{ "cells": [ { "cell_type": "markdown", "id": "834aeced-c3c5-42a0-bad1-41e009dd86ee", "metadata": {}, "source": [ "### Preprocessing" ] }, { "cell_type": "code", "execution_count": 1, "id": "86476f6e-802a-463b-a1b0-2ae228bb92af", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "id": "9b2be11c-f4bb-4107-af49-abd78052afcf", "metadata": {}, "outputs": [], "source": [ "df = pd.read_table('data/pdbbind/index/INDEX_general_PL_data.2020',skiprows=4,sep=r'\\s+',usecols=[0,4]).drop(0)\n", "df = df.rename(columns={'#': 'name','release': 'affinity'})\n", "df_refined = pd.read_table('data/pdbbind/index/INDEX_refined_data.2020',skiprows=4,sep=r'\\s+',usecols=[0,4]).drop(0)\n", "df_refined = df_refined.rename(columns={'#': 'name','release': 'affinity'})\n", "df = pd.concat([df,df_refined])" ] }, { "cell_type": "code", "execution_count": 3, "id": "68983ab8-bf11-4ed6-ba06-f962dbdc077e", "metadata": {}, "outputs": [], "source": [ "quantities = ['ki','kd','ka','k1/2','kb','ic50','ec50']" ] }, { "cell_type": "code", "execution_count": 4, "id": "3acbca3c-9c0b-43a1-a45e-331bf153bcfa", "metadata": {}, "outputs": [], "source": [ "from pint import UnitRegistry\n", "ureg = UnitRegistry()\n", "\n", "def to_uM(affinity):\n", " val = ureg(affinity)\n", " try:\n", " return val.m_as(ureg.uM)\n", " except Exception:\n", " pass\n", " \n", " try:\n", " return 1/val.m_as(1/ureg.uM)\n", " except Exception:\n", " pass" ] }, { "cell_type": "code", "execution_count": 5, "id": "58e5748b-2cea-43ff-ab51-85a5021bd50b", "metadata": {}, "outputs": [], "source": [ "df['affinity_uM'] = df['affinity'].str.split('[=\\~><]').str[1].apply(to_uM)\n", "df['affinity_quantity'] = df['affinity'].str.split('[=\\~><]').str[0]" ] }, { "cell_type": "code", "execution_count": 6, "id": "d92f0004-68c1-4487-94b9-56b4fd598de4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQdUlEQVR4nO3df6zdd13H8efLVkYpFjfHbpp22BKL2m1B3GVWiOSSGncFYveHM8XhOrOkYZk4ZYnp+Adj0mQkoLDFjVTBdjiYdZC0OoYuhStR98MWiKUrywqb22WXlR8ydxHHOt/+cT7Vw+3p7XrOvfe03ucjOTnf8/5+Pt/v5+Z+e173+/l+z2mqCkmSfmTYA5AknRkMBEkSYCBIkhoDQZIEGAiSpGbpsAfQr/PPP7/WrFnTV9/vfe97LF++fG4HJDUeX5pvgxxjBw4c+FZVvbLXurM2ENasWcP+/fv76jsxMcHY2NjcDkhqPL403wY5xpL828nWOWUkSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1pwyEJB9NcjTJl7tq5yW5L8mj7fncrnU3JTmS5JEkl3fVL01ysK27JUla/Zwkf9XqDyZZM8c/oyTpRXgxZwg7gfEZtW3AvqpaB+xrr0myHtgMXNT63JZkSetzO7AVWNcex7d5LfDvVfVTwJ8A7+v3h5Ek9e+UgVBVnwe+M6O8CdjVlncBV3TV76qq56rqMeAIcFmSlcCKqrq/Ov8Bwx0z+hzf1t3AxuNnD5KkhdPvJ5VHqmoKoKqmklzQ6quAB7raTbba8215Zv14nyfbto4leQb4CeBbM3eaZCudswxGRkaYmJjoa/DT09N995VOxeNrcTj49WeGtu+1r1gyL8fYXH91Ra+/7GuW+mx9TixW7QB2AIyOjla/H932qwU0nzy+Fodrtt0ztH3vHF8+L8dYv3cZPd2mgWjPR1t9Eriwq91q4KlWX92j/kN9kiwFXsGJU1SSpHnWbyDsBba05S3Anq765nbn0Fo6F48fatNLzybZ0K4PXD2jz/Ft/Trw2fI/epakBXfKKaMknwDGgPOTTALvBW4Gdie5FngCuBKgqg4l2Q08DBwDrq+qF9qmrqNzx9Iy4N72APgI8LEkR+icGWyek59MknRaThkIVfX2k6zaeJL224HtPer7gYt71P+LFiiSpOHxk8qSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQMFAhJfj/JoSRfTvKJJC9Ncl6S+5I82p7P7Wp/U5IjSR5JcnlX/dIkB9u6W5JkkHFJkk5f34GQZBXwu8BoVV0MLAE2A9uAfVW1DtjXXpNkfVt/ETAO3JZkSdvc7cBWYF17jPc7LklSfwadMloKLEuyFHgZ8BSwCdjV1u8CrmjLm4C7quq5qnoMOAJclmQlsKKq7q+qAu7o6iNJWiB9B0JVfR14P/AEMAU8U1V/D4xU1VRrMwVc0LqsAp7s2sRkq61qyzPrkqQFtLTfju3awCZgLfBd4K+TvGO2Lj1qNUu91z630plaYmRkhImJidMY8f+Znp7uu690Kh5fi8ONlxwb2r7n6xjrOxCAXwYeq6pvAiT5FPAG4OkkK6tqqk0HHW3tJ4ELu/qvpjPFNNmWZ9ZPUFU7gB0Ao6OjNTY21tfAJyYm6LevdCoeX4vDNdvuGdq+d44vn5djbJBrCE8AG5K8rN0VtBE4DOwFtrQ2W4A9bXkvsDnJOUnW0rl4/FCbVno2yYa2nau7+kiSFkjfZwhV9WCSu4EvAMeAL9L56/3lwO4k19IJjStb+0NJdgMPt/bXV9ULbXPXATuBZcC97SFJWkCDTBlRVe8F3juj/Byds4Ve7bcD23vU9wMXDzIWSdJg/KSyJAkwECRJjYEgSQIMBElSM9BF5bPVwa8/M7R7iB+/+a1D2a8knYpnCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUrMobzuV5pO3Nets5RmCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJKAAQMhyY8nuTvJV5IcTvKLSc5Lcl+SR9vzuV3tb0pyJMkjSS7vql+a5GBbd0uSDDIuSdLpG/QM4UPAZ6rqZ4DXAoeBbcC+qloH7GuvSbIe2AxcBIwDtyVZ0rZzO7AVWNce4wOOS5J0mvoOhCQrgDcBHwGoqh9U1XeBTcCu1mwXcEVb3gTcVVXPVdVjwBHgsiQrgRVVdX9VFXBHVx9J0gJZOkDfVwPfBP4iyWuBA8ANwEhVTQFU1VSSC1r7VcADXf0nW+35tjyzfoIkW+mcSTAyMsLExERfAx9ZBjdecqyvvoPqd8w6e3h8LQ7D+h0DTE9Pz8vvepBAWAr8PPCuqnowyYdo00Mn0eu6QM1SP7FYtQPYATA6OlpjY2OnNeDjbr1zDx84OMiP3r/Hrxobyn61cDy+Fodrtt0ztH3vHF9Ov+9/sxnkGsIkMFlVD7bXd9MJiKfbNBDt+WhX+wu7+q8Gnmr11T3qkqQF1HcgVNU3gCeT/HQrbQQeBvYCW1ptC7CnLe8FNic5J8laOhePH2rTS88m2dDuLrq6q48kaYEMel77LuDOJC8Bvgb8Np2Q2Z3kWuAJ4EqAqjqUZDed0DgGXF9VL7TtXAfsBJYB97aHJGkBDRQIVfUlYLTHqo0nab8d2N6jvh+4eJCxSJIG4yeVJUmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpGTgQkixJ8sUkf9ten5fkviSPtudzu9relORIkkeSXN5VvzTJwbbuliQZdFySpNMzF2cINwCHu15vA/ZV1TpgX3tNkvXAZuAiYBy4LcmS1ud2YCuwrj3G52BckqTTMFAgJFkNvBX4867yJmBXW94FXNFVv6uqnquqx4AjwGVJVgIrqur+qirgjq4+kqQFsnTA/h8E/gD4sa7aSFVNAVTVVJILWn0V8EBXu8lWe74tz6yfIMlWOmcSjIyMMDEx0degR5bBjZcc66vvoPods84eHl+Lw7B+xwDT09Pz8rvuOxCSvA04WlUHkoy9mC49ajVL/cRi1Q5gB8Do6GiNjb2Y3Z7o1jv38IGDg2Zhfx6/amwo+9XC8fhaHK7Zds/Q9r1zfDn9vv/NZpCj9o3AryV5C/BSYEWSvwSeTrKynR2sBI629pPAhV39VwNPtfrqHnVJ0gLq+xpCVd1UVaurag2di8Wfrap3AHuBLa3ZFmBPW94LbE5yTpK1dC4eP9Sml55NsqHdXXR1Vx9J0gKZj/Pam4HdSa4FngCuBKiqQ0l2Aw8Dx4Drq+qF1uc6YCewDLi3PSRJC2hOAqGqJoCJtvxtYONJ2m0Htveo7wcunouxSJL64yeVJUmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp6TsQklyY5HNJDic5lOSGVj8vyX1JHm3P53b1uSnJkSSPJLm8q35pkoNt3S1JMtiPJUk6XYOcIRwDbqyqnwU2ANcnWQ9sA/ZV1TpgX3tNW7cZuAgYB25LsqRt63ZgK7CuPcYHGJckqQ99B0JVTVXVF9rys8BhYBWwCdjVmu0CrmjLm4C7quq5qnoMOAJclmQlsKKq7q+qAu7o6iNJWiBzcg0hyRrgdcCDwEhVTUEnNIALWrNVwJNd3SZbbVVbnlmXJC2gpYNuIMnLgU8Cv1dV/zHL9H+vFTVLvde+ttKZWmJkZISJiYnTHi/AyDK48ZJjffUdVL9j1tnD42txGNbvGGB6enpeftcDBUKSH6UTBndW1ada+ekkK6tqqk0HHW31SeDCru6rgadafXWP+gmqagewA2B0dLTGxsb6Gvetd+7hAwcHzsK+PH7V2FD2q4Xj8bU4XLPtnqHte+f4cvp9/5vNIHcZBfgIcLiq/rhr1V5gS1veAuzpqm9Ock6StXQuHj/UppWeTbKhbfPqrj6SpAUyyJ8xbwR+CziY5Eut9h7gZmB3kmuBJ4ArAarqUJLdwMN07lC6vqpeaP2uA3YCy4B720OStID6DoSq+kd6z/8DbDxJn+3A9h71/cDF/Y5FkjQ4P6ksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAs6gQEgynuSRJEeSbBv2eCRpsTkjAiHJEuBPgV8F1gNvT7J+uKOSpMXljAgE4DLgSFV9rap+ANwFbBrymCRpUVk67AE0q4Anu15PAr8ws1GSrcDW9nI6ySN97u984Ft99h1I3jeMvWqBeXxpXr35fQMdYz95shVnSiCkR61OKFTtAHYMvLNkf1WNDrodqRePL823+TrGzpQpo0ngwq7Xq4GnhjQWSVqUzpRA+BdgXZK1SV4CbAb2DnlMkrSonBFTRlV1LMnvAH8HLAE+WlWH5nGXA087SbPw+NJ8m5djLFUnTNVLkhahM2XKSJI0ZAaCJAlYRIGQZLpr+S1JHk3yqiTvTHL1MMems8OMY+g1ST7dvmrlcJLdSUaSrEny/SRfao8Pd/W5NMnB1ueWJL1ut5b+18net2ZrN4gz4qLyQkqyEbgV+JWqegL48Cm6SD8kyUuBe4B3V9XftNqbgVcC08BXq+rnenS9nc4HKx8APg2MA/cuxJh1duvxvjUvFlUgJPkl4M+At1TVV1vtD4Hpqnr/MMems8pvAvcfDwOAqvocQJI1vTokWQmsqKr72+s7gCswEHQKJ3nfWgt8nM57+Gfmal+LZsoIOAfYA1xRVV8Z9mB0VrsYODDL+rVJvpjkH9o/Zuh8PctkV5vJVpNmc7L3rQ8Bt1fV64FvzNXOFlMgPA/8M3DtsAei/9emgFdV1euAdwMfT7KCF/n1LNIMJ3vfeiPwibb8sbna2WIKhP8GfgN4fZL3DHswOqsdAi7ttaKqnquqb7flA8BXgdfQOSNY3dXUr2fRizHb+9ac/0GxmAKBqvpP4G3AVUk8U1C/Pg68Iclbjxfaf/B0SZJXtv/fgySvBtYBX6uqKeDZJBva3UVX05kKkGZ1kvetf6LzFT8AV83VvhbVRWWAqvpOknHg80mG8hXFOrtV1feTvA34YJIP0jmt/1fgBuBNwB8lOQa8ALyzqr7Tul4H7ASW0bmY7AVlvSg93rduoDMdeQPwybnaj19dIUkCFtmUkSTp5AwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp+R+8kn6fv7jc8QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df['affinity_quantity'].hist()" ] }, { "cell_type": "code", "execution_count": 7, "id": "aa358835-55f3-4551-9217-e76a15de4fe8", "metadata": {}, "outputs": [], "source": [ "df_filter = df[df['affinity_quantity'].str.lower().isin(quantities)]\n", "df_filter = df_filter.dropna()" ] }, { "cell_type": "code", "execution_count": 8, "id": "802cb9bc-2563-4d7f-9a76-3be2d9263a36", "metadata": {}, "outputs": [], "source": [ "cutoffs = [5,8,11,15]" ] }, { "cell_type": "code", "execution_count": 9, "id": "d8e71a8c-11a3-41f0-ab61-3ddc57e10961", "metadata": {}, "outputs": [], "source": [ "dfs_complex = {c: pd.read_parquet('data/pdbbind_complex_{}.parquet'.format(c)) for c in cutoffs}" ] }, { "cell_type": "code", "execution_count": 10, "id": "ed3fe035-6035-4d39-b072-d12dc0a95857", "metadata": {}, "outputs": [], "source": [ "import