Commit 
							
							·
						
						9b11261
	
1
								Parent(s):
							
							9e947fd
								
Convert dataset to Parquet (#2)
Browse files- Convert dataset to Parquet (876ca3db3c88ce83c229e295697f7f9f6a8f15f5)
- Delete loading script (c98b927ec946fa53d8257106b7efbe148a7830a6)
- Delete legacy dataset_infos.json (e5de150e641d53a15557d91e5297ed018e9de25d)
- README.md +11 -4
- data/test-00000-of-00001.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
- jfleg.py +0 -144
    	
        README.md
    CHANGED
    
    | @@ -29,13 +29,20 @@ dataset_info: | |
| 29 | 
             
                sequence: string
         | 
| 30 | 
             
              splits:
         | 
| 31 | 
             
              - name: validation
         | 
| 32 | 
            -
                num_bytes:  | 
| 33 | 
             
                num_examples: 755
         | 
| 34 | 
             
              - name: test
         | 
| 35 | 
            -
                num_bytes:  | 
| 36 | 
             
                num_examples: 748
         | 
| 37 | 
            -
              download_size:  | 
| 38 | 
            -
              dataset_size:  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 39 | 
             
            ---
         | 
| 40 |  | 
| 41 | 
             
            # Dataset Card for JFLEG
         | 
|  | |
| 29 | 
             
                sequence: string
         | 
| 30 | 
             
              splits:
         | 
| 31 | 
             
              - name: validation
         | 
| 32 | 
            +
                num_bytes: 379979
         | 
| 33 | 
             
                num_examples: 755
         | 
| 34 | 
             
              - name: test
         | 
| 35 | 
            +
                num_bytes: 379699
         | 
| 36 | 
             
                num_examples: 748
         | 
| 37 | 
            +
              download_size: 289093
         | 
| 38 | 
            +
              dataset_size: 759678
         | 
| 39 | 
            +
            configs:
         | 
| 40 | 
            +
            - config_name: default
         | 
| 41 | 
            +
              data_files:
         | 
| 42 | 
            +
              - split: validation
         | 
| 43 | 
            +
                path: data/validation-*
         | 
| 44 | 
            +
              - split: test
         | 
| 45 | 
            +
                path: data/test-*
         | 
| 46 | 
             
            ---
         | 
| 47 |  | 
| 48 | 
             
            # Dataset Card for JFLEG
         | 
    	
        data/test-00000-of-00001.parquet
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c3e5328a79aebb6fd559d19291c055824ed1040c5038731b3449e0e9efb1d59b
         | 
| 3 | 
            +
            size 141012
         | 
    	
        data/validation-00000-of-00001.parquet
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:102d7bd261223c00e2a39f0dd239857de9e5f91f94ae2aefbdd50a38ac6fddf8
         | 
| 3 | 
            +
            size 148081
         | 
    	
