Commit
·
495e3b8
1
Parent(s):
6f0e016
new acs datasets
Browse files
README.md
CHANGED
@@ -2,10 +2,14 @@
|
|
2 |
configs:
|
3 |
- config_name: compas_is_recid
|
4 |
data_files: data/compas_is_recid/compas_is_recid_dataset.parquet
|
|
|
|
|
5 |
- config_name: law_school
|
6 |
data_files: data/law_school/law_school_dataset.parquet
|
7 |
- config_name: acsincome
|
8 |
data_files: data/acsincome/acsincome_dataset.parquet
|
|
|
|
|
9 |
- config_name: bank_marketing
|
10 |
data_files: data/bank_marketing/bank_marketing_dataset.parquet
|
11 |
- config_name: mw_small
|
@@ -20,17 +24,19 @@ configs:
|
|
20 |
data_files: data/student/student_dataset.parquet
|
21 |
- config_name: us_crime
|
22 |
data_files: data/us_crime/us_crime_dataset.parquet
|
|
|
|
|
23 |
- config_name: german_credit
|
24 |
data_files: data/german_credit/german_credit_dataset.parquet
|
25 |
- config_name: mw_medium
|
26 |
data_files: data/mw_medium/mw_medium_dataset.parquet
|
27 |
-
- config_name: lastfm
|
28 |
-
data_files: data/lastfm/lastfm_dataset.parquet
|
29 |
- config_name: adult
|
30 |
data_files: data/adult/adult_dataset.parquet
|
31 |
- config_name: diabetes
|
32 |
data_files: data/diabetes/diabetes_dataset.parquet
|
33 |
- config_name: compas_two_year_recid
|
34 |
data_files: data/compas_two_year_recid/compas_two_year_recid_dataset.parquet
|
|
|
|
|
35 |
license: mit
|
36 |
---
|
|
|
2 |
configs:
|
3 |
- config_name: compas_is_recid
|
4 |
data_files: data/compas_is_recid/compas_is_recid_dataset.parquet
|
5 |
+
- config_name: acsemployment
|
6 |
+
data_files: data/acsemployment/acsemployment_dataset.parquet
|
7 |
- config_name: law_school
|
8 |
data_files: data/law_school/law_school_dataset.parquet
|
9 |
- config_name: acsincome
|
10 |
data_files: data/acsincome/acsincome_dataset.parquet
|
11 |
+
- config_name: acsmobility
|
12 |
+
data_files: data/acsmobility/acsmobility_dataset.parquet
|
13 |
- config_name: bank_marketing
|
14 |
data_files: data/bank_marketing/bank_marketing_dataset.parquet
|
15 |
- config_name: mw_small
|
|
|
24 |
data_files: data/student/student_dataset.parquet
|
25 |
- config_name: us_crime
|
26 |
data_files: data/us_crime/us_crime_dataset.parquet
|
27 |
+
- config_name: lastfm
|
28 |
+
data_files: data/lastfm/lastfm_dataset.parquet
|
29 |
- config_name: german_credit
|
30 |
data_files: data/german_credit/german_credit_dataset.parquet
|
31 |
- config_name: mw_medium
|
32 |
data_files: data/mw_medium/mw_medium_dataset.parquet
|
|
|
|
|
33 |
- config_name: adult
|
34 |
data_files: data/adult/adult_dataset.parquet
|
35 |
- config_name: diabetes
|
36 |
data_files: data/diabetes/diabetes_dataset.parquet
|
37 |
- config_name: compas_two_year_recid
|
38 |
data_files: data/compas_two_year_recid/compas_two_year_recid_dataset.parquet
|
39 |
+
- config_name: acstraveltime
|
40 |
+
data_files: data/acstraveltime/acstraveltime_dataset.parquet
|
41 |
license: mit
|
42 |
---
|
data/acsemployment/acsemployment_dataset.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62f8e846546746e1d0146d327c6900b795fdb085cb61d6d8f5124cc9719be897
|
3 |
+
size 14567381
|
