--- dataset_info: features: - name: idx dtype: int64 - name: names dtype: string - name: parallel_chain dtype: string - name: parallel_total_val dtype: float64 - name: parallel_lastname dtype: string - name: parallel_single_val dtype: float64 - name: forward_chain dtype: string - name: forward_total_val dtype: float64 - name: forward_lastname dtype: string - name: forward_single_val dtype: float64 - name: backward_chain dtype: string - name: backward_total_val dtype: float64 - name: backward_lastname dtype: string - name: backward_single_val dtype: float64 - name: chaotic_chain dtype: string - name: chaotic_total_val dtype: float64 - name: chaotic_lastname dtype: string - name: chaotic_single_val dtype: float64 splits: - name: k5 num_bytes: 178184 num_examples: 200 - name: k10 num_bytes: 333938 num_examples: 200 - name: k20 num_bytes: 647136 num_examples: 200 - name: k50 num_bytes: 1582289 num_examples: 200 - name: k100 num_bytes: 3142590 num_examples: 200 - name: k200 num_bytes: 6266799 num_examples: 200 download_size: 4072876 dataset_size: 12150936 configs: - config_name: default data_files: - split: k5 path: data/k5-* - split: k10 path: data/k10-* - split: k20 path: data/k20-* - split: k50 path: data/k50-* - split: k100 path: data/k100-* - split: k200 path: data/k200-* task_categories: - question-answering language: - en tags: - llm-evaluation - long-context - reasoning - benchmark --- ## NeedleChain: Measuring Intact Long-Context Reasoning Capability of Large Language Models

Github: Official github repository
Paper: Official Paper
---

NeedleChain is a benchmark designed to evaluate LLMs' intact long-context understanding. Every provided context consists of query-relevant information, requiring a comprehensive understanding to answer the given query. --- For manual creation of NeedleChain datasets, please refer to our official github repository.