        dataset_infos.json
    DELETED
    
    | @@ -1 +0,0 @@ | |
| 1 | 
            -
            {"default": {"description": "JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus.\nIt is a gold standard benchmark for developing and evaluating GEC systems with respect to\nfluency (extent to which a text is native-sounding) as well as grammaticality.\n\nFor each source document, there are four human-written corrections (ref0 to ref3).\n", "citation": "@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,\n  author    = {Napoles, Courtney\n               and  Sakaguchi, Keisuke\n               and  Tetreault, Joel},\n  title     = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},\n  booktitle = {Proceedings of the 15th Conference of the European Chapter of the\n               Association for Computational Linguistics: Volume 2, Short Papers},\n  month     = {April},\n  year      = {2017},\n  address   = {Valencia, Spain},\n  publisher = {Association for Computational Linguistics},\n  pages     = {229--234},\n  url       = {http://www.aclweb.org/anthology/E17-2037}\n}\n@InProceedings{heilman-EtAl:2014:P14-2,\n  author    = {Heilman, Michael\n               and  Cahill, Aoife\n               and  Madnani, Nitin\n               and  Lopez, Melissa\n               and  Mulholland, Matthew\n               and  Tetreault, Joel},\n  title     = {Predicting Grammaticality on an Ordinal Scale},\n  booktitle = {Proceedings of the 52nd Annual Meeting of the\n               Association for Computational Linguistics (Volume 2: Short Papers)},\n  month     = {June},\n  year      = {2014},\n  address   = {Baltimore, Maryland},\n  publisher = {Association for Computational Linguistics},\n  pages     = {174--180},\n  url       = {http://www.aclweb.org/anthology/P14-2029}\n}\n", "homepage": "https://github.com/keisks/jfleg", "license": "CC BY-NC-SA 4.0", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "corrections": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "jfleg", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 379991, "num_examples": 755, "dataset_name": "jfleg"}, "test": {"name": "test", "num_bytes": 379711, "num_examples": 748, "dataset_name": "jfleg"}}, "download_checksums": {"https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.src": {"num_bytes": 72726, "checksum": "4a0e8b86d18a1058460ff0a592dac1ba68986d135256efbd27e997ac43f295f8"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref0": {"num_bytes": 73216, "checksum": "adea6287c6e2240b7777e63cd56f8e228e742bbfb42c5152bc0bd2bc91f4e53e"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref1": {"num_bytes": 73129, "checksum": "d40d56ec7468ddab03fdcca97065ab3f9d391d749dbc7097b7c777a19ce4242e"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref2": {"num_bytes": 73394, "checksum": "b070691d633e0c4143d96ba21299ae71cb126086517d2970df47420842067793"}, "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref3": {"num_bytes": 73164, "checksum": "9187fd834693fa77d07957991282d32d61ff84a207c25cbfab318c871bacdbc4"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.src": {"num_bytes": 72684, "checksum": "893db119162487aa7f956b65978453576919e6797cd6c1955f93b7a8b9f4bbd8"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref0": {"num_bytes": 73090, "checksum": "875953280a3ea1dea2827337b1778c0105f0c0aa79f2517a6e0e42db5e5e170c"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref1": {"num_bytes": 73325, "checksum": "190d3398f2765f54a39b5489d1e96c483412a656086c731f8712ad0591087d80"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref2": {"num_bytes": 73018, "checksum": "0e3c6abe934ccd16c9dffb2fd889d6f55afc3ad13a63c1e148c720bb4e99046b"}, "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref3": {"num_bytes": 73365, "checksum": "19f49de6eff813b26505ecf756c20dc301aeb80696696b01ca950298f6e58441"}}, "download_size": 731111, "post_processing_size": null, "dataset_size": 759702, "size_in_bytes": 1490813}}
         | 
|  | |
|  | 
    	
