Commit
·
2fc81ec
1
Parent(s):
6f9daf0
Create new file
Browse files
nq.py
ADDED
|
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
|
| 6 |
+
import ijson
|
| 7 |
+
import more_itertools
|
| 8 |
+
import pandas as pd
|
| 9 |
+
|
| 10 |
+
import datasets
|
| 11 |
+
from datasets import Dataset, DatasetDict, DatasetInfo, Features, Sequence, Value
|
| 12 |
+
|
| 13 |
+
logger = datasets.logging.get_logger(__name__)
|
| 14 |
+
# _URL = "https://www.cs.tau.ac.il/~ohadr/NatQuestions.zip"
|
| 15 |
+
|
| 16 |
+
# RERANKING_URLS = {
|
| 17 |
+
# "train": "https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-train.json.gz",
|
| 18 |
+
# "validation": "https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-dev.json.gz",
|
| 19 |
+
# # "test": "https://dl.fbaipublicfiles.com/dpr/data/retriever/nq-test.qa.csv",
|
| 20 |
+
# }
|
| 21 |
+
|
| 22 |
+
from tqdm.auto import tqdm
|
| 23 |
+
|
| 24 |
+
_CITATION = """ """
|
| 25 |
+
|
| 26 |
+
_DESCRIPTION = """ """
|
| 27 |
+
|
| 28 |
+
# def
|
| 29 |
+
# def read_glob(paths):
|
| 30 |
+
# paths = glob.glob(paths)
|
| 31 |
+
# data = []
|
| 32 |
+
# for path in paths:
|
| 33 |
+
# with open(path) as f:
|
| 34 |
+
# if path.endswith(".json"):
|
| 35 |
+
# data.extend(json.load(f))
|
| 36 |
+
# elif path.endswith(".jsonl"):
|
| 37 |
+
# for line in f:
|
| 38 |
+
# data.append(json.loads(line))
|
| 39 |
+
# return data
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def to_dict_element(el, cols):
|
| 43 |
+
bucked_fields = more_itertools.bucket(cols, key=lambda x: x.split(".")[0])
|
| 44 |
+
final_dict = {}
|
| 45 |
+
for parent_name in list(bucked_fields):
|
| 46 |
+
|
| 47 |
+
fields = [y.split(".")[-1] for y in list(bucked_fields[parent_name])]
|
| 48 |
+
if len(fields) == 1 and fields[0] == parent_name:
|
| 49 |
+
final_dict[parent_name] = el[fields[0]]
|
| 50 |
+
else:
|
| 51 |
+
parent_list = []
|
| 52 |
+
zipped_fields = list(zip(*[el[f"{parent_name}.{child}"] for child in fields]))
|
| 53 |
+
for x in zipped_fields:
|
| 54 |
+
parent_list.append({k: v for k, v in zip(fields, x)})
|
| 55 |
+
final_dict[parent_name] = parent_list
|
| 56 |
+
return final_dict
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def get_json_dataset(dataset):
|
| 60 |
+
flat_dataset = dataset.flatten()
|
| 61 |
+
json_dataset = dataset_to_json(flat_dataset)
|
| 62 |
+
return [to_dict_element(el, cols=flat_dataset.column_names) for el in json_dataset]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def dataset_to_json(dataset):
|
| 66 |
+
new_str = BytesIO()
|
| 67 |
+
dataset.to_json(new_str)
|
| 68 |
+
new_str.seek(0)
|
| 69 |
+
return [json.loads(line.decode()) for line in new_str]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# inference_features = datasets.Features(
|
| 73 |
+
# {
|
| 74 |
+
# "source": Value(dtype="string"),
|
| 75 |
+
# "meta": {
|
| 76 |
+
# "question": Value(dtype="string"),
|
| 77 |
+
# "text": Value(dtype="string"),
|
| 78 |
+
# "title": Value(dtype="string"),
|
| 79 |
+
# "qid": Value(dtype="string"),
|
| 80 |
+
# "id": Value(dtype="string"),
|
| 81 |
+
# },
|
| 82 |
+
# }
|
| 83 |
+
# )
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class NatQuestionsConfig(datasets.BuilderConfig):
|
| 87 |
+
"""BuilderConfig for NatQuestionsDPR."""
