Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- .gitattributes +6 -0
 - vanishing_point_extraction/neurvps/TMM17/checkpoint_latest.pth.tar +3 -0
 - vanishing_point_extraction/neurvps/TMM17/config.yaml +39 -0
 - vanishing_point_extraction/neurvps/neurvps/__init__.py +4 -0
 - vanishing_point_extraction/neurvps/neurvps/__pycache__/__init__.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/__pycache__/box.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/__pycache__/config.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/__pycache__/datasets.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/__pycache__/trainer.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/__pycache__/utils.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/box.py +1110 -0
 - vanishing_point_extraction/neurvps/neurvps/config.py +9 -0
 - vanishing_point_extraction/neurvps/neurvps/datasets.py +184 -0
 - vanishing_point_extraction/neurvps/neurvps/models/__init__.py +2 -0
 - vanishing_point_extraction/neurvps/neurvps/models/__pycache__/__init__.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/models/__pycache__/conic.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/models/__pycache__/deformable.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/models/__pycache__/hourglass_pose.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/models/__pycache__/vanishing_net.cpython-38.pyc +0 -0
 - vanishing_point_extraction/neurvps/neurvps/models/conic.py +50 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/.ninja_deps +0 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/.ninja_log +7 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/DCN.so +3 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/build.ninja +30 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/deform_conv.o +3 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/deform_conv_cuda.cuda.o +3 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/deform_conv.cpp +75 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/deform_conv_cpu.h +39 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/deform_conv_cuda.cu +271 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/deform_conv_cuda.h +38 -0
 - vanishing_point_extraction/neurvps/neurvps/models/cpp/deform_im2col_cuda.cuh +388 -0
 - vanishing_point_extraction/neurvps/neurvps/models/deformable.py +193 -0
 - vanishing_point_extraction/neurvps/neurvps/models/hourglass_pose.py +192 -0
 - vanishing_point_extraction/neurvps/neurvps/models/vanishing_net.py +181 -0
 - vanishing_point_extraction/neurvps/neurvps/trainer.py +304 -0
 - vanishing_point_extraction/neurvps/neurvps/utils.py +96 -0
 - vanishing_point_extraction/neurvps/vp_estim.py +180 -0
 - vanishing_point_extraction/vanishing_point/neurvps/TMM17/checkpoint_latest.pth.tar +3 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/__init__.py +4 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/__init__.cpython-38.pyc +0 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/box.cpython-38.pyc +0 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/config.cpython-38.pyc +0 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/datasets.cpython-38.pyc +0 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/trainer.cpython-38.pyc +0 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/utils.cpython-38.pyc +0 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/box.py +1110 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/config.py +9 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/datasets.py +184 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/models/__init__.py +2 -0
 - vanishing_point_extraction/vanishing_point/neurvps/neurvps/models/__pycache__/__init__.cpython-38.pyc +0 -0
 
    	
        .gitattributes
    CHANGED
    
    | 
         @@ -57,3 +57,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text 
     | 
|
| 57 | 
         
             
            # Video files - compressed
         
     | 
| 58 | 
         
             
            *.mp4 filter=lfs diff=lfs merge=lfs -text
         
     | 
| 59 | 
         
             
            *.webm filter=lfs diff=lfs merge=lfs -text
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 57 | 
         
             
            # Video files - compressed
         
     | 
| 58 | 
         
             
            *.mp4 filter=lfs diff=lfs merge=lfs -text
         
     | 
| 59 | 
         
             
            *.webm filter=lfs diff=lfs merge=lfs -text
         
     | 
| 60 | 
         
            +
            vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/DCN.so filter=lfs diff=lfs merge=lfs -text
         
     | 
| 61 | 
         
            +
            vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/deform_conv.o filter=lfs diff=lfs merge=lfs -text
         
     | 
| 62 | 
         
            +
            vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/deform_conv_cuda.cuda.o filter=lfs diff=lfs merge=lfs -text
         
     | 
| 63 | 
         
            +
            vanishing_point_extraction/vanishing_point/neurvps/neurvps/models/cpp/build/DCN/DCN.so filter=lfs diff=lfs merge=lfs -text
         
     | 
| 64 | 
         
            +
            vanishing_point_extraction/vanishing_point/neurvps/neurvps/models/cpp/build/DCN/deform_conv.o filter=lfs diff=lfs merge=lfs -text
         
     | 
| 65 | 
         
            +
            vanishing_point_extraction/vanishing_point/neurvps/neurvps/models/cpp/build/DCN/deform_conv_cuda.cuda.o filter=lfs diff=lfs merge=lfs -text
         
     | 
    	
        vanishing_point_extraction/neurvps/TMM17/checkpoint_latest.pth.tar
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:951f12bfe2a3afdef5b95d6a1cb9bbe51e73913c70212c8e628b696bd39a74e7
         
     | 
| 3 | 
         
            +
            size 358844104
         
     | 
    	
        vanishing_point_extraction/neurvps/TMM17/config.yaml
    ADDED
    
    | 
         @@ -0,0 +1,39 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            io:
         
     | 
| 2 | 
         
            +
              augmentation_level: 2
         
     | 
| 3 | 
         
            +
              datadir: data/tmm17/
         
     | 
| 4 | 
         
            +
              dataset: TMM17
         
     | 
| 5 | 
         
            +
              focal_length:  1.0
         
     | 
| 6 | 
         
            +
              logdir: logs/
         
     | 
| 7 | 
         
            +
              num_vpts: 1
         
     | 
| 8 | 
         
            +
              num_workers: 4
         
     | 
| 9 | 
         
            +
              resume_from: logs/200107-013044-14545f5-tmm17-bugfix-lr1e-4-long
         
     | 
| 10 | 
         
            +
              tensorboard_port: 0
         
     | 
| 11 | 
         
            +
              validation_debug: 0
         
     | 
| 12 | 
         
            +
              validation_interval: 8000
         
     | 
| 13 | 
         
            +
            model:
         
