from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING import numpy as np import pytest from anndata import AnnData from matplotlib.testing.compare import compare_images import ehrapy as ep from ehrapy.io import read_csv if TYPE_CHECKING: import os from matplotlib.figure import Figure TEST_DATA_PATH = Path(__file__).parent / "data" @pytest.fixture def root_dir(): return Path(__file__).resolve().parent @pytest.fixture def rng(): return np.random.default_rng(seed=42) @pytest.fixture def mimic_2_encoded(): adata = ep.dt.mimic_2(encoded=True) return adata @pytest.fixture def mimic_2_10(): mimic_2_10 = ep.dt.mimic_2()[:10] return mimic_2_10 @pytest.fixture def mar_adata(rng) -> AnnData: """Generate MAR data using dependent columns.""" data = rng.random((100, 10)) # Assume missingness in the last column depends on the values of the first column missing_indicator = data[:, 0] < np.percentile(data[:, 0], 0.1 * 100) data[missing_indicator, -1] = np.nan # Only last column has missing values dependent on the first column return AnnData(data) @pytest.fixture def mcar_adata(rng) -> AnnData: """Generate MCAR data by randomly sampling.""" data = rng.random((100, 10)) missing_indices = np.random.choice(a=[False, True], size=data.shape, p=[1 - 0.1, 0.1]) data[missing_indices] = np.nan return AnnData(data) @pytest.fixture def adata_mini(): return read_csv(f"{TEST_DATA_PATH}/dataset1.csv", columns_obs_only=["glucose", "weight", "disease", "station"]) @pytest.fixture def adata_move_obs_num() -> AnnData: return read_csv(TEST_DATA_PATH / "io/dataset_move_obs_num.csv") @pytest.fixture def adata_move_obs_mix() -> AnnData: return read_csv(TEST_DATA_PATH / "io/dataset_move_obs_mix.csv") @pytest.fixture def impute_num_adata() -> AnnData: adata = read_csv(dataset_path=f"{TEST_DATA_PATH}/imputation/test_impute_num.csv") return adata @pytest.fixture def impute_adata() -> AnnData: adata = read_csv(dataset_path=f"{TEST_DATA_PATH}/imputation/test_impute.csv") return adata @pytest.fixture def impute_iris_adata() -> AnnData: adata = read_csv(dataset_path=f"{TEST_DATA_PATH}/imputation/test_impute_iris.csv") return adata @pytest.fixture def impute_titanic_adata(): adata = read_csv(dataset_path=f"{TEST_DATA_PATH}/imputation/test_impute_titanic.csv") return adata @pytest.fixture def encode_ds_1_adata() -> AnnData: adata = read_csv(dataset_path=f"{TEST_DATA_PATH}/encode/dataset1.csv") return adata @pytest.fixture def encode_ds_2_adata() -> AnnData: adata = read_csv(dataset_path=f"{TEST_DATA_PATH}/encode/dataset2.csv") return adata # simplified from https://github.com/scverse/scanpy/blob/main/scanpy/tests/conftest.py @pytest.fixture def check_same_image(tmp_path): def check_same_image( fig: Figure, base_path: Path | os.PathLike, *, tol: float, ) -> None: expected = Path(base_path).parent / (Path(base_path).name + "_expected.png") if not Path(expected).is_file(): raise OSError(f"No expected output found at {expected}.") actual = tmp_path / "actual.png" fig.savefig(actual, dpi=80) result = compare_images(expected, actual, tol=tol, in_decorator=True) if result is None: return None raise AssertionError(result) return check_same_image def asarray(a): import numpy as np return np.asarray(a) def as_dense_dask_array(a): import dask.array as da return da.asarray(a) ARRAY_TYPES = (asarray, as_dense_dask_array)