|
| 88 |
+
|
| 89 |
+
def __init__(self, features, retriever, feature_format, url, **kwargs):
|
| 90 |
+
"""BuilderConfig for NatQuestions.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
**kwargs: keyword arguments forwarded to super.
|
| 94 |
+
"""
|
| 95 |
+
super(NatQuestionsConfig, self).__init__(**kwargs)
|
| 96 |
+
self.features = features
|
| 97 |
+
self.retriever = retriever
|
| 98 |
+
self.feature_format = feature_format
|
| 99 |
+
self.url = url
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
RETBM25_RERANKING_URLS = {
|
| 103 |
+
split: f"https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-{split}.json.gz"
|
| 104 |
+
for split in ["train", "dev"]
|
| 105 |
+
}
|
| 106 |
+
RETDPR_RERANKING_URLS = {
|
| 107 |
+
split: f"https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-adv-hn-{split}.json.gz"
|
| 108 |
+
for split in ["train"]
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
RETDPR_INF_URLS = {
|
| 113 |
+
split: f"https://dl.fbaipublicfiles.com/dpr/data/retriever_results/single/nq-{split}.json.gz"
|
| 114 |
+
for split in ["train", "dev", "test"]
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
RETBM25_INF_URLS = {
|
| 118 |
+
split:f"https://www.cs.tau.ac.il/~ohadr/nq-{split}.json.gz" for split in ["dev","test"]
|
| 119 |
+
|
| 120 |
+
}
|
| 121 |
+
RETBM25_RERANKING_features = Features(
|
| 122 |
+
{
|
| 123 |
+
"dataset": Value(dtype="string"),
|
| 124 |
+
"qid": Value(dtype="string"),
|
| 125 |
+
"question": Value(dtype="string"),
|
| 126 |
+
"answers": Sequence(feature=Value(dtype="string")),
|
| 127 |
+
"positive_ctxs": Sequence(
|
| 128 |
+
feature={
|
| 129 |
+
"title": Value(dtype="string"),
|
| 130 |
+
"text": Value(dtype="string"),
|
| 131 |
+
"score": Value(dtype="float32"),
|
| 132 |
+
# 'title_score': Value(dtype='int32'),
|
| 133 |
+
"passage_id": Value(dtype="string"),
|
| 134 |
+
}
|
| 135 |
+
),
|
| 136 |
+
# 'negative_ctxs': Sequence(feature={'title': Value(dtype='string'),
|
| 137 |
+
# 'text': Value(dtype='string'),
|
| 138 |
+
# 'score': Value(dtype='float32'),
|
| 139 |
+
# # 'title_score': Value(dtype='int32'),
|
| 140 |
+
# 'passage_id': Value(dtype='string')}),
|
| 141 |
+
"hard_negative_ctxs": Sequence(
|
| 142 |
+
feature={
|
| 143 |
+
"title": Value(dtype="string"),
|
| 144 |
+
"text": Value(dtype="string"),
|
| 145 |
+
"score": Value(dtype="float32"),
|
| 146 |
+
# 'title_score': Value(dtype='int32'),
|
| 147 |
+
"passage_id": Value(dtype="string"),
|
| 148 |
+
}
|
| 149 |
+
),
|
| 150 |
+
}
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
RETDPR_RERANKING_features = Features(
|
| 154 |
+
{
|
| 155 |
+
"qid": Value(dtype="string"),
|
| 156 |
+
"question": Value(dtype="string"),
|
| 157 |
+
"answers": Sequence(feature=Value(dtype="string")),
|
| 158 |
+
# 'negative_ctxs': Sequence(feature=[]),
|
| 159 |
+
"hard_negative_ctxs": Sequence(
|
| 160 |
+
feature={
|
| 161 |
+
"passage_id": Value(dtype="string"),
|
| 162 |
+
"title": Value(dtype="string"),
|
| 163 |
+
"text": Value(dtype="string"),
|
| 164 |
+
"score": Value(dtype="string"),
|
| 165 |
+
# 'has_answer': Value(dtype='int32')
|
| 166 |
+
}
|
| 167 |
+
),
|
| 168 |
+
"positive_ctxs": Sequence(
|
| 169 |
+
feature={
|
| 170 |
+
"title": Value(dtype="string"),
|
| 171 |
+
"text": Value(dtype="string"),
|
| 172 |
+
"score": Value(dtype="float32"),
|
| 173 |
+
# 'title_score': Value(dtype='int32'),
|
| 174 |
+
# 'has_answer': Value(dtype='int32'),
|
| 175 |
+
"passage_id": Value(dtype="string"),
|
| 176 |
+
}
|
| 177 |
+
),
|
| 178 |
+
}
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
RETDPR_INF_features = Features(
|
| 183 |
+
{
|
| 184 |
