{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from holisticai.datasets import load_dataset\n",
"import pandas as pd\n",
"\n",
"from folktables import ACSDataSource, ACSIncome, ACSEmployment, ACSPublicCoverage, ACSMobility, ACSTravelTime\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1458542, 17)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_parquet('data/acstraveltime/acstraveltime_dataset.parquet')\n",
"data.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datasets = [\"acsincome\", \"acspublic\", \"adult\", \"clinical_records\", \"law_school\", \"student\", \"us_crime\", \"german_credit\",\n",
" \"census_kdd\", \"bank_marketing\", \"compas_two_year_recid\", \"compas_is_recid\", \"diabetes\", \"mw_small\", \"mw_medium\"]\n",
"\n",
"tab = pd.DataFrame([], columns=['dataset', 'samples', 'features'])\n",
"for data_name in datasets:\n",
" dataset = load_dataset(data_name)\n",
" samples = dataset['X'].shape[0]\n",
" features = dataset['X'].shape[1]\n",
" new = {\n",
" 'dataset': data_name,\n",
" 'samples': samples,\n",
" 'features': features\n",
" }\n",
" tab = pd.concat([tab, pd.DataFrame([new])])\n",
"\n",
"print(tab.to_latex())"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
"\u001b[1;31mClick here for more info. \n",
"\u001b[1;31mView Jupyter log for further details."
]
}
],
"source": [
"def load_acs_data(path = 'datasets/', target_attr=\"income\", sensitive_attribute=\"sex\", survey_year=\"2018\", states=[\"CA\"], horizon=\"1-Year\",survey='person'):\n",
" data_source = ACSDataSource(survey_year=survey_year, horizon=horizon, survey=survey, root_dir=path)\n",
" data = data_source.get_data(states=states, download=False)\n",
"\n",
" if target_attr == \"acsincome\":\n",
" features, labels, _ = ACSIncome.df_to_pandas(data)\n",
" categorical_features = [\"COW\", \"SCHL\", \"MAR\", \"OCCP\", \"POBP\", \"RELP\", \"WKHP\"]\n",
" elif target_attr == \"acsemployment\":\n",
" features, labels, _ = ACSEmployment.df_to_pandas(data)\n",
" categorical_features = [\"AGEP\", \"SCHL\", \"MAR\", \"RELP\", \"DIS\", \"ESP\", \"CIT\", \"MIG\", \"MIL\", \"ANC\", \"NATIVITY\", \"DEAR\", \"DEYE\", \"DREM\"]\n",
" elif target_attr == \"acspubliccoverage\":\n",
" features, labels, _ = ACSPublicCoverage.df_to_pandas(data)\n",
" categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','CIT','MIG','MIL','ANC','NATIVITY','DEAR','DEYE','DREM','PINCP','ESR','ST','FER']\n",
" elif target_attr == \"acsmobility\":\n",
" features, labels, _ = ACSMobility.df_to_pandas(data)\n",
" categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','CIT','MIL','ANC','NATIVITY','RELP','DEAR','DEYE','DREM','GCL','COW','ESR','WKHP','JWMNP','PINCP']\n",
" elif target_attr == \"acstraveltime\":\n",
" features, labels, _ = ACSTravelTime.df_to_pandas(data)\n",
" categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','MIG','RELP','PUMA','ST','CIT','OCCP','JWTR','POWPUMA','POVPIP']\n",
"\n",
" else:\n",
" print( \"error\" )\n",
" \n",
"\n",
" df = features\n",
" y = labels.astype(np.int32)\n",
" categorical_features.append(\"RAC1P\")\n",
" categorical_features.append(\"SEX\")\n",
"\n",
" X = df\n",
" X[categorical_features] = X[categorical_features].astype(\"string\")\n",
"\n",
"\n",
" # Convert all non-uint8 columns to float32\n",
" string_cols = X.select_dtypes(exclude=\"string\").columns\n",
" X[string_cols] = X[string_cols].astype(\"float32\")\n",
"\n",
" data = pd.concat([X, y], axis=1)\n",
" data.to_parquet(f'datasets/{target_attr}.parquet')\n",
"\n",
"\n",
"states = [\"CA\", \"TX\", \"NY\", \"FL\", \"IL\", \"PA\", \"OH\", \"GA\", \"NC\", \"MI\", \"NJ\", \"VA\", \"WA\", \"AZ\", \"MA\", \"TN\", \"IN\", \"MO\", \"MD\", \"WI\", \"CO\", \"MN\", \"SC\", \"AL\", \"LA\", \"KY\", \"OR\", \"OK\", \"CT\", \"IA\", \"MS\", \"AR\", \"UT\", \"NV\", \"KS\", \"NM\", \"NE\", \"WV\", \"ID\", \"HI\", \"ME\", \"NH\", \"RI\", \"MT\", \"DE\", \"SD\", \"ND\", \"AK\", \"VT\", \"WY\"]\n",
"for target in [\"acstraveltime\"]:\n",
" load_acs_data(target_attr=target, states=states)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}