kleytondacosta commited on
Commit
495e3b8
·
1 Parent(s): 6f0e016

new acs datasets

Browse files
README.md CHANGED
@@ -2,10 +2,14 @@
2
  configs:
3
  - config_name: compas_is_recid
4
  data_files: data/compas_is_recid/compas_is_recid_dataset.parquet
 
 
5
  - config_name: law_school
6
  data_files: data/law_school/law_school_dataset.parquet
7
  - config_name: acsincome
8
  data_files: data/acsincome/acsincome_dataset.parquet
 
 
9
  - config_name: bank_marketing
10
  data_files: data/bank_marketing/bank_marketing_dataset.parquet
11
  - config_name: mw_small
@@ -20,17 +24,19 @@ configs:
20
  data_files: data/student/student_dataset.parquet
21
  - config_name: us_crime
22
  data_files: data/us_crime/us_crime_dataset.parquet
 
 
23
  - config_name: german_credit
24
  data_files: data/german_credit/german_credit_dataset.parquet
25
  - config_name: mw_medium
26
  data_files: data/mw_medium/mw_medium_dataset.parquet
27
- - config_name: lastfm
28
- data_files: data/lastfm/lastfm_dataset.parquet
29
  - config_name: adult
30
  data_files: data/adult/adult_dataset.parquet
31
  - config_name: diabetes
32
  data_files: data/diabetes/diabetes_dataset.parquet
33
  - config_name: compas_two_year_recid
34
  data_files: data/compas_two_year_recid/compas_two_year_recid_dataset.parquet
 
 
35
  license: mit
36
  ---
 
2
  configs:
3
  - config_name: compas_is_recid
4
  data_files: data/compas_is_recid/compas_is_recid_dataset.parquet
5
+ - config_name: acsemployment
6
+ data_files: data/acsemployment/acsemployment_dataset.parquet
7
  - config_name: law_school
8
  data_files: data/law_school/law_school_dataset.parquet
9
  - config_name: acsincome
10
  data_files: data/acsincome/acsincome_dataset.parquet
11
+ - config_name: acsmobility
12
+ data_files: data/acsmobility/acsmobility_dataset.parquet
13
  - config_name: bank_marketing
14
  data_files: data/bank_marketing/bank_marketing_dataset.parquet
15
  - config_name: mw_small
 
24
  data_files: data/student/student_dataset.parquet
25
  - config_name: us_crime
26
  data_files: data/us_crime/us_crime_dataset.parquet
27
+ - config_name: lastfm
28
+ data_files: data/lastfm/lastfm_dataset.parquet
29
  - config_name: german_credit
30
  data_files: data/german_credit/german_credit_dataset.parquet
31
  - config_name: mw_medium
32
  data_files: data/mw_medium/mw_medium_dataset.parquet
 
