File size: 12,077 Bytes
4f85997 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
"""
**Author:** Kuoyuan Li
"""
import itertools
import random
from itertools import starmap
# Import needed libraries
import matplotlib.pyplot as plt
import cv2
import os
import numpy as np
import pandas as pd
import random
import math
from tqdm import tqdm
# Helper functions
# Show images given a list of images
def show_images(image):
plt.figure()
plt.imshow(image,cmap='gray')
# Load images from a folder given their filenames
def load_images(filename):
try:
img = cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2RGB)
return img
except IOError:
print("File is not an image\n")
exit()
# Plot lines on original images
def show_lines(image,lines):
# Implementation is based on workshop material
for line in lines:
rho,theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
pt1 = (int(x0 + 1000*(-b)),int(y0 + 1000*(a)))
pt2 = (int(x0 - 1000*(-b)),int(y0 - 1000*(a)))
# Draws a line segment connecting two points, colour=(255,0,0) and thickness=2.
cv2.line(image,pt1,pt2,(255,0,0),1)
cv2.imwrite("/root/data2/joonsu0109/project/naive_vp/vanishing_lines.png", image)
# plt.imshow(image)
# plt.axis('off')
# plt.show()
# Plot lines and points on original images
def show_point(image, point, save_paths):
# Implementation is based on workshop material
cv2.circle(image,point,3,(255,0,0), thickness=3)
cv2.imwrite(save_paths, image)
# plt.imshow(image)
# plt.axis('off')
# plt.show()
## 1. Detect lines in the image
## Use the Canny edge detector and Hough transform to detect lines in the image.
def detect_lines(image):
"""
Use Canny edge detection and Hough transform to get selected lines
(which are useful for locating vanishing point) for all images
Args: images: a list of original images
Return: blur_images: Blurred images (for report)
edge_images: Edge images (for report)
valid_lines_all: Detected lines
"""
# Do blurry to smooth the image, try to remove edges from textures
gau_kernel = cv2.getGaussianKernel(70,4)# 1d gaussian kernel (size, sigma)
gau_kern2d = np.outer(gau_kernel, gau_kernel)
gau_kern2d = gau_kern2d/gau_kern2d.sum() # 2d gaussian kernel to do blurry
# Apply blurry filter
blur_image = cv2.filter2D(image,-1,gau_kern2d)
# Canny edge detection with OpenCV for all blurry images
edge_image = cv2.Canny(blur_image,40,70,apertureSize=3,L2gradient=True)
# Use hough transform to detect all lines
lines=cv2.HoughLines(edge_image, 1, np.pi/120, 55)
valid_lines = []
# Remove horizontal and vertical lines as they would not converge to vanishing point
for line in lines:
rho,theta = line[0]
if (theta>0.4 and theta < 1.47) or (theta > 1.67 and theta < 2.74):
valid_lines.append(line)
return blur_image,edge_image,valid_lines
# Find the intersection point
def find_intersection_point(line1,line2):
"""Implementation is based on code from https://stackoverflow.com/questions/46565975
Original author: StackOverflow contributor alkasm
Find an intercept point of 2 lines model
Args: line1,line2: 2 lines using rho and theta (polar coordinates) to represent
Return: x0,y0: x and y for the intersection point
"""
# rho and theta for each line
rho1, theta1 = line1[0]
rho2, theta2 = line2[0]
# Use formula from https://stackoverflow.com/a/383527/5087436 to solve for intersection between 2 lines
A = np.array([
[np.cos(theta1), np.sin(theta1)],
[np.cos(theta2), np.sin(theta2)]
])
b = np.array([[rho1], [rho2]])
det_A = np.linalg.det(A)
if det_A != 0:
x0, y0 = np.linalg.solve(A, b)
# Round up x and y because pixel cannot have float number
x0, y0 = int(np.round(x0)), int(np.round(y0))
return x0, y0
else:
return None
# Find the distance from a point to a line
def find_dist_to_line(point,line):
"""Implementation is based on Computer Vision material, owned by the University of Melbourne
Find an intercept point of the line model with a normal from point to it, to calculate the
distance betwee point and intercept
Args: point: the point using x and y to represent
line: the line using rho and theta (polar coordinates) to represent
Return: dist: the distance from the point to the line
"""
x0,y0 = point
rho, theta = line[0]
m = (-1*(np.cos(theta)))/np.sin(theta)
c = rho/np.sin(theta)
# intersection point with the model
x = (x0 + m*y0 - m*c)/(1 + m**2)
y = (m*x0 + (m**2)*y0 - (m**2)*c)/(1 + m**2) + c
dist = math.sqrt((x - x0)**2 + (y - y0)**2)
return dist
def RANSAC(lines,ransac_iterations,ransac_threshold,ransac_ratio):
"""Implementation is based on code from Computer Vision material, owned by the University of Melbourne
Use RANSAC to identify the vanishing points for all images
Args: lines_all: The lines for all images
ransac_iterations,ransac_threshold,ransac_ratio: RANSAC hyperparameters
Return: vanishing_points: Estimated vanishing points for all images
"""
# Store vanishing point for the image
inlier_count_ratio = 0.
vanishing_point = (0,0)
# perform RANSAC iterations for each set of lines
print("NRANSAC")
for iteration in range(ransac_iterations):
# randomly sample 2 lines
n = 2
selected_lines = random.sample(lines,n)
line1 = selected_lines[0]
line2 = selected_lines[1]
intersection_point = find_intersection_point(line1,line2)
if intersection_point is not None:
# count the number of inliers num
inlier_count = 0
# inliers are lines whose distance to the point is less than ransac_threshold
for line in lines:
# find the distance from the line to the point
dist = find_dist_to_line(intersection_point,line)
# check whether it's an inlier or not
if dist < ransac_threshold:
inlier_count += 1
# If the value of inlier_count is higher than previously saved value,
# save it, and save the current point
if inlier_count/float(len(lines)) > inlier_count_ratio:
inlier_count_ratio = inlier_count/float(len(lines))
vanishing_point = intersection_point
# We are done in case we have enough inliers
if inlier_count > len(lines)*ransac_ratio:
break
return vanishing_point
def find_vanishing_point(img, grid_size, intersections):
# Image dimensions
print("img.shape: ",img.shape)
image_height = img.shape[0]
image_width = img.shape[1]
# Grid dimensions
grid_rows = (image_height // grid_size) + 1
grid_columns = (image_width // grid_size) + 1
# Current cell with most intersection points
max_intersections = 0
best_cell = (0.0, 0.0)
for i, j in itertools.product(range(grid_columns),range(grid_rows)):
cell_left = i * grid_size
cell_right = (i + 1) * grid_size
cell_bottom = j * grid_size
cell_top = (j + 1) * grid_size
center_cell = ((cell_left + cell_right) / 2, (cell_bottom + cell_top) / 2)
cv2.rectangle(img, (cell_left, cell_bottom), (cell_right, cell_top), (0, 0, 255), 5)
current_intersections = 0 # Number of intersections in the current cell
for x, y in intersections:
if cell_left < x < cell_right and cell_bottom < y < cell_top:
current_intersections += 1
# Current cell has more intersections that previous cell (better)
if current_intersections > max_intersections:
max_intersections = current_intersections
best_cell = ((cell_left + cell_right) / 2, (cell_bottom + cell_top) / 2)
print("Best Cell:", best_cell)
if best_cell[0] != None and best_cell[1] != None:
rx1 = int(best_cell[0] - grid_size / 2)
ry1 = int(best_cell[1] - grid_size / 2)
rx2 = int(best_cell[0] + grid_size / 2)
ry2 = int(best_cell[1] + grid_size / 2)
cv2.rectangle(img, (rx1, ry1), (rx2, ry2), (0, 255, 0), 10)
cv2.imwrite('/root/data2/joonsu0109/project/naive_vp/vanishing-point-detection/outputs/result.png', img)
return best_cell
### 3. Main function
### Run your vanishing point detection method on a folder of images, return the (x,y) locations of the vanishing points
# RANSAC parameters:
def line_intersection(line1, line2):
"""
Computes the intersection point of two lines in polar coordinates (rho, theta).
Args:
line1 (np.ndarray): First line, represented as (rho, theta).
line2 (np.ndarray): Second line, represented as (rho, theta).
Returns:
tuple or None: Intersection point (x, y), or None if lines are parallel.
"""
# Extract (rho, theta) for each line
rho1, theta1 = line1[0]
rho2, theta2 = line2[0]
# Represent lines in the form: a1*x + b1*y = c1
a1, b1 = np.cos(theta1), np.sin(theta1)
c1 = rho1
a2, b2 = np.cos(theta2), np.sin(theta2)
c2 = rho2
# Solve the system of linear equations
A = np.array([[a1, b1], [a2, b2]])
C = np.array([c1, c2])
# Check if determinant is close to zero (parallel lines)
det = np.linalg.det(A)
if abs(det) < 1e-6:
return None
# Find the intersection point
x, y = np.linalg.solve(A, C)
return x, y
def find_intersections(lines):
"""
Finds intersections between pairs of lines.
Args:
lines (np.ndarray): Array of lines in the format (n, 1, 2),
where each line is represented as (rho, theta).
Returns:
list: List of intersection points [(x, y), ...].
"""
intersections = []
for i, line_1 in enumerate(lines):
for line_2 in lines[i + 1:]:
intersection = line_intersection(line_1, line_2)
if intersection is not None: # If lines intersect, add the point
intersections.append(intersection)
return intersections
def sample_lines(lines, size):
if size > len(lines):
size = len(lines)
return random.sample(lines, size)
if __name__ == "__main__":
# Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
# filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
"""For the image, Use Canny+Hough to detect edges, use RANSAC to identify the vanishing points
"""
input_folder = "/root/data2/joonsu0109/dataset/SemanticKITTI/dataset/sequences/08/image_2"
output_folder = "/root/data2/joonsu0109/project/naive_vp/outputs_ransac"
os.makedirs(output_folder, exist_ok=True)
file_list = os.listdir(input_folder)
detected_list = os.listdir(output_folder)
for filename in tqdm(file_list):
# Read images from folder
if filename not in detected_list:
try:
print("Processing image: ",filename)
file_path = os.path.join(input_folder, filename)
save_paths = os.path.join(output_folder, filename)
image = cv2.imread(file_path)
# Task1: Detect lines using Canny + Hough
blur_image, edge_image, lines = detect_lines(image)
print("Number of lines detected: ",len(lines))
# Show lines on the original images
# show_lines(image, lines)
ransac_iterations,ransac_threshold,ransac_ratio = 50,10,0.93
vanishing_point = RANSAC(lines, ransac_iterations, ransac_threshold, ransac_ratio)
show_point(image, vanishing_point, save_paths)
except:
print("Error processing image: ",filename)
continue |