data/acsmobility/acsmobility_dataset.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1c22dc431c5369f349ff37038e052e6e562d88ae12704a16754540fb0172200
|
3 |
+
size 4919021
|
data/acstraveltime/acstraveltime_dataset.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06c2eb2bb62d638386441e1ab6e16529a63d17a1306ac0c225b33b13d16023ac
|
3 |
+
size 11665588
|
dataset.ipynb
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from holisticai.datasets import load_dataset\n",
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"\n",
|
12 |
+
"from folktables import ACSDataSource, ACSIncome, ACSEmployment, ACSPublicCoverage, ACSMobility, ACSTravelTime\n",
|
13 |
+
"import numpy as np"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 7,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [
|
21 |
+
{
|
22 |
+
"data": {
|
23 |
+
"text/plain": [
|
24 |
+
"(1458542, 17)"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"execution_count": 7,
|
28 |
+
"metadata": {},
|
29 |
+
"output_type": "execute_result"
|
30 |
+
}
|
31 |
+
],
|
32 |
+
"source": [
|
33 |
+
"data = pd.read_parquet('data/acstraveltime/acstraveltime_dataset.parquet')\n",
|
34 |
+
"data.shape"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"datasets = [\"acsincome\", \"acspublic\", \"adult\", \"clinical_records\", \"law_school\", \"student\", \"us_crime\", \"german_credit\",\n",
|
44 |
+
" \"census_kdd\", \"bank_marketing\", \"compas_two_year_recid\", \"compas_is_recid\", \"diabetes\", \"mw_small\", \"mw_medium\"]\n",
|
45 |
+
"\n",
|
46 |
+
"tab = pd.DataFrame([], columns=['dataset', 'samples', 'features'])\n",
|
47 |
+
"for data_name in datasets:\n",
|
48 |
+
" dataset = load_dataset(data_name)\n",
|
49 |
+
" samples = dataset['X'].shape[0]\n",
|
50 |
+
" features = dataset['X'].shape[1]\n",
|
51 |
+
" new = {\n",
|
52 |
+
" 'dataset': data_name,\n",
|
53 |
+
" 'samples': samples,\n",
|
54 |
+
" 'features': features\n",
|
55 |
+
" }\n",
|
56 |
+
" tab = pd.concat([tab, pd.DataFrame([new])])\n",
|
57 |
+
"\n",
|
58 |
+
"print(tab.to_latex())"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 1,
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [
|
66 |
+
{
|
67 |
+
"ename": "",
|
68 |
+
"evalue": "",
|
69 |
+
"output_type": "error",
|
70 |
+
"traceback": [
|
71 |
+
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
|
72 |
+
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
|
73 |
+
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
|
74 |
+
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
75 |
+
]
|
76 |
+
}
|
77 |
+
],
|
78 |
+
"source": [
|
79 |
+
"def load_acs_data(path = 'datasets/', target_attr=\"income\", sensitive_attribute=\"sex\", survey_year=\"2018\", states=[\"CA\"], horizon=\"1-Year\",survey='person'):\n",
|
80 |
+
" data_source = ACSDataSource(survey_year=survey_year, horizon=horizon, survey=survey, root_dir=path)\n",
|
81 |
+
" data = data_source.get_data(states=states, download=False)\n",
|
82 |
+
"\n",
|
83 |
+
" if target_attr == \"acsincome\":\n",
|
84 |
+
" features, labels, _ = ACSIncome.df_to_pandas(data)\n",
|
85 |
+
" categorical_features = [\"COW\", \"SCHL\", \"MAR\", \"OCCP\", \"POBP\", \"RELP\", \"WKHP\"]\n",