dask.array as da\n", "import dask.dataframe as dd\n", "from dask.bag import from_delayed\n", "from dask import delayed\n", "import pyarrow as pa\n", "import pyarrow.parquet as pq" ] }, { "cell_type": "code", "execution_count": 11, "id": "cd26125b-e68b-4fa3-846e-2b6e7f635fe0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(2046, 510)\n" ] } ], "source": [ "contacts_dask = [da.from_npy_stack('data/pdbbind_contacts_{}'.format(c)) for c in cutoffs]\n", "shape = contacts_dask[0][0].shape\n", "print(shape)" ] }, { "cell_type": "code", "execution_count": 12, "id": "9c7c9849-2345-4baf-89e7-d412f52353b6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Array Chunk
Bytes 2.72 GiB 2.72 GiB
Shape (700, 2046, 510) (700, 2046, 510)
Count 25 Tasks 1 Chunks
Type float32 numpy.ndarray
\n", "
\n", "\n", "\n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", "\n", " \n", " \n", "\n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", "\n", " \n", " \n", "\n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", "\n", " \n", " \n", "\n", " \n", " 510\n", " 2046\n", " 700\n", "\n", "
" ], "text/plain": [ "dask.array" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "contacts_dask[0].blocks[1]" ] }, { "cell_type": "code", "execution_count": 13, "id": "0bd8e9b9-9713-4572-bd7f-dc47da9fce91", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[16232, 16228, 16226, 16223]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[len(c) for c in contacts_dask]" ] }, { "cell_type": "code", "execution_count": 14, "id": "87493934-3839-476a-a975-7da057c320da", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "16232" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "contacts_dask[0].shape[0]" ] }, { "cell_type": "code", "execution_count": 15, "id": "42e95d84-ef27-4417-9479-8b356462b8c3", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "all_partitions = []\n", "for c, cutoff in zip(contacts_dask,cutoffs):\n", " def chunk_to_sparse(rcut, chunk, idx_chunk):\n", " res = dfs_complex[rcut].iloc[idx_chunk][['name']].copy()\n", " # pad to account for [CLS] and [SEP]\n", " res['contacts_{}A'.format(rcut)] = [np.where(np.pad(a,pad_width=(1,1)).flatten())[0] for a in chunk]\n", " return res\n", "\n", " partitions = [delayed(chunk_to_sparse)(cutoff,b,k)\n", " for b,k in zip(c.blocks, da.arange(c.shape[0],chunks=c.chunks[0:1]).blocks)\n", " ]\n", " all_partitions.append(partitions)" ] }, { "cell_type": "code", "execution_count": 16, "id": "5520a925-693f-43f0-9e76-df2e128f272e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namecontacts_5A
010gs[3083, 3084, 3086, 3087, 3088, 3089, 3094, 309...
