--- dataset_info: - config_name: full features: - name: image dtype: image - name: actuated_angle struct: - name: '0' dtype: int32 - name: '1' dtype: int32 - name: '2' dtype: int32 - name: '3' dtype: int32 - name: '4' dtype: int32 - name: '5' dtype: int32 - name: '6' dtype: int32 - name: '7' dtype: int32 - name: '8' dtype: int32 - name: '9' dtype: int32 - name: '10' dtype: int32 - name: '11' dtype: int32 - name: '12' dtype: int32 - name: '13' dtype: int32 - name: '14' dtype: int32 - name: '15' dtype: int32 splits: - name: train num_bytes: 153291676475 num_examples: 135236 download_size: 153306274200 dataset_size: 153291676475 - config_name: small features: - name: image dtype: image - name: actuated_angle struct: - name: '0' dtype: int32 - name: '1' dtype: int32 - name: '2' dtype: int32 - name: '3' dtype: int32 - name: '4' dtype: int32 - name: '5' dtype: int32 - name: '6' dtype: int32 - name: '7' dtype: int32 - name: '8' dtype: int32 - name: '9' dtype: int32 - name: '10' dtype: int32 - name: '11' dtype: int32 - name: '12' dtype: int32 - name: '13' dtype: int32 - name: '14' dtype: int32 - name: '15' dtype: int32 splits: - name: train num_bytes: 22669945934 num_examples: 20000 download_size: 22672135072 dataset_size: 22669945934 configs: - config_name: full data_files: - split: train path: full/train-* - config_name: small data_files: - split: train path: small/train-* default: true license: mit task_categories: - robotics - reinforcement-learning tags: - robotics - humanoid - reinforcement - learning size_categories: - 100K Sample Face Image

## Dataset Summary The **Open Humanoid Actuated Face Dataset** is designed for researchers working on facial‑actuation control, robotics, reinforcement learning, and human–computer interaction. * **Origin** – collected during a reinforcement‑learning (RL) training loop whose objective was to reproduce human facial expressions. * **Platform** – a modified **i2Head InMoov** humanoid head with a silicone skin. * **Control** – **16 actuators** driving facial features and eyeballs. * **Pairing** – each example contains the raw RGB image **and** the exact actuator angles that produced it. --- ## Dataset Structure | Field | Type | Description | |-----------------|---------------|---------------------------------------------------------------| | `image` | `Image` | RGB capture of the humanoid face (resolution **1280x720**). | | `actuated_angle`| `struct` | 16 integer key - values (`"0"`, `"1"` .. so on) | ### Actuator Index Reference | Idx | Actuator | Idx | Actuator | |:---:|--------------------------------|:---:|-------------------------| | 00  | Cheek – Left | 08  | Eyelid Upper – Right | | 01  | Cheek – Right | 09  | Eyelid Lower – Right | | 02  | Eyeball Sideways – Left | 10  | Forehead – Right | | 03  | Eyeball Up/Down – Left | 11  | Forehead – Left | | 04  | Eyelid Upper – Left | 12  | Upper Nose | | 05  | Eyelid Lower – Left | 13  | Eyebrow – Right | | 06  | Eyeball Up/Down – Right | 14  | Jaw | | 07  | Eyeball Sideways – Right | 15  | Eyebrow – Left | --- ### Actuator Mapping Images | Full‑Face Map | Eye‑Only Map | |:-------------:|:-----------:| |
|
| --- ## Dataset Statistics | Split | Samples | Size | |-------|---------|------| | **Train (full)** | **[135k]** | ≈ 153 GB | | **Train (small)** | 20k | ≈ 22 GB | --- ## Usage Example ```python from datasets import load_dataset, Image # load the small subset ds = load_dataset("infosys/OpenHumnoidActuatedFaceData", name="small", split="train") ds = ds.cast_column("image", Image()) # decode image bytes ➜ PIL.Image img = ds[0]["image"] angles = ds[0]["actuated_angle"] # {'0': 90, '1': 20, ...} img.show() print(angles) ```` > **Tip**  > For the full corpus use `name="full"` (may require `streaming=True` once the dataset grows). --- ## Data Collection & RL Setup A detailed description of the RL pipeline, reward design, and actuator hardware will appear in our upcoming paper (in preparation, 2025). Briefly: 1. **Vision module** extracts target expression keypoints from live human video. 2. **Policy network** predicts 16 actuator set‑points. 3. **Real‑time reward** computes expression similarity + smoothness penalties. 4. Images & angle vectors are logged every *N* steps, forming this dataset. --- ## License Released under the **MIT License** – free for commercial and non‑commercial use. --- ## Citation ```bibtex @misc{amirul2025openhumanoidface, title = {Open Humanoid Actuated Face Dataset}, author = {Amirul et al.}, year = {2025}, url = {https://huggingface.co/datasets/infosys/OpenHumnoidActuatedFaceData} } ``` --- ## Contribution 1. Amirul Islam (amirul.islam@infosys.com) 2. Anant Pande (anant.pande@infosys.com) 3. Allahbaksh Asadullah (allabaksh_asadullah@infosys.com) - Mentor ## Acknowledgements Big thanks to the Infosys and Mohammed Rafee Tarafdar (CTO, Infosys) for providing us resources to work on this research project and thanks to all the community and everyone who helped us making this possible.