--- license: apache-2.0 pretty_name: PrediTree task_categories: - depth-estimation dataset_info: features: - name: id dtype: string - name: department_name dtype: string - name: chm dtype: array2_d: shape: - 256 - 256 dtype: float16 - name: no_data_percentage dtype: float32 - name: crs dtype: string - name: transform dtype: string - name: bounds dtype: string - name: resolution dtype: float32 - name: chm_mean_year dtype: int16 - name: rgbnir_ndvi_1 dtype: array3_d: shape: - 5 - 256 - 256 dtype: uint8 - name: rgbnir_year_1 dtype: uint16 - name: rgbnir_ndvi_2 dtype: array3_d: shape: - 5 - 256 - 256 dtype: uint8 - name: rgbnir_year_2 dtype: uint16 - name: rgbnir_ndvi_3 dtype: array3_d: shape: - 5 - 256 - 256 dtype: uint8 - name: rgbnir_year_3 dtype: uint16 splits: - name: train num_bytes: 880058054404 num_examples: 785392 download_size: 730412322573 dataset_size: 880058054404 configs: - config_name: default data_files: - split: train path: data/train-* tags: - remote-sensing - multi-temporal - multi-spectral - canopy-height-prediction - 3-pg - infrared - rgb - model --- # 🌳 PrediTree: A Multi-Temporal Multi-Spectral Sub-Meter Canopy Height Maps Dataset [![Dataset](https://img.shields.io/badge/πŸ€—-Dataset-blue.svg)](https://huggingface.co/datasets/hiyam-d/vhr_canopy_height_allier_50cm_small) [![Paper](https://img.shields.io/badge/πŸ“„-Paper-green.svg)](https://arxiv.org/pdf/2509.01202) [![License](https://img.shields.io/badge/License-Apache--2.0-yellow.svg)](https://www.apache.org/licenses/LICENSE-2.0) ![Sample Panels](./sample.png) ## πŸ“– Overview **PrediTree** is a large-scale **multi-temporal, multi-spectral canopy height dataset** designed for 🌍 **remote sensing, forestry monitoring, and environmental analysis**. All imagery and canopy height products are **spatially aligned** at **0.5 m resolution**, enabling fine-grained tree growth prediction and ecological studies. --- ## ✨ Key Highlights - πŸ“Š **Multi-Temporal**: 3 yearly acquisitions (RGB + NIR + NDVI) - 🌈 **Multi-Spectral**: High-resolution optical imagery including RGB, NIR, and derived NDVI - 🌲 **Canopy Height Models (CHM)**: LiDAR-based data - πŸ“ **Resolution**: 0.5 m - 🌍 **Coverage**: France-wide dataset with departmental splits - πŸ“¦ **Scale**: 785k training patches, ~880 GB of data --- ## πŸ“‚ Dataset Structure Each sample contains: | Column | Description | |--------|-------------| | `chm` | 🌲 Canopy Height Model (m) | | `rgbnir_ndvi_[1-3]` | πŸ“Έ RGB + NIR + NDVI imagery for three years (5 bands, 256Γ—256) | | `rgbnir_year_[1-3]` | πŸ“… Acquisition year for imagery | | `chm_mean_year` | 🏞️ Average canopy height across years | | `no_data_percentage` | ❌ % missing pixels | | `crs`, `transform`, `bounds`, `resolution` | πŸ—ΊοΈ Geospatial metadata | --- ## πŸ“Š Dataset Specs ```yaml splits: train: num_examples: 785,392 256_256px_subtile_examples: 3,141,568 size: 880 GB resolution: 0.5 m dataset_size: 880 GB license: apache-2.0 ``` --- ## πŸ”¬ Scientific Context PrediTree is the **first CHM dataset to offer multi-temporal sub-meter CHM-aligned imagery specifically designed for training and evaluating tree height prediction models**. ![Comparison with Existing Datasets](./comparison.png) --- ## πŸ“œ Citation If you use this dataset, please cite: ```bibtex @inproceedings{debary2025preditree, title={PrediTree: A Multi-Temporal Sub-meter Dataset of Multi-Spectral Imagery Aligned With Canopy Height Maps}, author={Debary, Hiyam and Fiaz, Mustansar and Klein, Levente}, booktitle={GAIA}, year={2025}, url={https://huggingface.co/datasets/hiyam-d/PrediTree} } ``` --- ## πŸ”– Tags `remote-sensing` Β· `multi-temporal` Β· `multi-spectral` Β· `canopy-height-prediction` Β· `infrared` Β· `rgb` Β· `model`