Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Arabic
Size:
1K - 10K
License:
Commit
•
d2a0f44
1
Parent(s):
cf18961
Convert dataset to Parquet
Browse filesConvert dataset to Parquet.
- README.md +15 -7
- dataset_infos.json +70 -1
- plain_text/train-00000-of-00001.parquet +3 -0
- plain_text/validation-00000-of-00001.parquet +3 -0
README.md
CHANGED
@@ -5,8 +5,6 @@ language_creators:
|
|
5 |
- crowdsourced
|
6 |
language:
|
7 |
- ar
|
8 |
-
language_bcp47:
|
9 |
-
- ar-SA
|
10 |
license:
|
11 |
- mit
|
12 |
multilinguality:
|
@@ -21,7 +19,10 @@ task_ids:
|
|
21 |
- extractive-qa
|
22 |
paperswithcode_id: arcd
|
23 |
pretty_name: ARCD
|
|
|
|
|
24 |
dataset_info:
|
|
|
25 |
features:
|
26 |
- name: id
|
27 |
dtype: string
|
@@ -37,16 +38,23 @@ dataset_info:
|
|
37 |
dtype: string
|
38 |
- name: answer_start
|
39 |
dtype: int32
|
40 |
-
config_name: plain_text
|
41 |
splits:
|
42 |
- name: train
|
43 |
-
num_bytes:
|
44 |
num_examples: 693
|
45 |
- name: validation
|
46 |
-
num_bytes:
|
47 |
num_examples: 702
|
48 |
-
download_size:
|
49 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
---
|
51 |
|
52 |
# Dataset Card for "arcd"
|
|
|
5 |
- crowdsourced
|
6 |
language:
|
7 |
- ar
|
|
|
|
|
8 |
license:
|
9 |
- mit
|
10 |
multilinguality:
|
|
|
19 |
- extractive-qa
|
20 |
paperswithcode_id: arcd
|
21 |
pretty_name: ARCD
|
22 |
+
language_bcp47:
|
23 |
+
- ar-SA
|
24 |
dataset_info:
|
25 |
+
config_name: plain_text
|
26 |
features:
|
27 |
- name: id
|
28 |
dtype: string
|
|
|
38 |
dtype: string
|
39 |
- name: answer_start
|
40 |
dtype: int32
|
|
|
41 |
splits:
|
42 |
- name: train
|
43 |
+
num_bytes: 811036
|
44 |
num_examples: 693
|
45 |
- name: validation
|
46 |
+
num_bytes: 885620
|
47 |
num_examples: 702
|
48 |
+
download_size: 365858
|
49 |
+
dataset_size: 1696656
|
50 |
+
configs:
|
51 |
+
- config_name: plain_text
|
52 |
+
data_files:
|
53 |
+
- split: train
|
54 |
+
path: plain_text/train-*
|
55 |
+
- split: validation
|
56 |
+
path: plain_text/validation-*
|
57 |
+
default: true
|
58 |
---
|
59 |
|
60 |
# Dataset Card for "arcd"
|
dataset_infos.json
CHANGED
@@ -1 +1,70 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"plain_text": {
|
3 |
+
"description": " Arabic Reading Comprehension Dataset (ARCD) composed of 1,395 questions posed by crowdworkers on Wikipedia articles.\n",
|
4 |
+
"citation": "@inproceedings{mozannar-etal-2019-neural,\n title = {Neural {A}rabic Question Answering},\n author = {Mozannar, Hussein and Maamary, Elie and El Hajal, Karl and Hajj, Hazem},\n booktitle = {Proceedings of the Fourth Arabic Natural Language Processing Workshop},\n month = {aug},\n year = {2019},\n address = {Florence, Italy},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W19-4612},\n doi = {10.18653/v1/W19-4612},\n pages = {108--118},\n abstract = {This paper tackles the problem of open domain factual Arabic question answering (QA) using Wikipedia as our knowledge source. This constrains the answer of any question to be a span of text in Wikipedia. Open domain QA for Arabic entails three challenges: annotated QA datasets in Arabic, large scale efficient information retrieval and machine reading comprehension. To deal with the lack of Arabic QA datasets we present the Arabic Reading Comprehension Dataset (ARCD) composed of 1,395 questions posed by crowdworkers on Wikipedia articles, and a machine translation of the Stanford Question Answering Dataset (Arabic-SQuAD). Our system for open domain question answering in Arabic (SOQAL) is based on two components: (1) a document retriever using a hierarchical TF-IDF approach and (2) a neural reading comprehension model using the pre-trained bi-directional transformer BERT. Our experiments on ARCD indicate the effectiveness of our approach with our BERT-based reader achieving a 61.3 F1 score, and our open domain system SOQAL achieving a 27.6 F1 score.}\n}\n",
|
5 |
+
"homepage": "https://github.com/husseinmozannar/SOQAL/tree/master/data",
|
6 |
+
"license": "",
|
7 |
+
"features": {
|
8 |
+
"id": {
|
9 |
+
"dtype": "string",
|
10 |
+
"_type": "Value"
|
11 |
+
},
|
12 |
+
"title": {
|
13 |
+
"dtype": "string",
|
14 |
+
"_type": "Value"
|
15 |
+
},
|
16 |
+
"context": {
|
17 |
+
"dtype": "string",
|
18 |
+
"_type": "Value"
|
19 |
+
},
|
20 |
+
"question": {
|
21 |
+
"dtype": "string",
|
22 |
+
"_type": "Value"
|
23 |
+
},
|
24 |
+
"answers": {
|
25 |
+
"feature": {
|
26 |
+
"text": {
|
27 |
+
"dtype": "string",
|
28 |
+
"_type": "Value"
|
29 |
+
},
|
30 |
+
"answer_start": {
|
31 |
+
"dtype": "int32",
|
32 |
+
"_type": "Value"
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"_type": "Sequence"
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"task_templates": [
|
39 |
+
{
|
40 |
+
"task": "question-answering-extractive"
|
41 |
+
}
|
42 |
+
],
|
43 |
+
"builder_name": "parquet",
|
44 |
+
"dataset_name": "arcd",
|
45 |
+
"config_name": "plain_text",
|
46 |
+
"version": {
|
47 |
+
"version_str": "1.0.0",
|
48 |
+
"major": 1,
|
49 |
+
"minor": 0,
|
50 |
+
"patch": 0
|
51 |
+
},
|
52 |
+
"splits": {
|
53 |
+
"train": {
|
54 |
+
"name": "train",
|
55 |
+
"num_bytes": 811036,
|
56 |
+
"num_examples": 693,
|
57 |
+
"dataset_name": null
|
58 |
+
},
|
59 |
+
"validation": {
|
60 |
+
"name": "validation",
|
61 |
+
"num_bytes": 885620,
|
62 |
+
"num_examples": 702,
|
63 |
+
"dataset_name": null
|
64 |
+
}
|
65 |
+
},
|
66 |
+
"download_size": 365858,
|
67 |
+
"dataset_size": 1696656,
|
68 |
+
"size_in_bytes": 2062514
|
69 |
+
}
|
70 |
+
}
|
plain_text/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8167f99702ed6b2457ba74b044b2b04bce61e70ac3df5fe46c0386a31a307490
|
3 |
+
size 173521
|
plain_text/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a74775a55a6b13d8430c2127be32efeb5c463a201c864b876d6eec29067072f8
|
3 |
+
size 192337
|