        jfleg.py
    DELETED
    
    | @@ -1,144 +0,0 @@ | |
| 1 | 
            -
            # coding=utf-8
         | 
| 2 | 
            -
            # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            -
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            -
            # You may obtain a copy of the License at
         | 
| 7 | 
            -
            #
         | 
| 8 | 
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            -
            #
         | 
| 10 | 
            -
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            -
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            -
            # limitations under the License.
         | 
| 15 | 
            -
            """JFLEG dataset."""
         | 
| 16 | 
            -
             | 
| 17 | 
            -
             | 
| 18 | 
            -
            import datasets
         | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
            _CITATION = """\
         | 
| 22 | 
            -
            @InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,
         | 
| 23 | 
            -
              author    = {Napoles, Courtney
         | 
| 24 | 
            -
                           and  Sakaguchi, Keisuke
         | 
| 25 | 
            -
                           and  Tetreault, Joel},
         | 
| 26 | 
            -
              title     = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},
         | 
| 27 | 
            -
              booktitle = {Proceedings of the 15th Conference of the European Chapter of the
         | 
| 28 | 
            -
                           Association for Computational Linguistics: Volume 2, Short Papers},
         | 
| 29 | 
            -
              month     = {April},
         | 
| 30 | 
            -
              year      = {2017},
         | 
| 31 | 
            -
              address   = {Valencia, Spain},
         | 
| 32 | 
            -
              publisher = {Association for Computational Linguistics},
         | 
| 33 | 
            -
              pages     = {229--234},
         | 
| 34 | 
            -
              url       = {http://www.aclweb.org/anthology/E17-2037}
         | 
| 35 | 
            -
            }
         | 
| 36 | 
            -
            @InProceedings{heilman-EtAl:2014:P14-2,
         | 
| 37 | 
            -
              author    = {Heilman, Michael
         | 
| 38 | 
            -
                           and  Cahill, Aoife
         | 
| 39 | 
            -
                           and  Madnani, Nitin
         | 
| 40 | 
            -
                           and  Lopez, Melissa
         | 
| 41 | 
            -
                           and  Mulholland, Matthew
         | 
| 42 | 
            -
                           and  Tetreault, Joel},
         | 
| 43 | 
            -
              title     = {Predicting Grammaticality on an Ordinal Scale},
         | 
| 44 | 
            -
              booktitle = {Proceedings of the 52nd Annual Meeting of the
         | 
| 45 | 
            -
                           Association for Computational Linguistics (Volume 2: Short Papers)},
         | 
| 46 | 
            -
              month     = {June},
         | 
| 47 | 
            -
              year      = {2014},
         | 
| 48 | 
            -
              address   = {Baltimore, Maryland},
         | 
| 49 | 
            -
              publisher = {Association for Computational Linguistics},
         | 
| 50 | 
            -
              pages     = {174--180},
         | 
| 51 | 
            -
              url       = {http://www.aclweb.org/anthology/P14-2029}
         | 
| 52 | 
            -
            }
         | 
| 53 | 
            -
            """
         | 
| 54 | 
            -
             | 
| 55 | 
            -
            _DESCRIPTION = """\
         | 
| 56 | 
            -
            JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus.
         | 
| 57 | 
            -
            It is a gold standard benchmark for developing and evaluating GEC systems with respect to
         | 
| 58 | 
            -
            fluency (extent to which a text is native-sounding) as well as grammaticality.
         | 
| 59 | 
            -
             | 
| 60 | 
            -
            For each source document, there are four human-written corrections (ref0 to ref3).
         | 
| 61 | 
            -
            """
         | 
| 62 | 
            -
             | 
| 63 | 
            -
            _HOMEPAGE = "https://github.com/keisks/jfleg"
         | 
| 64 | 
            -
             | 
| 65 | 
            -
            _LICENSE = "CC BY-NC-SA 4.0"
         | 
| 66 | 
            -
             | 
| 67 | 
            -
            _URLs = {
         | 
| 68 | 
            -
                "dev": {
         | 
| 69 | 
            -
                    "src": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.src",
         | 
| 70 | 
            -
                    "ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref0",
         | 
| 71 | 
            -
                    "ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref1",
         | 
| 72 | 
            -
                    "ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref2",
         | 
| 73 | 
            -
                    "ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref3",
         | 
| 74 | 
            -
                },
         | 
| 75 | 
            -
                "test": {
         | 
| 76 | 
            -
                    "src": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.src",