|
86 |
+
" elif target_attr == \"acsemployment\":\n",
|
87 |
+
" features, labels, _ = ACSEmployment.df_to_pandas(data)\n",
|
88 |
+
" categorical_features = [\"AGEP\", \"SCHL\", \"MAR\", \"RELP\", \"DIS\", \"ESP\", \"CIT\", \"MIG\", \"MIL\", \"ANC\", \"NATIVITY\", \"DEAR\", \"DEYE\", \"DREM\"]\n",
|
89 |
+
" elif target_attr == \"acspubliccoverage\":\n",
|
90 |
+
" features, labels, _ = ACSPublicCoverage.df_to_pandas(data)\n",
|
91 |
+
" categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','CIT','MIG','MIL','ANC','NATIVITY','DEAR','DEYE','DREM','PINCP','ESR','ST','FER']\n",
|
92 |
+
" elif target_attr == \"acsmobility\":\n",
|
93 |
+
" features, labels, _ = ACSMobility.df_to_pandas(data)\n",
|
94 |
+
" categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','CIT','MIL','ANC','NATIVITY','RELP','DEAR','DEYE','DREM','GCL','COW','ESR','WKHP','JWMNP','PINCP']\n",
|
95 |
+
" elif target_attr == \"acstraveltime\":\n",
|
96 |
+
" features, labels, _ = ACSTravelTime.df_to_pandas(data)\n",
|
97 |
+
" categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','MIG','RELP','PUMA','ST','CIT','OCCP','JWTR','POWPUMA','POVPIP']\n",
|
98 |
+
"\n",
|
99 |
+
" else:\n",
|
100 |
+
" print( \"error\" )\n",
|
101 |
+
" \n",
|
102 |
+
"\n",
|
103 |
+
" df = features\n",
|
104 |
+
" y = labels.astype(np.int32)\n",
|
105 |
+
" categorical_features.append(\"RAC1P\")\n",
|
106 |
+
" categorical_features.append(\"SEX\")\n",
|
107 |
+
"\n",
|
108 |
+
" X = df\n",
|
109 |
+
" X[categorical_features] = X[categorical_features].astype(\"string\")\n",
|
110 |
+
"\n",
|
111 |
+
"\n",
|
112 |
+
" # Convert all non-uint8 columns to float32\n",
|
113 |
+
" string_cols = X.select_dtypes(exclude=\"string\").columns\n",
|
114 |
+
" X[string_cols] = X[string_cols].astype(\"float32\")\n",
|
115 |
+
"\n",
|
116 |
+
" data = pd.concat([X, y], axis=1)\n",
|
117 |
+
" data.to_parquet(f'datasets/{target_attr}.parquet')\n",
|
118 |
+
"\n",
|
119 |
+
"\n",
|
120 |
+
"states = [\"CA\", \"TX\", \"NY\", \"FL\", \"IL\", \"PA\", \"OH\", \"GA\", \"NC\", \"MI\", \"NJ\", \"VA\", \"WA\", \"AZ\", \"MA\", \"TN\", \"IN\", \"MO\", \"MD\", \"WI\", \"CO\", \"MN\", \"SC\", \"AL\", \"LA\", \"KY\", \"OR\", \"OK\", \"CT\", \"IA\", \"MS\", \"AR\", \"UT\", \"NV\", \"KS\", \"NM\", \"NE\", \"WV\", \"ID\", \"HI\", \"ME\", \"NH\", \"RI\", \"MT\", \"DE\", \"SD\", \"ND\", \"AK\", \"VT\", \"WY\"]\n",
|
121 |
+
"for target in [\"acstraveltime\"]:\n",
|
122 |
+
" load_acs_data(target_attr=target, states=states)"
|
123 |
+
]
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"metadata": {
|
127 |
+
"kernelspec": {
|
128 |
+
"display_name": "base",
|
129 |
+
"language": "python",
|
130 |
+
"name": "python3"
|
131 |
+
},
|
132 |
+
"language_info": {
|
133 |
+
"codemirror_mode": {
|
134 |
+
"name": "ipython",
|
135 |
+
"version": 3
|
136 |
+
},
|
137 |
+
"file_extension": ".py",
|
138 |
+
"mimetype": "text/x-python",
|
139 |
+
"name": "python",
|
140 |
+
"nbconvert_exporter": "python",
|
141 |
+
"pygments_lexer": "ipython3",
|
142 |
+
"version": "3.12.2"
|
143 |
+
}
|
144 |
+
},
|
145 |
+
"nbformat": 4,
|
146 |
+
"nbformat_minor": 2
|
147 |
+
}
|