{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from holisticai.datasets import load_dataset\n", "import pandas as pd\n", "\n", "from folktables import ACSDataSource, ACSIncome, ACSEmployment, ACSPublicCoverage, ACSMobility, ACSTravelTime\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1458542, 17)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_parquet('data/acstraveltime/acstraveltime_dataset.parquet')\n", "data.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "datasets = [\"acsincome\", \"acspublic\", \"adult\", \"clinical_records\", \"law_school\", \"student\", \"us_crime\", \"german_credit\",\n", " \"census_kdd\", \"bank_marketing\", \"compas_two_year_recid\", \"compas_is_recid\", \"diabetes\", \"mw_small\", \"mw_medium\"]\n", "\n", "tab = pd.DataFrame([], columns=['dataset', 'samples', 'features'])\n", "for data_name in datasets:\n", " dataset = load_dataset(data_name)\n", " samples = dataset['X'].shape[0]\n", " features = dataset['X'].shape[1]\n", " new = {\n", " 'dataset': data_name,\n", " 'samples': samples,\n", " 'features': features\n", " }\n", " tab = pd.concat([tab, pd.DataFrame([new])])\n", "\n", "print(tab.to_latex())" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "ename": "", "evalue": "", "output_type": "error", "traceback": [ "\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n", "\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n", "\u001b[1;31mClick here for more info. \n", "\u001b[1;31mView Jupyter log for further details." ] } ], "source": [ "def load_acs_data(path = 'datasets/', target_attr=\"income\", sensitive_attribute=\"sex\", survey_year=\"2018\", states=[\"CA\"], horizon=\"1-Year\",survey='person'):\n", " data_source = ACSDataSource(survey_year=survey_year, horizon=horizon, survey=survey, root_dir=path)\n", " data = data_source.get_data(states=states, download=False)\n", "\n", " if target_attr == \"acsincome\":\n", " features, labels, _ = ACSIncome.df_to_pandas(data)\n", " categorical_features = [\"COW\", \"SCHL\", \"MAR\", \"OCCP\", \"POBP\", \"RELP\", \"WKHP\"]\n", " elif target_attr == \"acsemployment\":\n", " features, labels, _ = ACSEmployment.df_to_pandas(data)\n", " categorical_features = [\"AGEP\", \"SCHL\", \"MAR\", \"RELP\", \"DIS\", \"ESP\", \"CIT\", \"MIG\", \"MIL\", \"ANC\", \"NATIVITY\", \"DEAR\", \"DEYE\", \"DREM\"]\n", " elif target_attr == \"acspubliccoverage\":\n", " features, labels, _ = ACSPublicCoverage.df_to_pandas(data)\n", " categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','CIT','MIG','MIL','ANC','NATIVITY','DEAR','DEYE','DREM','PINCP','ESR','ST','FER']\n", " elif target_attr == \"acsmobility\":\n", " features, labels, _ = ACSMobility.df_to_pandas(data)\n", " categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','CIT','MIL','ANC','NATIVITY','RELP','DEAR','DEYE','DREM','GCL','COW','ESR','WKHP','JWMNP','PINCP']\n", " elif target_attr == \"acstraveltime\":\n", " features, labels, _ = ACSTravelTime.df_to_pandas(data)\n", " categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','MIG','RELP','PUMA','ST','CIT','OCCP','JWTR','POWPUMA','POVPIP']\n", "\n", " else:\n", " print( \"error\" )\n", " \n", "\n", " df = features\n", " y = labels.astype(np.int32)\n", " categorical_features.append(\"RAC1P\")\n", " categorical_features.append(\"SEX\")\n", "\n", " X = df\n", " X[categorical_features] = X[categorical_features].astype(\"string\")\n", "\n", "\n", " # Convert all non-uint8 columns to float32\n", " string_cols = X.select_dtypes(exclude=\"string\").columns\n", " X[string_cols] = X[string_cols].astype(\"float32\")\n", "\n", " data = pd.concat([X, y], axis=1)\n", " data.to_parquet(f'datasets/{target_attr}.parquet')\n", "\n", "\n", "states = [\"CA\", \"TX\", \"NY\", \"FL\", \"IL\", \"PA\", \"OH\", \"GA\", \"NC\", \"MI\", \"NJ\", \"VA\", \"WA\", \"AZ\", \"MA\", \"TN\", \"IN\", \"MO\", \"MD\", \"WI\", \"CO\", \"MN\", \"SC\", \"AL\", \"LA\", \"KY\", \"OR\", \"OK\", \"CT\", \"IA\", \"MS\", \"AR\", \"UT\", \"NV\", \"KS\", \"NM\", \"NE\", \"WV\", \"ID\", \"HI\", \"ME\", \"NH\", \"RI\", \"MT\", \"DE\", \"SD\", \"ND\", \"AK\", \"VT\", \"WY\"]\n", "for target in [\"acstraveltime\"]:\n", " load_acs_data(target_attr=target, states=states)" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }