File size: 5,246 Bytes
634a7e6
 
 
 
 
 
 
55fe1c2
634a7e6
 
69628fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634a7e6
 
83c1180
5a2b11d
 
 
1f0b9c4
 
5a2b11d
634a7e6
 
 
83c1180
9f1fe92
2df08f8
83c1180
634a7e6
83c1180
634a7e6
83c1180
634a7e6
 
 
758366c
 
 
 
 
 
83c1180
 
 
 
 
758366c
 
83c1180
 
 
 
 
 
 
 
 
758366c
 
 
83c1180
758366c
 
 
 
 
 
83c1180
 
758366c
 
 
 
 
 
 
 
83c1180
758366c
 
 
 
 
 
 
 
 
 
 
 
 
634a7e6
 
 
83c1180
634a7e6
 
 
 
 
 
 
9f1fe92
 
795cf59
 
 
 
9f1fe92
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
task_categories:
- question-answering
tags:
- science
pretty_name: Scientific Figure Interpretation Benchmark
size_categories:
- 1k<n<10k
language:
- en
configs:
- config_name: default
  data_files:
  - split: CS_Figure2Caption
    path: data/CS_Figure2Caption-*
  - split: CS_Caption2Figure
    path: data/CS_Caption2Figure-*
  - split: General_Figure2Caption
    path: data/General_Figure2Caption-*
  - split: General_Caption2Figure
    path: data/General_Caption2Figure-*
dataset_info:
  features:
  - name: ID
    dtype: int64
  - name: Question
    dtype: string
  - name: Options
    sequence: string
  - name: Answer
    dtype: string
  - name: Category
    dtype: string
  - name: Images
    sequence: image
  splits:
  - name: CS_Figure2Caption
    num_bytes: 22992276.0
    num_examples: 500
  - name: CS_Caption2Figure
    num_bytes: 122043099.0
    num_examples: 500
  - name: General_Figure2Caption
    num_bytes: 290333873.0
    num_examples: 500
  - name: General_Caption2Figure
    num_bytes: 1475930020.0
    num_examples: 500
  download_size: 926209658
  dataset_size: 1911299268.0
---

# SciFIBench
## Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel Albanie
## NeurIPS 2024

[![OpenCompass](https://opencompass.oss-cn-shanghai.aliyuncs.com/image/compass-hub/badge.svg)](https://hub.opencompass.org.cn/dataset-detail/SciFIBench)

Note: This repo has been updated to add two splits ('General_Figure2Caption' and 'General_Caption2Figure') with an additional 1000 questions. The original version splits are preserved and have been renamed as follows: 'Figure2Caption' -> 'CS_Figure2Caption' and 'Caption2Figure' -> 'CS_Caption2Figure'.

## Dataset Description

- **Homepage:** [SciFIBench](https://scifibench.github.io/)
- **Paper:** [SciFIBench: Benchmarking Large Multimodal Models for Scientific Figure Interpretation](https://arxiv.org/pdf/2405.08807)
- **Repository** [SciFIBench](https://github.com/jonathan-roberts1/SciFIBench)
- 
### Dataset Summary
The SciFIBench (Scientific Figure Interpretation Benchmark) contains 2000 multiple-choice scientific figure interpretation questions covering two tasks. Task 1: 
Figure -> Caption involves selecting the most appropriate caption given a figure; Task 2: Caption -> Figure involves the opposite -- selecting the most appropriate 
figure given a caption. This benchmark was curated from the SciCap and ArxivCap datasets, using adversarial filtering to obtain hard negatives. Human verification has been performed 
on each question to ensure high-quality, 
answerable questions.

### Example Usage
```python
from datasets import load_dataset

# load dataset
dataset = load_dataset("jonathan-roberts1/SciFIBench") # optional: set cache_dir="PATH/TO/MY/CACHE/DIR"
# there are 4 dataset splits, which can be indexed separately 
# cs_figure2caption_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="CS_Figure2Caption")
# cs_caption2figure_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="CS_Caption2Figure")
# general_figure2caption_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="General_Figure2Caption")
# general_caption2figure_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="General_Caption2Figure")
"""
DatasetDict({
    CS_Caption2Figure: Dataset({
        features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
        num_rows: 500
    })
    CS_Figure2Caption: Dataset({
        features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
        num_rows: 500
    })
    General_Caption2Figure: Dataset({
        features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
        num_rows: 500
    })
    General_Figure2Caption: Dataset({
        features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
        num_rows: 500
    })
})
"""

# select task and split
cs_figure2caption_dataset = dataset['CS_Figure2Caption']
"""
Dataset({
    features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
    num_rows: 500
})
"""

# query items
cs_figure2caption_dataset[40] # e.g., the 41st element
"""
{'ID': 40,
 'Question': 'Which caption best matches the image?',
 'Options': ['A)  ber vs snr for fft size=2048 using ls , lmmse , lr-lmmse .',
  'B)  ber vs snr for fft size=1024 using ls , lmmse , lr-lmmse algorithms .',
  'C)  ber vs snr for fft size=512 using ls , lmmse , lr-lmmse algorithms .',
  'D)  ber vs snr for fft size=256 using ls , lmmse , lr-lmmse algorithms with a 16 qam modulation .',
  'E)  ber vs snr for a bpsk modulation .'],
 'Answer': 'D',
 'Category': 'other cs',
 'Images': [<PIL.PngImagePlugin.PngImageFile image mode=RGB size=501x431>]}
"""
```

### Source Data

More information regarding the source data can be found at: https://github.com/tingyaohsu/SciCap and https://mm-arxiv.github.io/.

### Dataset Curators

This dataset was curated by Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel Albanie


### Citation Information
```
@article{roberts2024scifibench,
  title={SciFIBench: Benchmarking Large Multimodal Models for Scientific Figure Interpretation},
  author={Roberts, Jonathan and Han, Kai and Houlsby, Neil and Albanie, Samuel},
  journal={arXiv preprint arXiv:2405.08807},
  year={2024}
}
```