1184l[39945, 39946, 39947, 39948, 43010, 43012, 430...
2186l[39943, 39944, 39945, 43010, 43011, 43012, 430...
3187l[39937, 39938, 39947, 43009, 43010, 43012, 430...
4188l[39937, 39938, 39940, 39941, 43009, 43010, 430...
\n", "
" ], "text/plain": [ " name contacts_5A\n", "0 10gs [3083, 3084, 3086, 3087, 3088, 3089, 3094, 309...\n", "1 184l [39945, 39946, 39947, 39948, 43010, 43012, 430...\n", "2 186l [39943, 39944, 39945, 43010, 43011, 43012, 430...\n", "3 187l [39937, 39938, 39947, 43009, 43010, 43012, 430...\n", "4 188l [39937, 39938, 39940, 39941, 43009, 43010, 430..." ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_partitions[0][0].compute().head()" ] }, { "cell_type": "code", "execution_count": 17, "id": "4982c3b1-5ce9-4f17-9834-a02c4e136bc2", "metadata": {}, "outputs": [], "source": [ "ddfs = [dd.from_delayed(p) for p in all_partitions]" ] }, { "cell_type": "code", "execution_count": 18, "id": "f6cdee43-33c6-445c-8619-ace20f90638c", "metadata": {}, "outputs": [], "source": [ "ddf_all = None\n", "for d in ddfs:\n", " if ddf_all is not None:\n", " ddf_all = ddf_all.merge(d, on='name')\n", " else:\n", " ddf_all = d\n", "ddf_all = ddf_all.merge(df_filter,on='name')\n", "ddf_all = ddf_all.merge(list(dfs_complex.values())[0],on='name')" ] }, { "cell_type": "code", "execution_count": 19, "id": "8f49f871-76f6-4fb2-b2db-c0794d4c07bf", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 8min 53s, sys: 11min 31s, total: 20min 24s\n", "Wall time: 3min 29s\n" ] } ], "source": [ "%%time\n", "df_all_contacts = ddf_all.compute()" ] }, { "cell_type": "code", "execution_count": 20, "id": "45e4b4fa-6338-4abe-bd6e-8aea46e2a09c", "metadata": {}, "outputs": [], "source": [ "df_all_contacts['neg_log10_affinity_M'] = 6-np.log10(df_all_contacts['affinity_uM'])" ] }, { "cell_type": "code", "execution_count": 21, "id": "7c3db301-6565-4053-bbd4-139bb41dd1c4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([6.34387834]), array([3.57815698]))" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.preprocessing import StandardScaler\n", "scaler = StandardScaler()\n", "df_all_contacts['affinity'] = scaler.fit_transform(df_all_contacts['neg_log10_affinity_M'].values.reshape(-1,1))\n", "scaler.mean_, scaler.var_" ] }, { "cell_type": "code", "execution_count": 22, "id": "c9d674bb-d6a2-4810-aa2b-e3bc3b4bbc98", "metadata": {}, "outputs": [], "source": [ "# save to parquet\n", "df_all_contacts.drop(columns=['name','affinity_quantity']).astype({'affinity': 'float32','neg_log10_affinity_M': 'float32'}).to_parquet('data/pdbbind_with_contacts.parquet',index=False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" } }, "nbformat": 4, "nbformat_minor": 5 }