jam-alt-lines / create_dataset.py
cifkao's picture
First commit
11dc96b
"""Create a Hugging Face dataset from the JamendoLyrics dataset in its original layout."""
# %%
import json
import logging
from pathlib import Path
import shutil
import datasets
import numpy as np
from scipy.sparse import csr_array
from scipy.sparse.csgraph import connected_components as scipy_connected_components
import soundfile as sf
# %%
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logger.setLevel(logging.DEBUG)
# %%
dataset_src = datasets.load_dataset(
"jamendolyrics/jam-alt", revision="v1.4.0", split="test"
)
# %%
language_fixes = (
[json.loads(li) for li in Path("language_fixes.jsonl").read_text().splitlines()]
if Path("language_fixes.jsonl").exists()
else []
)
# %%
OVERLAP_SOFT_THRESHOLD = 0.1
OVERLAP_HARD_THRESHOLD = 0.2
PADDING = 0.5
MAX_DURATION = 20.0
SUBSETS_DIR = Path(".")
SUBSETS = ["pure", "groups"]
# %%
features = datasets.Features(
{
"song_name": datasets.Value("string"),
"file_name": datasets.Value("string"),
"text": datasets.Value("string"),
"language": datasets.Value("string"),
"song_language": datasets.Value("string"),
"line_indices": [datasets.Value("int64")],
"start": datasets.Value("float64"),
"end": datasets.Value("float64"),
"merged": datasets.Value("bool"),
"artist": datasets.Value("string"),
"title": datasets.Value("string"),
"genre": datasets.Value("string"),
"license_type": datasets.Value("string"),
}
)
# %%
def find_connected_components(matrix: np.ndarray) -> list[list[int]]:
num_components, labels = scipy_connected_components(
csgraph=csr_array(matrix), directed=False, return_labels=True
)
components = [np.where(labels == i)[0].tolist() for i in range(num_components)]
return sorted(components)
# $$
for subset in SUBSETS:
if (SUBSETS_DIR / subset).exists():
shutil.rmtree(SUBSETS_DIR / subset)
# %%
records = []
stats = []
for item in dataset_src:
name = item["name"]
song_language = item["language"]
lines = item["lines"]
audio = item["audio"]["array"]
sr = item["audio"]["sampling_rate"]
audio_duration = len(audio) / sr
starts = np.array([line["start"] for line in lines], dtype=float)
ends = np.array([line["end"] for line in lines], dtype=float)
texts = [line["text"] for line in lines]
# Compute pairwise overlaps
overlap_ends = np.minimum(ends[:, None], ends)
overlap_starts = np.maximum(starts[:, None], starts)
overlaps = np.maximum(0.0, overlap_ends - overlap_starts)
overlap_groups = find_connected_components(overlaps > OVERLAP_HARD_THRESHOLD)
for indices in overlap_groups:
group = [lines[i] for i in indices]
group_name = (
f"{min(indices):03d}-{max(indices):03d}"
if len(indices) > 1
else f"{indices[0]:03d}"
)
text = "\n".join(line["text"] for line in group)
group_starts = [line["start"] for line in group]
group_ends = [line["end"] for line in group]
start, end = min(group_starts), max(group_ends)
# Handle soft overlaps
_, small_overlap_indices = np.where(
(overlaps[indices] > 0) & (overlaps[indices] <= OVERLAP_HARD_THRESHOLD)
)
for i in small_overlap_indices:
line = lines[i]
if line["start"] < end and line["end"] >= end:
msg = f"{name}: Group {group_name} has {overlaps[small_overlap_indices][:, indices].max():.2f} s overlap with line {i:03d}."
if end - line["start"] < OVERLAP_SOFT_THRESHOLD:
msg += " Ignoring"
else:
new_end = line["start"] + OVERLAP_SOFT_THRESHOLD
msg += f"\n Adjusting end from {end:.2f} to {new_end:.2f} ({new_end - end:.2f} s)"
end = new_end
logger.debug(msg)
# Pad segment without exceeding duration and causing overlaps
non_group_indices = [i for i in range(len(lines)) if i not in indices]
l_limit = max(
[0.0] + [ends[i] + 0.1 for i in non_group_indices if ends[i] < end]
)
r_limit = min(
[audio_duration]
+ [starts[i] - 0.1 for i in non_group_indices if starts[i] > start]
)
max_total_pad = max(0.0, MAX_DURATION - (end - start))
l_pad = min(max(0.0, start - l_limit), PADDING)
r_pad = min(max(0.0, r_limit - end), PADDING)
if l_pad + r_pad > max_total_pad:
l_pad = r_pad = min(l_pad, r_pad, max_total_pad / 2)
extra = max(0.0, max_total_pad - (l_pad + r_pad)) - 1e-3
l_pad += extra / 2
r_pad += extra / 2
assert l_pad + r_pad < max_total_pad
start, end = start - l_pad, end + r_pad
duration = end - start
stats.append(
{
"name": name,
"group_name": group_name,
"duration": duration,
"group_size": len(indices),
"excluded": False,
}
)
if duration > MAX_DURATION:
logger.info(f"Excluding segment {name}.{group_name} of duration {duration}")
stats[-1]["excluded"] = True
continue
start_frame, end_frame = round(start * sr), round(end * sr)
line_audio = audio[start_frame:end_frame]
file_name = f"{name}.{group_name}.flac"
language = song_language
for fix in language_fixes:
if fix["file_name"] == file_name:
assert fix["text"] == text, (
f"Text mismatch for {file_name}: {fix['text']} != {text}"
)
language = fix["language"]
logger.debug(
f"{name}: Fixing language of group {group_name} to {language}"
)
if len(group) > 1:
subset_dir = SUBSETS_DIR / "groups" / language
else:
subset_dir = SUBSETS_DIR / "pure" / language
out_audio_path = subset_dir / "audio" / file_name
out_audio_path.parent.mkdir(parents=True, exist_ok=True)
sf.write(out_audio_path, line_audio, sr)
records.append(
{
"song_name": name,
"file_name": str(out_audio_path.relative_to(subset_dir)),
"text": "\n".join(line["text"] for line in group),
"language": language,
"song_language": song_language,
"line_indices": indices,
"start": start,
"end": end,
"merged": len(group) > 1,
**{k: item[k] for k in ["artist", "title", "genre", "license_type"]},
}
)
dataset_out = datasets.Dataset.from_list(records, features=features, split="test")
# %%
for config_name in ["pure", "groups"]:
for subset_language in ["en", "es", "de", "fr"]:
subset_dir = SUBSETS_DIR / config_name / subset_language
subset_dir.mkdir(exist_ok=True)
subset = dataset_out.filter(lambda x: x["language"] == subset_language)
if config_name == "pure":
subset = subset.filter(lambda x: not x["merged"])
elif config_name == "groups":
subset = subset.filter(lambda x: x["merged"])
subset.to_json(subset_dir / "metadata.jsonl")