         | 
| 77 | 
            -
                    "ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref0",
         | 
| 78 | 
            -
                    "ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref1",
         | 
| 79 | 
            -
                    "ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref2",
         | 
| 80 | 
            -
                    "ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref3",
         | 
| 81 | 
            -
                },
         | 
| 82 | 
            -
            }
         | 
| 83 | 
            -
             | 
| 84 | 
            -
             | 
| 85 | 
            -
            class Jfleg(datasets.GeneratorBasedBuilder):
         | 
| 86 | 
            -
                """JFLEG (JHU FLuency-Extended GUG) grammatical error correction dataset."""
         | 
| 87 | 
            -
             | 
| 88 | 
            -
                VERSION = datasets.Version("1.0.0")
         | 
| 89 | 
            -
             | 
| 90 | 
            -
                def _info(self):
         | 
| 91 | 
            -
                    return datasets.DatasetInfo(
         | 
| 92 | 
            -
                        description=_DESCRIPTION,
         | 
| 93 | 
            -
                        features=datasets.Features(
         | 
| 94 | 
            -
                            {"sentence": datasets.Value("string"), "corrections": datasets.Sequence(datasets.Value("string"))}
         | 
| 95 | 
            -
                        ),
         | 
| 96 | 
            -
                        supervised_keys=None,
         | 
| 97 | 
            -
                        homepage=_HOMEPAGE,
         | 
| 98 | 
            -
                        license=_LICENSE,
         | 
| 99 | 
            -
                        citation=_CITATION,
         | 
| 100 | 
            -
                    )
         | 
| 101 | 
            -
             | 
| 102 | 
            -
                def _split_generators(self, dl_manager):
         | 
| 103 | 
            -
                    """Returns SplitGenerators."""
         | 
| 104 | 
            -
             | 
| 105 | 
            -
                    downloaded_dev = dl_manager.download_and_extract(_URLs["dev"])
         | 
| 106 | 
            -
                    downloaded_test = dl_manager.download_and_extract(_URLs["test"])
         | 
| 107 | 
            -
             | 
| 108 | 
            -
                    return [
         | 
| 109 | 
            -
                        datasets.SplitGenerator(
         | 
| 110 | 
            -
                            name=datasets.Split.VALIDATION,
         | 
| 111 | 
            -
                            gen_kwargs={
         | 
| 112 | 
            -
                                "filepath": downloaded_dev,
         | 
| 113 | 
            -
                                "split": "dev",
         | 
| 114 | 
            -
                            },
         | 
| 115 | 
            -
                        ),
         | 
| 116 | 
            -
                        datasets.SplitGenerator(
         | 
| 117 | 
            -
                            name=datasets.Split.TEST,
         | 
| 118 | 
            -
                            gen_kwargs={"filepath": downloaded_test, "split": "test"},
         | 
| 119 | 
            -
                        ),
         | 
| 120 | 
            -
                    ]
         | 
| 121 | 
            -
             | 
| 122 | 
            -
                def _generate_examples(self, filepath, split):
         | 
| 123 | 
            -
                    """Yields examples."""
         | 
| 124 | 
            -
             | 
| 125 | 
            -
                    source_file = filepath["src"]
         | 
| 126 | 
            -
                    with open(source_file, encoding="utf-8") as f:
         | 
| 127 | 
            -
                        source_sentences = f.read().split("\n")
         | 
| 128 | 
            -
                        num_source = len(source_sentences)
         | 
| 129 | 
            -
             | 
| 130 | 
            -
                    corrections = []
         | 
| 131 | 
            -
                    for n in range(0, 4):
         | 
| 132 | 
            -
                        correction_file = filepath[f"ref{n}"]
         | 
| 133 | 
            -
                        with open(correction_file, encoding="utf-8") as f:
         | 
| 134 | 
            -
                            correction_sentences = f.read().split("\n")
         | 
| 135 | 
            -
                            num_correction = len(correction_sentences)
         | 
| 136 | 
            -
             | 
| 137 | 
            -
                            assert len(correction_sentences) == len(
         | 
| 138 | 
            -
                                source_sentences
         | 
| 139 | 
            -
                            ), f"Sizes do not match: {num_source} vs {num_correction} for {source_file} vs {correction_file}."
         | 
| 140 | 
            -
                            corrections.append(correction_sentences)
         | 
| 141 | 
            -
             | 
| 142 | 
            -
                    corrected_sentences = list(zip(*corrections))
         | 
| 143 | 
            -
                    for id_, source_sentence in enumerate(source_sentences):
         | 
| 144 | 
            -
                        yield id_, {"sentence": source_sentence, "corrections": corrected_sentences[id_]}
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 

