File size: 6,429 Bytes
eddad8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
# Hyperspectral Imaging for Quality Assessment of Processed Foods: A Case Study on Sugar Content in Apple Jam
<img width="4271" height="2484" alt="Picture1" src="https://github.com/user-attachments/assets/524db8f0-99a2-414a-85c5-cc3b3d959f6a" />
This repository accompanies our study on **non-destructive sugar content estimation** in apple jam using **VNIR hyperspectral imaging (HSI)** and machine learning. It includes a reproducible set of Jupyter notebooks covering preprocessing, dataset construction, and model training/evaluation with classical ML and deep learning.
---
## Dataset
The Apples_HSI dataset is available on Hugging Face:
[issai/Apples_HSI](https://huggingface.co/datasets/issai/Apples_HSI).
### Dataset structure
```text
Apples_HSI/
βββ Catalogs/ # per-cultivar & sugar-ratio sessions
β βββ apple_jam_{cultivar}_{sugar proportion}_{apple proportion}_{date}/ # e.g., apple_jam_gala_50_50_17_Dec
β β βββ {sample_id}/ # numeric sample folders (e.g., 911, 912, β¦)
β β β βββ capture/ # raw camera outputs + references
β β β β βββ {sample_id}.raw # raw hyperspectral cube
β β β β βββ {sample_id}.hdr # header/metadata for the raw cube
β β β β βββ DARKREF_{sample_id}.raw # dark reference (raw)
β β β β βββ DARKREF_{sample_id}.hdr
β β β β βββ WHITEREF_{sample_id}.raw # white reference (raw)
β β β β βββ WHITEREF_{sample_id}.hdr
β β β βββ metadata/
β β β β βββ {sample_id}.xml # per-sample metadata/annotations
β β β βββ results/ # calibrated reflectance + previews
β β β β βββ REFLECTANCE_{sample_id}.dat # ENVI-style reflectance cube
β β β β βββ REFLECTANCE_{sample_id}.hdr
β β β β βββ REFLECTANCE_{sample_id}.png # reflectance preview
β β β β βββ RGBSCENE_{sample_id}.png # RGB scene snapshot
β β β β βββ RGBVIEWFINDER_{sample_id}.png
β β β β βββ RGBBACKGROUND_{sample_id}.png
β β β βββ manifest.xml # per-sample manifest
β β β βββ {sample_id}.png # sample preview image
β β β βββ .validated # empty marker file
β β βββ β¦ # more samples
β βββ β¦ # more cultivar/ratio/date folders
β
βββ .cache/ # service files (upload tool)
βββ ._.cache
βββ ._paths.rtf
βββ .gitattributes # LFS rules for large files
βββ paths.rtf # path list (RTF)
```
## Repository structure
This repository contains:
- **Pre-processing**: `1_preprocessing.ipynb` (import HSI, calibration, masking (SAM), ROI crop, grid subdivision).
- **Dataset building**: `2_dataset preparation.ipynb` (train/val/test splits, sugar concentration/apple cultivar splits, average spectral vectors extraction).
- **Model training & evaluation**:
- `3_svm.ipynb` β SVM, scaling, hyperparameter search.
- `4_xgboost.ipynb` β XGBoost, tuning & early stopping.
- `5_resnet.ipynb` β 1D ResNet training loops, checkpoints, metrics.
## Preprocessing β Dataset β Models (How to Run)
### 1) **Preprocessing**
Inputs to set (near the bottom of the notebook)
```python
input_root = "path/to/input" # root that contains the dataset folders (e.g., Apples_HSI/Catalogs)
output_root = "path/to/output" # where the NPZ files will be written
paths_txt = "path/to/paths.txt" # text file with relative paths to .hdr files (one per line)
```
- Run all cells. The notebook:
- reads `REFLECTANCE_*.hdr` with `spectral.open_image`
- builds a SAM mask (ref pixel `(255, 247)`, threshold `0.19`)
- crops ROI and saves `cropped_{ID}.npz` under `output_root/...`
- Each NPZ contains: `cube` (cropped HΓWΓBands), `offset` (`y_min`, `x_min`), `metadata` (JSON).
### 2) **Dataset building**
Run all cells. The notebook:
- loads each NPZ (`np.load(path)["cube"]`)
- extracts **mean spectra per patch** for grid sizes **1, ..., 5**
- creates tables with columns `band_0..band_(B-1)`, `apple_content`, `apple_type`
- writes splits per grid:
- **apple-based:** `{g}x{g}_train_apple.csv`, `{g}x{g}_val_apple.csv`, `{g}x{g}_test_apple.csv`
- **rule-based:** `{g}x{g}_train_rule.csv`, `{g}x{g}_val_rule.csv`, `{g}x{g}_test_rule.csv`
### 3) **Model training**
Classical ML β `3_svm.ipynb`
Run all cells. The notebook:
- loads pre-split CSVs (e.g., `{g}x{g}_train_apple.csv`, `{g}x{g}_test_apple.csv`)
- scales inputs and targets with **MinMaxScaler**
- fits **SVR** with hyperparameters: `C=110`, `epsilon=0.2`, `gamma="scale"`
- reports **RMSE / MAE / RΒ²** on Train/Test (targets inverse-transformed)
Classical ML β `4_xgboost.ipynb`
Run all cells. The notebook:
- loads Train/Val/Test CSVs and scales inputs with **MinMaxScaler**
- builds **DMatrix** and trains with:
objective = "reg:squarederror", eval_metric = "rmse",
max_depth = 2, eta = 0.15, subsample = 0.8, colsample_bytree = 1.0,
lambda = 2.0, alpha = 0.1, seed = 42
num_boost_round = 400, early_stopping_rounds = 40
- evaluates and prints **RMSE / MAE / RΒ²** (Train/Test)
Deep model β `5_resnet.ipynb`
Run all cells. The notebook:
- builds a **ResNet1D** and DataLoaders (`batch_size=16`)
- trains with **Adam** (`lr=1e-3`, `weight_decay=1e-4`), **epochs=150**, **MAE** loss
- uses target **MinMaxScaler** (inverse-transforms predictions for metrics)
- early-stopping on **Val MAE**; saves best checkpoint to **`best_resnet1d_model.pth`**
- reports **RMSE / MAE / RΒ²** on the Test set
## If you use the dataset/source code/pre-trained models in your research, please cite our work:
Lissovoy, D., Zakeryanova, A., Orazbayev, R., Rakhimzhanova, T., Lewis, M., Varol, H. A., & Chan, M.-Y. (2025). Hyperspectral Imaging for Quality Assessment of Processed Foods: A Case Study on Sugar Content in Apple Jam. Foods, 14(21), 3585. https://doi.org/10.3390/foods14213585
|