & (df['col2'] <= 50)]
317
+
318
+
319
+
320
+ "
321
+ "
322
+
323
+ PROC CONTENTS DATA=MYDATA OUT=COLNAMES(KEEP=NAME);
324
+ RUN;
325
+
326
+ ","
327
+
328
+ colnames = df.columns.tolist()
329
+
330
+
331
+
332
+ "
333
+ "
334
+
335
+ PROC MEANS DATA=MYDATA MEAN MIN MAX;
336
+ VAR COL1;
337
+ RUN;
338
+
339
+ ","
340
+
341
+ df['col1'].describe()
342
+
343
+
344
+
345
+ "
346
+ "
347
+
348
+ PROC SQL;
349
+ SELECT A, B, MEAN(C)
350
+ FROM MYDATA
351
+ GROUP BY A, B;
352
+ QUIT;
353
+
354
+ ","
355
+
356
+ df.groupby(['A', 'B'])['C'].mean().reset_index()
357
+
358
+
359
+
360
+ "
361
+ "
362
+
363
+ PROC SQL;
364
+ SELECT A, SUM(B)
365
+ FROM MYDATA
366
+ GROUP BY A;
367
+ QUIT;
368
+
369
+ ","
370
+
371
+ df.groupby('A')['B'].sum().reset_index()
372
+
373
+
374
+
375
+ "
376
+ "
377
+
378
+ DATA MYDATA;
379
+ SET MYDATA;
380
+ COL1_NUM = INPUT(COL1, BEST.);
381
+ RUN;
382
+
383
+ ","
384
+
385
+ df['col1_num'] = df['col1'].astype(int)
386
+
387
+
388
+
389
+ "
390
+ "
391
+
392
+ DATA MYDATA;
393
+ SET MYDATA;
394
+ IF MISSING(COL1) THEN COL1 = 0;
395
+ RUN;
396
+
397
+ ","
398
+
399
+ df['col1'].fillna(0, inplace=True)
400
+
401
+
402
+
403
+ "
404
+ "
405
+
406
+ DATA MYDATA;
407
+ SET MYDATA1 MYDATA2 MYDATA3;
408
+ RUN;
409
+
410
+ ","
411
+
412
+ df = pd.concat([df1, df2, df3])
413
+ "