+
"question": Value(dtype="string"),
|
| 185 |
+
"qid": Value(dtype="string"),
|
| 186 |
+
"answers": Sequence(feature=Value(dtype="string")),
|
| 187 |
+
"ctxs": Sequence(
|
| 188 |
+
feature={
|
| 189 |
+
"id": Value(dtype="string"),
|
| 190 |
+
"title": Value(dtype="string"),
|
| 191 |
+
"text": Value(dtype="string"),
|
| 192 |
+
"score": Value(dtype="float32"),
|
| 193 |
+
# "has_answer": Value(dtype="int32"),
|
| 194 |
+
}
|
| 195 |
+
),
|
| 196 |
+
}
|
| 197 |
+
)
|
| 198 |
+
URL_DICT = {"reranking_dprnq":RETDPR_RERANKING_URLS,
|
| 199 |
+
"reranking_bm25":RETBM25_RERANKING_URLS,
|
| 200 |
+
"inference_dprnq":RETDPR_INF_URLS}
|
| 201 |
+
|
| 202 |
+
class NatQuestions(datasets.GeneratorBasedBuilder):
|
| 203 |
+
|
| 204 |
+
BUILDER_CONFIGS = [
|
| 205 |
+
NatQuestionsConfig(
|
| 206 |
+
name="reranking_dprnq",
|
| 207 |
+
version=datasets.Version("1.0.1", ""),
|
| 208 |
+
description="NatQuestions dataset in DPR format with the dprnq retrieval results",
|
| 209 |
+
features=RETDPR_RERANKING_features,
|
| 210 |
+
retriever="dprnq",
|
| 211 |
+
feature_format="dpr",
|
| 212 |
+
url=URL_DICT,
|
| 213 |
+
),
|
| 214 |
+
NatQuestionsConfig(
|
| 215 |
+
name="reranking_bm25",
|
| 216 |
+
version=datasets.Version("1.0.1", ""),
|
| 217 |
+
description="NatQuestions dataset in DPR format with the bm25 retrieval results",
|
| 218 |
+
features=RETBM25_RERANKING_features,
|
| 219 |
+
retriever="bm25",
|
| 220 |
+
feature_format="dpr",
|
| 221 |
+
url=URL_DICT,
|
| 222 |
+
),
|
| 223 |
+
NatQuestionsConfig(
|
| 224 |
+
name="inference_dprnq",
|
| 225 |
+
version=datasets.Version("1.0.1", ""),
|
| 226 |
+
description="NatQuestions dataset in a format accepted by the inference model, performing reranking on the dprnq retrieval results",
|
| 227 |
+
features=RETDPR_INF_features,
|
| 228 |
+
retriever="dprnq",
|
| 229 |
+
feature_format="inference",
|
| 230 |
+
url=URL_DICT,
|
| 231 |
+
),
|
| 232 |
+
NatQuestionsConfig(
|
| 233 |
+
name="inference_bm25",
|
| 234 |
+
version=datasets.Version("1.0.1", ""),
|
| 235 |
+
description="NatQuestions dataset in a format accepted by the inference model, performing reranking on the bm25 retrieval results",
|
| 236 |
+
features=RETDPR_INF_features,
|
| 237 |
+
retriever="bm25",
|
| 238 |
+
feature_format="inference",
|
| 239 |
+
url=URL_DICT,
|
| 240 |
+
),
|
| 241 |
+
|
| 242 |
+
]
|
| 243 |
+
|
| 244 |
+
def _info(self):
|
| 245 |
+
self.features = self.config.features
|
| 246 |
+
self.retriever = self.config.retriever
|
| 247 |
+
self.feature_format = self.config.feature_format
|
| 248 |
+
self.url = self.config.url
|
| 249 |
+
return datasets.DatasetInfo(
|
| 250 |
+
description=_DESCRIPTION,
|
| 251 |
+
features=self.config.features,
|
| 252 |
+
supervised_keys=None,
|
| 253 |
+
homepage="",
|
| 254 |
+
citation=_CITATION,
|
| 255 |
+
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def _split_generators(self, dl_manager):
|
| 260 |
+
print(self.url)
|
| 261 |
+
if len(self.url) > 0:
|
| 262 |
+
filepath = dl_manager.download_and_extract(self.url)
|
| 263 |
+
else:
|
| 264 |
+
filepath = ""
|
| 265 |
+
# filepath = "/home/joberant/home/ohadr/testbed/notebooks/NatQuestions_retrievers"
|
| 266 |
+
|
| 267 |
+
result = []
|
| 268 |
+
if "train" in filepath[self.info.config_name]:
|
| 269 |
+
result.append(
|
| 270 |
+
datasets.SplitGenerator(
|
| 271 |
+
name=datasets.Split.TRAIN,
|
| 272 |
+
gen_kwargs={"filepath": filepath, "split": "train"},
|
| 273 |
+
)
|
| 274 |
+
)
|
| 275 |
+
if "dev" in filepath[self.info.config_name] or self.info.config_name=="reranking_dprnq":
|
| 276 |
+
result.append(
|
| 277 |
+
datasets.SplitGenerator(
|
| 278 |
