"""C5 dataset based on Common Crawl.""" import json import io import datasets from tensorflow.io import gfile import pyzstd logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """\ A colossal, cleaned version of Common Crawl's web crawl corpus. Based on Common Crawl dataset: "https://commoncrawl.org". This is the processed version of Google's C5 dataset by AllenAI. """ _CITATION = """ @article{2019t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {arXiv e-prints}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.10683}, } """ _URL = "https://github.com/allenai/allennlp/discussions/5056" _VARIANTS = ["en","other"] buffer_size=1024 # _DATA_URL = "https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/{name}/c4-{split}.{index:05d}-of-{n_shards:05d}.json.gz" def reverseMultiBytesIO(decompressedStream: io.BytesIO, buffer_size=1024): incomplete_line = bytearray() while True: # Read a chunk from the decompressed stream buffer = decompressedStream.read(buffer_size) # Adjust the read size as needed if not buffer: # Edge Case 5: Handle EOF break # Concatenate with any incomplete line from the last read # Edge Case 1: Incomplete Lines buffer = incomplete_line + buffer incomplete_line = bytearray() # Split the buffer by the newline character lines = buffer.split(b'\n') # Check if the last line is complete if lines and lines[-1]: incomplete_line = lines.pop() # Decode and parse each line for line in lines: if line: yield json.loads(line.decode('utf-8')) class C5Config(datasets.BuilderConfig): """BuilderConfig for C5.""" def __init__(self, name, shard_id=None, subshard_id=None, buffer_size=1024, **kwargs): """BuilderConfig for C5. Args: **kwargs: keyword arguments forwarded to super. """ super(C5Config, self).__init__(name=name,**kwargs) self.shard_id = shard_id self.subshard_id = subshard_id self.buffer_size = buffer_size _DATA_URL_en = "gs://meliad2_us2/EasyLM/cluster/c5_{split}/shard_{shard_id}/subshard_{subshard_id}/text.jsonl" _DATA_URL_non_en = "gs://meliad2_us2/EasyLM/v1/c5_{split}/shard_{shard_id}.jsonl" class C5(datasets.GeneratorBasedBuilder): """C5, a colossal, cleaned version of Common Crawl's web crawl corpus.""" BUILDER_CONFIGS = [C5Config(name) for name in _VARIANTS] def _info(self): self.shard_id = self.config.shard_id self.subshard_id = self.config.subshard_id self.buffer_size = self.config.buffer_size print(f"{self.name=}") if self.config.name=="en": features=datasets.Features( { "text": datasets.Value("string"), "timestamp": datasets.Value("string"), "url": datasets.Value("string"), } ) else: features=datasets.Features( { "text": datasets.Value("string"), "cluster_id": datasets.Value("int16"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): data_urls = {} if self.config.name=="en": allowed_shards = range(64) if self.shard_id is None else [self.shard_id] allowed_subshards = range(64) if self.subshard_id is None else [self.subshard_id] all_allowed = [(shard_id, subshard_id) for shard_id in allowed_shards for subshard_id in allowed_subshards] format_data_url = lambda split,idx: _DATA_URL_en.format(split=split, shard_id=idx[0], subshard_id=idx[1]) else: all_allowed = range(1024) if self.shard_id is None else [self.shard_id] format_data_url = lambda split,idx: _DATA_URL_non_en.format(split=split, shard_id=idx) for split in ["train"]: data_urls[split] = [ format_data_url(split,idx) for idx in all_allowed ] train_downloaded_files = data_urls["train"] # train_downloaded_files = dl_manager.download() # validation_downloaded_files = dl_manager.download(data_urls["validation"]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), # datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}), ] def _generate_examples(self, filepaths): """This function returns the examples in the raw (text) form by iterating on all the files.""" id_ = 0 for filepath in filepaths: with gfile.GFile(filepath, 'rb') as f: logger.info("generating examples from = %s", filepath) with pyzstd.ZstdFile(f, 'rb') as ifo: for example in reverseMultiBytesIO(ifo, buffer_size=self.buffer_size): yield id_, example id_ += 1