import json, random, math, os from pathlib import Path from datasets import ( BuilderConfig, DatasetInfo, DownloadManager, GeneratorBasedBuilder, SplitGenerator, Split, Features, Image, Value ) from huggingface_hub import hf_hub_url _REPO_ID = "infosys/OpenHumnoidActuatedFaceData" _IMAGES_PER_SHARD = 10_000 # how many files you put in each tar _TAR_TPL = "images-{start:05d}-{end:05d}.tar" # file-name pattern class ImageSubsetConfig(BuilderConfig): def __init__(self, name, sample_size=None, **kw): super().__init__(name=name, version="1.0.2", description=kw.get("description", "")) self.sample_size = sample_size class MyImageDataset(GeneratorBasedBuilder): BUILDER_CONFIGS = [ ImageSubsetConfig("full", sample_size=None, description="Entire dataset (≈100 GB)"), ImageSubsetConfig("small", sample_size=20_000, description="20 K random images"), ] DEFAULT_CONFIG_NAME = "small" # ------------------------------------------------------------------ # # 1. Schema # # ------------------------------------------------------------------ # def _info(self): return DatasetInfo( description="Humanoid face images + 16 servo angles.", features=Features( { "image": Image(), # PIL.Image is fine "actuated_angle": {str(i): Value("int32") for i in range(16)}, } ), ) # ------------------------------------------------------------------ # # 2. Download # # ------------------------------------------------------------------ # def _split_generators(self, dl_manager: DownloadManager): # ---- 2-a: load metadata -------------------------------------- # meta_url = hf_hub_url(_REPO_ID, "metadata.json", repo_type="dataset") meta_path = dl_manager.download(meta_url) with open(meta_path, encoding="utf-8") as f: metadata = json.load(f) all_names = sorted(metadata) selected = ( # sampling logic sorted(random.sample(all_names, self.config.sample_size)) if self.config.sample_size else all_names ) selected_set = set(selected) # ---- 2-b: figure out which shards we need -------------------- # max_idx = len(all_names) - 1 n_shards = math.floor(max_idx / _IMAGES_PER_SHARD) + 1 shard_files = [ _TAR_TPL.format(start=s*_IMAGES_PER_SHARD, end=min((s+1)*_IMAGES_PER_SHARD-1, max_idx)) for s in range(n_shards) ] # ---- 2-c: download (and extract) each tar -------------------- # tar_urls = [hf_hub_url(_REPO_ID, f, repo_type="dataset") for f in shard_files] local_tars = dl_manager.download(tar_urls) # .tar paths # we’ll stream from the tar, so no extract() needed return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={ "tar_paths": local_tars, "metadata": metadata, "want": selected_set, }, ) ] # ------------------------------------------------------------------ # # 3. Generate # # ------------------------------------------------------------------ # def _generate_examples(self, tar_paths, metadata, want): """Stream over each tar and yield only requested files.""" idx = 0 for tar_path in tar_paths: # iterate without extraction for inner_path, fobj in \ self._iter_archive_fast(tar_path): # helper below fname = Path(inner_path).name # strip tar prefix if fname not in want: continue angles = metadata[fname] yield idx, { "image": {"bytes": fobj.read(), "path": fname}, "actuated_angle": {str(i): int(angles.get(str(i), 0)) for i in range(16)} } idx += 1 # Small wrapper so we don’t import datasets.utils.file_utils directly @staticmethod def _iter_archive_fast(tar_path): import tarfile with tarfile.open(tar_path) as tar: for member in tar: if member.isfile(): f = tar.extractfile(member) yield member.name, f