 
33
  - config_name: adult
34
  data_files: data/adult/adult_dataset.parquet
35
  - config_name: diabetes
36
  data_files: data/diabetes/diabetes_dataset.parquet
37
  - config_name: compas_two_year_recid
38
  data_files: data/compas_two_year_recid/compas_two_year_recid_dataset.parquet
39
+ - config_name: acstraveltime
40
+ data_files: data/acstraveltime/acstraveltime_dataset.parquet
41
  license: mit
42
  ---
data/acsemployment/acsemployment_dataset.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62f8e846546746e1d0146d327c6900b795fdb085cb61d6d8f5124cc9719be897
3
+ size 14567381
data/acsmobility/acsmobility_dataset.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1c22dc431c5369f349ff37038e052e6e562d88ae12704a16754540fb0172200
3
+ size 4919021
data/acstraveltime/acstraveltime_dataset.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06c2eb2bb62d638386441e1ab6e16529a63d17a1306ac0c225b33b13d16023ac
3
+ size 11665588
dataset.ipynb ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from holisticai.datasets import load_dataset\n",
10
+ "import pandas as pd\n",
11
+ "\n",
12
+ "from folktables import ACSDataSource, ACSIncome, ACSEmployment, ACSPublicCoverage, ACSMobility, ACSTravelTime\n",
13
+ "import numpy as np"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": 7,
19
+ "metadata": {},
20
+ "outputs": [
21
+ {
22
+ "data": {
23
+ "text/plain": [
24
+ "(1458542, 17)"
25
+ ]
26
+ },
27
+ "execution_count": 7,
28
+ "metadata": {},
29
+ "output_type": "execute_result"
30
+ }
31
+ ],
32
+ "source": [
33
+ "data = pd.read_parquet('data/acstraveltime/acstraveltime_dataset.parquet')\n",
34
+ "data.shape"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "datasets = [\"acsincome\", \"acspublic\", \"adult\", \"clinical_records\", \"law_school\", \"student\", \"us_crime\", \"german_credit\",\n",
44
+ " \"census_kdd\", \"bank_marketing\", \"compas_two_year_recid\", \"compas_is_recid\", \"diabetes\", \"mw_small\", \"mw_medium\"]\n",
45
+ "\n",
46
+ "tab = pd.DataFrame([], columns=['dataset', 'samples', 'features'])\n",
47
+ "for data_name in datasets:\n",
48
+ " dataset = load_dataset(data_name)\n",
49
+ " samples = dataset['X'].shape[0]\n",
50
+ " features = dataset['X'].shape[1]\n",
51
+ " new = {\n",
52
+ " 'dataset': data_name,\n",
53
+ " 'samples': samples,\n",
54
+ " 'features': features\n",
55
+ " }\n",
56
+ " tab = pd.concat([tab, pd.DataFrame([new])])\n",
57
+ "\n",
58
+ "print(tab.to_latex())"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "code",
63
+ "execution_count": 1,
64
+ "metadata": {},
65
+ "outputs": [
66
+ {
67
+ "ename": "",
68
+ "evalue": "",
69
+ "output_type": "error",
70
+ "traceback": [
71
+ "\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
72
+ "\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
73
+ "\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
74
+ "\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
75
+ ]
76
+ }
77
+ ],
78
+ "source": [
79
+ "def load_acs_data(path = 'datasets/', target_attr=\"income\", sensitive_attribute=\"sex\", survey_year=\"2018\", states=[\"CA\"], horizon=\"1-Year\",survey='person'):\n",
80
+ " data_source = ACSDataSource(survey_year=survey_year, horizon=horizon, survey=survey, root_dir=path)\n",
81
+ " data = data_source.get_data(states=states, download=False)\n",
82
+ "\n",
83
+ " if target_attr == \"acsincome\":\n",
84
+ " features, labels, _ = ACSIncome.df_to_pandas(data)\n",
85
+ " categorical_features = [\"COW\", \"SCHL\", \"MAR\", \"OCCP\", \"POBP\", \"RELP\", \"WKHP\"]\n",
86
+ " elif target_attr == \"acsemployment\":\n",
87
+ " features, labels, _ = ACSEmployment.df_to_pandas(data)\n",
88
+ " categorical_features = [\"AGEP\", \"SCHL\", \"MAR\", \"RELP\", \"DIS\", \"ESP\", \"CIT\", \"MIG\", \"MIL\", \"ANC\", \"NATIVITY\", \"DEAR\", \"DEYE\", \"DREM\"]\n",
89
+ " elif target_attr == \"acspubliccoverage\":\n",
90
+ " features, labels, _ = ACSPublicCoverage.df_to_pandas(data)\n",
91
+ " categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','CIT','MIG','MIL','ANC','NATIVITY','DEAR','DEYE','DREM','PINCP','ESR','ST','FER']\n",
92
+ " elif target_attr == \"acsmobility\":\n",
93
+ " features, labels, _ = ACSMobility.df_to_pandas(data)\n",
94
+ " categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','CIT','MIL','ANC','NATIVITY','RELP','DEAR','DEYE','DREM','GCL','COW','ESR','WKHP','JWMNP','PINCP']\n",
95
+ " elif target_attr == \"acstraveltime\":\n",
96
+ " features, labels, _ = ACSTravelTime.df_to_pandas(data)\n",
97
+ " categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','MIG','RELP','PUMA','ST','CIT','OCCP','JWTR','POWPUMA','POVPIP']\n",
98
+ "\n",
99
+ " else:\n",
100
+ " print( \"error\" )\n",
101
+ " \n",
102
+ "\n",
103
+ " df = features\n",
104
+ " y = labels.astype(np.int32)\n",
105
+ " categorical_features.append(\"RAC1P\")\n",
106
+ " categorical_features.append(\"SEX\")\n",
107
+ "\n",
108
+ " X = df\n",
109
+ " X[categorical_features] = X[categorical_features].astype(\"string\")\n",
110
+ "\n",
111
+ "\n",
112
+ " # Convert all non-uint8 columns to float32\n",
113
+ " string_cols = X.select_dtypes(exclude=\"string\").columns\n",
114
+ " X[string_cols] = X[string_cols].astype(\"float32\")\n",
115
+ "\n",
116
+ " data = pd.concat([X, y], axis=1)\n",
117
+ " data.to_parquet(f'datasets/{target_attr}.parquet')\n",
118
+ "\n",
119
+ "\n",
120
+ "states = [\"CA\", \"TX\", \"NY\", \"FL\", \"IL\", \"PA\", \"OH\", \"GA\", \"NC\", \"MI\", \"NJ\", \"VA\", \"WA\", \"AZ\", \"MA\", \"TN\", \"IN\", \"MO\", \"MD\", \"WI\", \"CO\", \"MN\", \"SC\", \"AL\", \"LA\", \"KY\", \"OR\", \"OK\", \"CT\", \"IA\", \"MS\", \"AR\", \"UT\", \"NV\", \"KS\", \"NM\", \"NE\", \"WV\", \"ID\", \"HI\", \"ME\", \"NH\", \"RI\", \"MT\", \"DE\", \"SD\", \"ND\", \"AK\", \"VT\", \"WY\"]\n",
121
+ "for target in [\"acstraveltime\"]:\n",
122
+ " load_acs_data(target_attr=target, states=states)"
123
+ ]
124
+ }
125
+ ],
126
+ "metadata": {
127
+ "kernelspec": {
128
+ "display_name": "base",
129
+ "language": "python",
130
+ "name": "python3"
131
+ },
132
+ "language_info": {
133
+ "codemirror_mode": {
134
+ "name": "ipython",
135
+ "version": 3
136
+ },
137
+ "file_extension": ".py",
138
+ "mimetype": "text/x-python",
139
+ "name": "python",
140
+ "nbconvert_exporter": "python",
141
+ "pygments_lexer": "ipython3",
142
+ "version": "3.12.2"
143
+ }
144
+ },
145
+ "nbformat": 4,
146
+ "nbformat_minor": 2
147
+ }