Update README.md
Browse files
README.md
CHANGED
@@ -4,11 +4,99 @@ language:
|
|
4 |
tags:
|
5 |
- clouds
|
6 |
- sentinel-2
|
|
|
|
|
7 |
- remote-sensing
|
8 |
-
pretty_name:
|
9 |
---
|
10 |
-
#
|
11 |
|
12 |
***``A dataset about clouds from Sentinel-2``***
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
tags:
|
5 |
- clouds
|
6 |
- sentinel-2
|
7 |
+
- image-segmentation
|
8 |
+
- deep-learning
|
9 |
- remote-sensing
|
10 |
+
pretty_name: cloudsen12
|
11 |
---
|
12 |
+
# cloudsen12
|
13 |
|
14 |
***``A dataset about clouds from Sentinel-2``***
|
15 |
|
16 |
+
CloudSEN12 is a LARGE dataset (~1 TB) for cloud semantic understanding that consists of 49,400 image patches (IP) that are evenly spread throughout all continents except Antarctica. Each IP covers 5090 x 5090 meters and contains data from Sentinel-2 levels 1C and 2A, hand-crafted annotations of thick and thin clouds and cloud shadows, Sentinel-1 Synthetic Aperture Radar (SAR), digital elevation model, surface water occurrence, land cover classes, and cloud mask results from six cutting-edge cloud detection algorithms.
|
17 |
+
CloudSEN12 is designed to support both weakly and self-/semi-supervised learning strategies by including three distinct forms of hand-crafted labeling data: high-quality, scribble and no-annotation. For more details on how we created the dataset see our paper: CloudSEN12 - a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2.
|
18 |
+
|
19 |
+
|
20 |
+
**ML-STAC Snippet**
|
21 |
+
```python
|
22 |
+
import mlstac
|
23 |
+
secret = 'https://huggingface.co/datasets/jfloresf/mlstac-demo/resolve/main/main.json'
|
24 |
+
train_db = mlstac.load(secret, framework='torch', stream=True, device='cpu')
|
25 |
+
```
|
26 |
+
|
27 |
+
**Sensor: Sentinel 2 - MSI**
|
28 |
+
|
29 |
+
**ML-STAC Task: TensorToTensor, TensorSegmentation**
|
30 |
+
|
31 |
+
**Data raw repository: [http://www.example.com/](http://www.example.com/)**
|
32 |
+
|
33 |
+
**Dataset discussion: [https://github.com/IPL-UV/ML-STAC/discussions/2](https://github.com/IPL-UV/ML-STAC/discussions/2)**
|
34 |
+
|
35 |
+
**Review mean score: 5.0**
|
36 |
+
|
37 |
+
**Split_strategy: random**
|
38 |
+
|
39 |
+
**Paper: [https://www.nature.com/articles/s41597-022-01878-2](https://www.nature.com/articles/s41597-022-01878-2)**
|
40 |
+
## Data Providers
|
41 |
+
|
42 |
+
|Name|Role|URL|
|
43 |
+
| :---: | :---: | :---: |
|
44 |
+
|Image & Signal Processing|['host']|https://isp.uv.es/|
|
45 |
+
|ESA|['producer']|https://www.esa.int/|
|
46 |
+
|
47 |
+
## Curators
|
48 |
+
|
49 |
+
|Name|Organization|URL|
|
50 |
+
| :---: | :---: | :---: |
|
51 |
+
|Cesar Aybar|Image & Signal Processing|http://csaybar.github.io/|
|
52 |
+
|
53 |
+
## Reviewers
|
54 |
+
|
55 |
+
|Name|Organization|URL|Score|
|
56 |
+
| :---: | :---: | :---: | :---: |
|
57 |
+
|Cesar Aybar|Image & Signal Processing|http://csaybar.github.io/|5|
|
58 |
+
|
59 |
+
## Labels
|
60 |
+
|
61 |
+
|Name|Value|
|
62 |
+
| :---: | :---: |
|
63 |
+
|clear|0|
|
64 |
+
|thick-cloud|1|
|
65 |
+
|thin-cloud|2|
|
66 |
+
|cloud-shadow|3|
|
67 |
+
|
68 |
+
## Dimensions
|
69 |
+
|
70 |
+
### input
|
71 |
+
|
72 |
+
|Axis|Name|Description|
|
73 |
+
| :---: | :---: | :---: |
|
74 |
+
|0|C|Channels - Spectral bands|
|
75 |
+
|1|H|Height|
|
76 |
+
|2|W|Width|
|
77 |
+
|
78 |
+
### target
|
79 |
+
|
80 |
+
|Axis|Name|Description|
|
81 |
+
| :---: | :---: | :---: |
|
82 |
+
|0|C|Hand-crafted labels|
|
83 |
+
|1|H|Height|
|
84 |
+
|2|W|Width|
|
85 |
+
|
86 |
+
## Spectral Bands
|
87 |
+
|
88 |
+
|Name|Common Name|Description|Center Wavelength|Full Width Half Max|Index|
|
89 |
+
| :---: | :---: | :---: | :---: | :---: | :---: |
|
90 |
+
|B01|coastal aerosol|Band 1 - Coastal aerosol - 60m|443.5|17.0|0|
|
91 |
+
|B02|blue|Band 2 - Blue - 10m|496.5|53.0|1|
|
92 |
+
|B03|green|Band 3 - Green - 10m|560.0|34.0|2|
|
93 |
+
|B04|red|Band 4 - Red - 10m|664.5|29.0|3|
|
94 |
+
|B05|red edge 1|Band 5 - Vegetation red edge 1 - 20m|704.5|13.0|4|
|
95 |
+
|B06|red edge 2|Band 6 - Vegetation red edge 2 - 20m|740.5|13.0|5|
|
96 |
+
|B07|red edge 3|Band 7 - Vegetation red edge 3 - 20m|783.0|18.0|6|
|
97 |
+
|B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|7|
|
98 |
+
|B8A|red edge 4|Band 8A - Vegetation red edge 4 - 20m|864.5|19.0|8|
|
99 |
+
|B09|water vapor|Band 9 - Water vapor - 60m|945.0|18.0|9|
|
100 |
+
|B10|cirrus|Band 10 - Cirrus - 60m|1375.5|31.0|10|
|
101 |
+
|B11|SWIR 1|Band 11 - Shortwave infrared 1 - 20m|1613.5|89.0|11|
|
102 |
+
|B12|SWIR 2|Band 12 - Shortwave infrared 2 - 20m|2199.5|173.0|12|
|