|
from mpi4py import MPI |
|
from mpi4py.futures import MPICommExecutor |
|
|
|
import warnings |
|
from Bio.PDB import PDBParser, PPBuilder, CaPPBuilder |
|
from Bio.PDB.NeighborSearch import NeighborSearch |
|
from Bio.PDB.Selection import unfold_entities |
|
|
|
import numpy as np |
|
import dask.array as da |
|
|
|
from rdkit import Chem |
|
|
|
from spyrmsd import molecule |
|
from spyrmsd import graph |
|
import networkx as nx |
|
|
|
import os |
|
import re |
|
import sys |
|
|
|
|
|
punctuation_regex = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])""" |
|
|
|
|
|
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])""" |
|
|
|
max_seq = 2046 |
|
max_smiles = 510 |
|
chunk_size = '1G' |
|
|
|
def rot_from_two_vecs(e0_unnormalized, e1_unnormalized): |
|
"""Create rotation matrices from unnormalized vectors for the x and y-axes. |
|
This creates a rotation matrix from two vectors using Gram-Schmidt |
|
orthogonalization. |
|
Args: |
|
e0_unnormalized: vectors lying along x-axis of resulting rotation |
|
e1_unnormalized: vectors lying in xy-plane of resulting rotation |
|
Returns: |
|
Rotations resulting from Gram-Schmidt procedure. |
|
""" |
|
|
|
e0 = e0_unnormalized / np.linalg.norm(e0_unnormalized) |
|
|
|
|
|
c = np.dot(e1_unnormalized, e0) |
|
e1 = e1_unnormalized - c * e0 |
|
e1 = e1 / np.linalg.norm(e1) |
|
|
|
|
|
e2 = np.cross(e0, e1) |
|
|
|
|
|
return np.stack([e0,e1,e2]).T |
|
|
|
def get_local_frames(mol): |
|
|
|
|
|
g = molecule.Molecule.from_rdkit(mol).to_graph() |
|
|
|
R = [] |
|
for node in g: |
|
length = nx.single_source_shortest_path_length(g, node) |
|
|
|
neighbor_a = [n for n,l in length.items() if l==1][0] |
|
|
|
try: |
|
neighbor_b = [n for n,l in length.items() if l==1][1] |
|
except: |
|
|
|
neighbor_b = [n for n,l in length.items() if l==2][0] |
|
|
|
xyz = np.array(mol.GetConformer().GetAtomPosition(node)) |
|
xyz_a = np.array(mol.GetConformer().GetAtomPosition(neighbor_a)) |
|
xyz_b = np.array(mol.GetConformer().GetAtomPosition(neighbor_b)) |
|
|
|
R.append(rot_from_two_vecs(xyz_a-xyz, xyz_b-xyz)) |
|
|
|
return R |
|
|
|
def parse_complex(fn): |
|
try: |
|
name = os.path.basename(fn) |
|
|
|
|
|
parser = PDBParser() |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
structure = parser.get_structure('protein',fn+'/'+name+'_protein.pdb') |
|
|
|
ppb = CaPPBuilder() |
|
seq = [] |
|
xyz_receptor = [] |
|
for pp in ppb.build_peptides(structure): |
|
seq.append(str(pp.get_sequence())) |
|
xyz_receptor += [tuple(a.get_vector()) for a in pp.get_ca_list()] |
|
seq = ''.join(seq) |
|
|
|
|
|
suppl = Chem.SDMolSupplier(fn+'/'+name+'_ligand.sdf') |
|
mol = next(suppl) |
|
smi = Chem.MolToSmiles(mol) |
|
|
|
|
|
atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))] |
|
|
|
|
|
tokens = list(filter(None, re.split(molecule_regex, smi))) |
|
|
|
|
|
masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens] |
|
|
|
k = 0 |
|
token_pos = [] |
|
token_rot = [] |
|
|
|
frames = get_local_frames(mol) |
|
|
|
for i,token in enumerate(masked_tokens): |
|
if token != '': |
|
token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k]))) |
|
token_rot.append(frames[atom_order[k]].flatten().tolist()) |
|
k += 1 |
|
else: |
|
token_pos.append((np.nan, np.nan, np.nan)) |
|
token_rot.append(np.eye(3).flatten().tolist()) |
|
|
|
return name, seq, smi, xyz_receptor, token_pos, token_rot |
|
|
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
|
|
if __name__ == '__main__': |
|
import glob |
|
|
|
filenames = glob.glob('data/pdbbind/v2020-other-PL/*') |
|
filenames.extend(glob.glob('data/pdbbind/refined-set/*')) |
|
filenames = sorted(filenames) |
|
comm = MPI.COMM_WORLD |
|
with MPICommExecutor(comm, root=0) as executor: |
|
if executor is not None: |
|
result = executor.map(parse_complex, filenames, chunksize=32) |
|
result = list(result) |
|
names = [r[0] for r in result if r is not None] |
|
seqs = [r[1] for r in result if r is not None] |
|
all_smiles = [r[2] for r in result if r is not None] |
|
all_xyz_receptor = [r[3] for r in result if r is not None] |
|
all_xyz_ligand = [r[4] for r in result if r is not None] |
|
all_rot_ligand = [r[5] for r in result if r is not None] |
|
|
|
import pandas as pd |
|
df = pd.DataFrame({'name': names, 'seq': seqs, |
|
'smiles': all_smiles, |
|
'receptor_xyz': all_xyz_receptor, |
|
'ligand_xyz': all_xyz_ligand, |
|
'ligand_rot': all_rot_ligand}) |
|
df.to_parquet('data/pdbbind.parquet',index=False) |
|
|