+
name=datasets.Split.VALIDATION,
|
| 279 |
+
gen_kwargs={"filepath": filepath, "split": "dev"},
|
| 280 |
+
)
|
| 281 |
+
)
|
| 282 |
+
if "test" in filepath[self.info.config_name] or self.info.config_name=="reranking_dprnq":
|
| 283 |
+
result.append(
|
| 284 |
+
datasets.SplitGenerator(
|
| 285 |
+
name=datasets.Split.TEST,
|
| 286 |
+
gen_kwargs={"filepath": filepath, "split": "test"},
|
| 287 |
+
)
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
return result
|
| 291 |
+
|
| 292 |
+
def _prepare_split(self, split_generator, **kwargs):
|
| 293 |
+
self.info.features = self.config.features
|
| 294 |
+
super()._prepare_split(split_generator, **kwargs)
|
| 295 |
+
|
| 296 |
+
def _generate_examples(self, filepath, split):
|
| 297 |
+
if self.info.config_name=="reranking_dprnq" and split in ["dev","test"]:
|
| 298 |
+
for i,dict_element in new_method(split, "inference_dprnq", f"{filepath['inference_dprnq'][split]}"):
|
| 299 |
+
dict_element['positive_ctxs'] = []
|
| 300 |
+
answers = dict_element['answers']
|
| 301 |
+
any_true = False
|
| 302 |
+
for x in dict_element['ctxs']:
|
| 303 |
+
x['passage_id'] = x.pop('id')
|
| 304 |
+
x['has_answer'] = False
|
| 305 |
+
for ans in answers:
|
| 306 |
+
if ans in x['title'] or ans in x['text']:
|
| 307 |
+
if 'id' in x:
|
| 308 |
+
x['passage_id'] = x.pop('id')
|
| 309 |
+
x['has_answer'] = True
|
| 310 |
+
dict_element['positive_ctxs'].append(x)
|
| 311 |
+
any_true = True
|
| 312 |
+
negative_candidates = [x for x in dict_element['ctxs'] if not x['has_answer']]
|
| 313 |
+
dict_element['hard_negative_ctxs'] = negative_candidates[:len(dict_element['positive_ctxs'])]
|
| 314 |
+
dict_element['ctxs'] = dict_element.pop("ctxs")
|
| 315 |
+
for name in ['positive_ctxs',"hard_negative_ctxs"]:
|
| 316 |
+
for x in dict_element[name]:
|
| 317 |
+
x.pop("has_answer",None)
|
| 318 |
+
if any_true:
|
| 319 |
+
dict_element.pop("ctxs")
|
| 320 |
+
yield i,dict_element
|
| 321 |
+
else:
|
| 322 |
+
yield from new_method(split, self.info.config_name, f"{filepath[self.info.config_name][split]}")
|
| 323 |
+
|
| 324 |
+
def new_method(split, config_name, object_path):
|
| 325 |
+
count = 0
|
| 326 |
+
with open(object_path) as f:
|
| 327 |
+
items = ijson.items(f, "item")
|
| 328 |
+
for element in items:
|
| 329 |
+
element.pop("negative_ctxs",None)
|
| 330 |
+
for name in ["positive_ctxs","hard_negative_ctxs","ctxs"]:
|
| 331 |
+
for x in element.get(name,[]):
|
| 332 |
+
x.pop("title_score",None)
|
| 333 |
+
x.pop("has_answer", None)
|
| 334 |
+
if "reranking" in config_name and "id" in x:
|
| 335 |
+
x["passage_id"] = x.pop("id")
|
| 336 |
+
element["qid"] = f"{count}_{split}"
|
| 337 |
+
yield count, element
|
| 338 |
+
count += 1
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
# def single_inference_format_example(ctx, question, qid):
|
| 342 |
+
# datum = {}
|
| 343 |
+
# datum["source"] = f"Title: {ctx['meta']['title']}\nText: {ctx['meta']['content']}\nQuestion: {question}\n"
|
| 344 |
+
# datum["meta"] = {}
|
| 345 |
+
# datum["meta"]["question"] = question
|
| 346 |
+
# datum["meta"]["qid"] = qid
|
| 347 |
+
# datum["meta"]["title"] = ctx["meta"]["title"]
|
| 348 |
+
# datum["meta"]["text"] = ctx["meta"]["content"]
|
| 349 |
+
# datum["meta"]["id"] = ctx["id"]
|
| 350 |
+
# return datum
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
# def inference_format_example(element):
|
| 354 |
+
# return [
|
| 355 |
+
# single_inference_format_example(ctx, element["proof"], element["pid"]) for ctx in element["query_res"]
|
| 356 |
+
# ]
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
# def inference_example(example):
|