Upload aphantasia_drawing_dataset.py
Browse files
aphantasia_drawing_dataset.py
CHANGED
|
@@ -7,7 +7,7 @@ Original file is located at
|
|
| 7 |
https://colab.research.google.com/drive/1DYVroeFqoNK7DDiw_3OIczPeqEME-rbh
|
| 8 |
"""
|
| 9 |
|
| 10 |
-
|
| 11 |
|
| 12 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 13 |
#
|
|
@@ -27,13 +27,9 @@ Original file is located at
|
|
| 27 |
|
| 28 |
|
| 29 |
|
| 30 |
-
import base64
|
| 31 |
-
from PIL import Image
|
| 32 |
import pandas as pd
|
| 33 |
import numpy as np
|
| 34 |
import io
|
| 35 |
-
import json
|
| 36 |
-
import os
|
| 37 |
from typing import List
|
| 38 |
import datasets
|
| 39 |
import logging
|
|
@@ -87,7 +83,7 @@ class AphantasiaDrawingDataset(datasets.GeneratorBasedBuilder):
|
|
| 87 |
description=_DESCRIPTION,
|
| 88 |
features=datasets.Features({
|
| 89 |
"subject_id": datasets.Value("int32"),
|
| 90 |
-
"treatment": datasets.Value("string")
|
| 91 |
"demographics": {
|
| 92 |
"country": datasets.Value("string"),
|
| 93 |
"age": datasets.Value("int32"),
|
|
@@ -145,49 +141,10 @@ class AphantasiaDrawingDataset(datasets.GeneratorBasedBuilder):
|
|
| 145 |
image = Image.open(image_buffer)
|
| 146 |
return image
|
| 147 |
return None
|
| 148 |
-
|
| 149 |
with open(filepath, "rb") as subjects_file:
|
| 150 |
subjects_data = pd.read_parquet(subjects_file)
|
| 151 |
-
#idx = 0
|
| 152 |
for idx, sub_row in subjects_data.iterrows():
|
| 153 |
-
# for room in subjects_data[sub]["drawings"].keys():
|
| 154 |
-
# if subjects_data[sub]["drawings"][room]["perception"] != "":
|
| 155 |
-
# img_byt = base64.b64decode(subjects_data[sub]["drawings"][room]["perception"])
|
| 156 |
-
# img = Image.open(io.BytesIO(img_byt))
|
| 157 |
-
# subjects_data[sub]["drawings"][room]["perception"] = img
|
| 158 |
-
# else:
|
| 159 |
-
# subjects_data[sub]["drawings"][room]["perception"] = None
|
| 160 |
-
|
| 161 |
-
# if subjects_data[sub]["drawings"][room]["memory"] != "":
|
| 162 |
-
# img_byt = base64.b64decode(subjects_data[sub]["drawings"][room]["memory"])
|
| 163 |
-
# img = Image.open(io.BytesIO(img_byt))
|
| 164 |
-
# subjects_data[sub]["drawings"][room]["memory"] = img
|
| 165 |
-
# else:
|
| 166 |
-
# subjects_data[sub]["drawings"][room]["memory"] = None
|
| 167 |
-
|
| 168 |
-
# for room in subjects_data[sub]["image"].keys():
|
| 169 |
-
# img_byt = base64.b64decode(subjects_data[sub]["image"][room])
|
| 170 |
-
# img = Image.open(io.BytesIO(img_byt))
|
| 171 |
-
# subjects_data[sub]["image"][room] = img.resize((500,500))
|
| 172 |
-
# idx += 1
|
| 173 |
-
|
| 174 |
-
# try:
|
| 175 |
-
# age = int(sub_row["demographics.age"])
|
| 176 |
-
# except:
|
| 177 |
-
# age = -1
|
| 178 |
-
# try:
|
| 179 |
-
# art_ability = int(sub_row["demographics.art_ability"])
|
| 180 |
-
# except:
|
| 181 |
-
# art_ability = -1
|
| 182 |
-
# try:
|
| 183 |
-
# vviq_score = int(sub_row["demographics.vviq_score"])
|
| 184 |
-
# except:
|
| 185 |
-
# vviq_score = -1
|
| 186 |
-
# try:
|
| 187 |
-
# osiq_score = int(sub_row["demographics.osiq_score"])
|
| 188 |
-
# except:
|
| 189 |
-
# osiq_score = -1
|
| 190 |
-
# age = int(sub_row["demographics.age"]) if sub_row["demographics.age"] and sub_row["demographics.age"] is not np.nan else None
|
| 191 |
yield idx, {
|
| 192 |
"subject_id": sub_row["subject_id"],
|
| 193 |
"treatment": sub_row["treatment"],
|
|
@@ -224,4 +181,5 @@ class AphantasiaDrawingDataset(datasets.GeneratorBasedBuilder):
|
|
| 224 |
"livingroom": byt_to_image(sub_row["image.livingroom"]),
|
| 225 |
"bedroom": byt_to_image(sub_row["image.bedroom"])
|
| 226 |
}
|
| 227 |
-
}
|
|
|
|
|
|
| 7 |
https://colab.research.google.com/drive/1DYVroeFqoNK7DDiw_3OIczPeqEME-rbh
|
| 8 |
"""
|
| 9 |
|
| 10 |
+
|
| 11 |
|
| 12 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 13 |
#
|
|
|
|
| 27 |
|
| 28 |
|
| 29 |
|
|
|
|
|
|
|
| 30 |
import pandas as pd
|
| 31 |
import numpy as np
|
| 32 |
import io
|
|
|
|
|
|
|
| 33 |
from typing import List
|
| 34 |
import datasets
|
| 35 |
import logging
|
|
|
|
| 83 |
description=_DESCRIPTION,
|
| 84 |
features=datasets.Features({
|
| 85 |
"subject_id": datasets.Value("int32"),
|
| 86 |
+
"treatment": datasets.Value("string"),
|
| 87 |
"demographics": {
|
| 88 |
"country": datasets.Value("string"),
|
| 89 |
"age": datasets.Value("int32"),
|
|
|
|
| 141 |
image = Image.open(image_buffer)
|
| 142 |
return image
|
| 143 |
return None
|
| 144 |
+
|
| 145 |
with open(filepath, "rb") as subjects_file:
|
| 146 |
subjects_data = pd.read_parquet(subjects_file)
|
|
|
|
| 147 |
for idx, sub_row in subjects_data.iterrows():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
yield idx, {
|
| 149 |
"subject_id": sub_row["subject_id"],
|
| 150 |
"treatment": sub_row["treatment"],
|
|
|
|
| 181 |
"livingroom": byt_to_image(sub_row["image.livingroom"]),
|
| 182 |
"bedroom": byt_to_image(sub_row["image.bedroom"])
|
| 183 |
}
|
| 184 |
+
}
|
| 185 |
+
|