Datasets:

ArXiv:
License:
orionweller commited on
Commit
a7a5b96
Β·
verified Β·
1 Parent(s): a263bf2

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - fill-mask
5
+ tags:
6
+ - pretraining
7
+ - encoder
8
+ - multilingual
9
+ ---
10
+
11
+ # MMBERT Decay Phase Data
12
+
13
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
14
+ [![Paper](https://img.shields.io/badge/Paper-Arxiv-red)](https://arxiv.org/abs/2509.06888)
15
+ [![Models](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-2%20Models-blue)](https://huggingface.co/collections/jhu-clsp/mmbert-a-modern-multilingual-encoder-68b725831d7c6e3acc435ed4)
16
+ [![GitHub](https://img.shields.io/badge/GitHub-Code-black)](https://github.com/jhu-clsp/mmBERT)
17
+
18
+ > **Phase 3 of 3**: Annealed language learning decay phase (100B tokens) with massive multilingual expansion to 1833 languages.
19
+
20
+ ## πŸ“Š Data Composition
21
+ NOTE: there are multiple decay data mixtures: this mixture described below is the Decay-Cont mixture. However, the data in this repository is the Decay-Eng. If you are interested in the others, please let me know so I can prioritize it.
22
+
23
+ | Data Source | Tokens (B) | Percentage | Description |
24
+ |:------------|:-----------|:-----------|:------------|
25
+ | FineWeb2 | 78.5 | 76.0% | High-quality multilingual web crawl data |
26
+ | Wikipedia (MegaWika) | 9.5 | 9.2% | Encyclopedia articles (1833 languages) |
27
+ | Arxiv | 3.3 | 3.2% | Academic preprints |
28
+ | Textbooks (ProLong) | 3.1 | 3.0% | Educational content |
29
+ | Code (ProLong) | 2.8 | 2.7% | Code repositories and files |
30
+ | Books | 2.2 | 2.1% | Literature and reference books |
31
+ | DCLM (Dolmino) | 2.0 | 2.0% | High-quality English web data |
32
+ | Tulu Flan | 1.0 | 1.0% | Instruction-following data |
33
+ | Starcoder | 0.5 | 0.5% | Code repositories |
34
+ | Dolmino Math | 0.5 | 0.5% | Mathematical content |
35
+ | **Total** | **103.3** | **100.0%** | Optimized for rapid language acquisition |
36
+
37
+ ## 🌍 Massive Language Coverage
38
+
39
+ This phase dramatically expands language coverage to **1833 languages**, implementing the novel **Cascading Annealed Language Learning (ALL)** approach:
40
+
41
+ - **Temperature Schedule**: Ο„=0.3 (most uniform sampling)
42
+ - **Low-resource Focus**: Includes 1723 new languages with minimal data
43
+ - **Rapid Learning**: Demonstrates 68% performance improvement on Tigray and 26% on Faroese
44
+ - **Script Diversity**: Covers virtually all writing systems in FineWeb2
45
+
46
+ ### Key Innovation: Annealed Language Learning
47
+
48
+ Rather than training on all languages simultaneously, MMBERT uses a cascading approach:
49
+ 1. **Phase 1**: 60 high-resource languages (Ο„=0.7)
50
+ 2. **Phase 2**: 110 languages including mid-resource (Ο„=0.5)
51
+ 3. **Phase 3**: 1833 languages with focus on low-resource (Ο„=0.3)
52
+
53
+ This enables rapid learning of new languages while maintaining performance on high-resource ones.
54
+
55
+ ## βš™οΈ Key Features
56
+
57
+ - **Ultra-low Masking**: 5% mask rate for optimal learning efficiency
58
+ - **Model Merging**: Three decay variants (English-focused, 110-lang, 1833-lang) merged using TIES. This is the English focused version.
59
+ - **Quality Focus**: Emphasizes highest-quality data sources
60
+
61
+ ## πŸš€ Usage
62
+
63
+ For decay phase training, see the ModernBERT repo: https://github.com/AnswerDotAI/ModernBERT
64
+
65
+ ### Direct Access
66
+
67
+ ```python
68
+ from streaming import StreamingDataset
69
+
70
+ # Load the streaming dataset
71
+ dataset = StreamingDataset(
72
+ remote='https://huggingface.co/datasets/jhu-clsp/mmbert-decay',
73
+ local='/tmp/mmbert-decay-data',
74
+ shuffle=True
75
+ )
76
+
77
+ # Access samples
78
+ for sample in dataset:
79
+ text = sample['text']
80
+ # Process your data...
81
+ ```
82
+
83
+ ## 🎯 Performance Impact
84
+
85
+ The decay phase demonstrates remarkable efficiency in low-resource language learning:
86
+ - **Tigray (TiQuAD)**: 68% improvement (12.1 F1 points) from including the language
87
+ - **Faroese (FoQA)**: 26% improvement (15.4 F1 points)
88
+ - **SOTA Performance**: Can even outperforms GPT-4o, Gemini 2.5 Pro
89
+ - **Rapid Acquisition**: Significant gains with only 100B tokens of exposure
90
+
91
+ ## πŸ”— Related Resources
92
+
93
+ - **Models**: [mmBERT Model Suite](https://huggingface.co/collections/jhu-clsp/mmbert-a-modern-multilingual-encoder-68b725831d7c6e3acc435ed4)
94
+ - **Phase 1**: [Pre-training Data](https://huggingface.co/datasets/jhu-clsp/mmbert-pretrain-p1-fineweb2-langs) (2.3T tokens)
95
+ - **Phase 2**: [Mid-training Data](https://huggingface.co/datasets/jhu-clsp/mmbert-midtraining) (600B tokens)
96
+ - **Checkpoints**: [Training Checkpoints](https://huggingface.co/datasets/jhu-clsp/mmbert-checkpoints)
97
+ - **Paper**: [Arxiv link](https://arxiv.org/abs/2509.06888)
98
+ - **Code**: [GitHub Repository](https://github.com/jhu-clsp/mmBERT)
99
+
100
+ ## Citation
101
+
102
+ ```bibtex
103
+ @misc{marone2025mmbertmodernmultilingualencoder,
104
+ title={mmBERT: A Modern Multilingual Encoder with Annealed Language Learning},
105
+ author={Marc Marone and Orion Weller and William Fleshman and Eugene Yang and Dawn Lawrie and Benjamin Van Durme},
106
+ year={2025},
107
+ eprint={2509.06888},
108
+ archivePrefix={arXiv},
109
+ primaryClass={cs.CL},
110
+ url={https://arxiv.org/abs/2509.06888},
111
+ }
112
+ ```