--- license: mit task_categories: - fill-mask tags: - pretraining - encoder - multilingual --- # MMBERT Decay Phase Data [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Paper](https://img.shields.io/badge/Paper-Arxiv-red)](https://arxiv.org/abs/2509.06888) [![Models](https://img.shields.io/badge/🤗%20Hugging%20Face-2%20Models-blue)](https://huggingface.co/collections/jhu-clsp/mmbert-a-modern-multilingual-encoder-68b725831d7c6e3acc435ed4) [![GitHub](https://img.shields.io/badge/GitHub-Code-black)](https://github.com/jhu-clsp/mmBERT) > **Phase 3 of 3**: Annealed language learning decay phase (100B tokens) with massive multilingual expansion to 1833 languages. ## 📊 Data Composition NOTE: there are multiple decay data mixtures: this mixture described below is the Decay-Cont mixture. However, the data in this repository is the Decay-Eng. If you are interested in the others, please let me know so I can prioritize it. | Data Source | Tokens (B) | Percentage | Description | |:------------|:-----------|:-----------|:------------| | FineWeb2 | 78.5 | 76.0% | High-quality multilingual web crawl data | | Wikipedia (MegaWika) | 9.5 | 9.2% | Encyclopedia articles (1833 languages) | | Arxiv | 3.3 | 3.2% | Academic preprints | | Textbooks (ProLong) | 3.1 | 3.0% | Educational content | | Code (ProLong) | 2.8 | 2.7% | Code repositories and files | | Books | 2.2 | 2.1% | Literature and reference books | | DCLM (Dolmino) | 2.0 | 2.0% | High-quality English web data | | Tulu Flan | 1.0 | 1.0% | Instruction-following data | | Starcoder | 0.5 | 0.5% | Code repositories | | Dolmino Math | 0.5 | 0.5% | Mathematical content | | **Total** | **103.3** | **100.0%** | Optimized for rapid language acquisition | ## 🌍 Massive Language Coverage This phase dramatically expands language coverage to **1833 languages**, implementing the novel **Cascading Annealed Language Learning (ALL)** approach: - **Temperature Schedule**: τ=0.3 (most uniform sampling) - **Low-resource Focus**: Includes 1723 new languages with minimal data - **Rapid Learning**: Demonstrates 68% performance improvement on Tigray and 26% on Faroese - **Script Diversity**: Covers virtually all writing systems in FineWeb2 ### Key Innovation: Annealed Language Learning Rather than training on all languages simultaneously, MMBERT uses a cascading approach: 1. **Phase 1**: 60 high-resource languages (τ=0.7) 2. **Phase 2**: 110 languages including mid-resource (τ=0.5) 3. **Phase 3**: 1833 languages with focus on low-resource (τ=0.3) This enables rapid learning of new languages while maintaining performance on high-resource ones. ## ⚙️ Key Features - **Ultra-low Masking**: 5% mask rate for optimal learning efficiency - **Model Merging**: Three decay variants (English-focused, 110-lang, 1833-lang) merged using TIES. This is the English focused version. - **Quality Focus**: Emphasizes highest-quality data sources ## 🚀 Usage For decay phase training, see the ModernBERT repo: https://github.com/AnswerDotAI/ModernBERT ### Direct Access ```python from streaming import StreamingDataset # Load the streaming dataset dataset = StreamingDataset( remote='https://huggingface.co/datasets/jhu-clsp/mmbert-decay', local='/tmp/mmbert-decay-data', shuffle=True ) # Access samples for sample in dataset: text = sample['text'] # Process your data... ``` ## 🎯 Performance Impact The decay phase demonstrates remarkable efficiency in low-resource language learning: - **Tigray (TiQuAD)**: 68% improvement (12.1 F1 points) from including the language - **Faroese (FoQA)**: 26% improvement (15.4 F1 points) - **SOTA Performance**: Can even outperforms GPT-4o, Gemini 2.5 Pro - **Rapid Acquisition**: Significant gains with only 100B tokens of exposure ## 🔗 Related Resources - **Models**: [mmBERT Model Suite](https://huggingface.co/collections/jhu-clsp/mmbert-a-modern-multilingual-encoder-68b725831d7c6e3acc435ed4) - **Phase 1**: [Pre-training Data](https://huggingface.co/datasets/jhu-clsp/mmbert-pretrain-p1-fineweb2-langs) (2.3T tokens) - **Phase 2**: [Mid-training Data](https://huggingface.co/datasets/jhu-clsp/mmbert-midtraining) (600B tokens) - **Checkpoints**: [Training Checkpoints](https://huggingface.co/datasets/jhu-clsp/mmbert-checkpoints) - **Paper**: [Arxiv link](https://arxiv.org/abs/2509.06888) - **Code**: [GitHub Repository](https://github.com/jhu-clsp/mmBERT) ## Citation ```bibtex @misc{marone2025mmbertmodernmultilingualencoder, title={mmBERT: A Modern Multilingual Encoder with Annealed Language Learning}, author={Marc Marone and Orion Weller and William Fleshman and Eugene Yang and Dawn Lawrie and Benjamin Van Durme}, year={2025}, eprint={2509.06888}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2509.06888}, } ```