     | 
| 14 | 
         
            +
              backbone: stacked_hourglass
         
     | 
| 15 | 
         
            +
              batch_size: 8
         
     | 
| 16 | 
         
            +
              conic_6x: false
         
     | 
| 17 | 
         
            +
              depth: 4
         
     | 
| 18 | 
         
            +
              fc_channel: 1024
         
     | 
| 19 | 
         
            +
              im2col_step: 11
         
     | 
| 20 | 
         
            +
              multires:
         
     | 
| 21 | 
         
            +
              - 0.0051941870036646
         
     | 
| 22 | 
         
            +
              - 0.02004838034795
         
     | 
| 23 | 
         
            +
              - 0.0774278195486317
         
     | 
| 24 | 
         
            +
              - 0.299564810864565
         
     | 
| 25 | 
         
            +
              num_blocks: 1
         
     | 
| 26 | 
         
            +
              num_stacks: 1
         
     | 
| 27 | 
         
            +
              output_stride: 4
         
     | 
| 28 | 
         
            +
              smp_multiplier: 2
         
     | 
| 29 | 
         
            +
              smp_neg: 1
         
     | 
| 30 | 
         
            +
              smp_pos: 1
         
     | 
| 31 | 
         
            +
              smp_rnd: 3
         
     | 
| 32 | 
         
            +
              upsample_scale: 1
         
     | 
| 33 | 
         
            +
            optim:
         
     | 
| 34 | 
         
            +
              amsgrad: true
         
     | 
| 35 | 
         
            +
              lr: 0.0001
         
     | 
| 36 | 
         
            +
              lr_decay_epoch: 60
         
     | 
| 37 | 
         
            +
              max_epoch: 100
         
     | 
| 38 | 
         
            +
              name: Adam
         
     | 
| 39 | 
         
            +
              weight_decay: 0.0006
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,4 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import neurvps.models
         
     | 
| 2 | 
         
            +
            import neurvps.trainer
         
     | 
| 3 | 
         
            +
            import neurvps.datasets
         
     | 
| 4 | 
         
            +
            import neurvps.config
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/__pycache__/__init__.cpython-38.pyc
    ADDED
    
    | 
         Binary file (267 Bytes). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/__pycache__/box.cpython-38.pyc
    ADDED
    
    | 
         Binary file (33.4 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/__pycache__/config.cpython-38.pyc
    ADDED
    
    | 
         Binary file (231 Bytes). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/__pycache__/datasets.cpython-38.pyc
    ADDED
    
    | 
         Binary file (6.56 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/__pycache__/trainer.cpython-38.pyc
    ADDED
    
    | 
         Binary file (8.97 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/__pycache__/utils.cpython-38.pyc
    ADDED
    
    | 
         Binary file (3.72 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/box.py
    ADDED
    
    | 
         @@ -0,0 +1,1110 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #!/usr/bin/env python
         
     | 
| 2 | 
         
            +
            # -*- coding: UTF-8 -*-
         
     | 
| 3 | 
         
            +
            #
         
     | 
| 4 | 
         
            +
            # Copyright (c) 2017-2019 - Chris Griffith - MIT License
         
     | 
| 5 | 
         
            +
            """
         
     | 
| 6 | 
         
            +
            Improved dictionary access through dot notation with additional tools.
         
     | 
| 7 | 
         
            +
            """
         
     | 
| 8 | 
         
            +
            import string
         
     | 
| 9 | 
         
            +
            import sys
         
     | 
| 10 | 
         
            +
            import json
         
     | 
| 11 | 
         
            +
            import re
         
     | 
| 12 | 
         
            +
            import copy
         
     | 
| 13 | 
         
            +
            from keyword import kwlist
         
     | 
| 14 | 
         
            +
            import warnings
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            try:
         
     | 
| 17 | 
         
            +
                from collections.abc import Iterable, Mapping, Callable
         
     | 
| 18 | 
         
            +
            except ImportError:
         
     | 
| 19 | 
         
            +
                from collections import Iterable, Mapping, Callable
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            yaml_support = True
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            try:
         
     | 
| 24 | 
         
            +
                import yaml
         
     | 
| 25 | 
         
            +
            except ImportError:
         
     | 
| 26 | 
         
            +
                try:
         
     | 
| 27 | 
         
            +
                    import ruamel.yaml as yaml
         
     | 
| 28 | 
         
            +
                except ImportError:
         
     | 
| 29 | 
         
            +
                    yaml = None
         
     | 
| 30 | 
         
            +
                    yaml_support = False
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            if sys.version_info >= (3, 0):
         
     | 
| 33 | 
         
            +
                basestring = str
         
     | 
| 34 | 
         
            +
            else:
         
     | 
| 35 | 
         
            +
                from io import open
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            __all__ = ['Box', 'ConfigBox', 'BoxList', 'SBox',
         
     | 
| 38 | 
         
            +
                       'BoxError', 'BoxKeyError']
         
     | 
| 39 | 
         
            +
            __author__ = 'Chris Griffith'
         
     | 
| 40 | 
         
            +
            __version__ = '3.2.4'
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            BOX_PARAMETERS = ('default_box', 'default_box_attr', 'conversion_box',
         
     | 
| 43 | 
         
            +
                              'frozen_box', 'camel_killer_box', 'box_it_up',
         
     | 
| 44 | 
         
            +
                              'box_safe_prefix', 'box_duplicates', 'ordered_box')
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            _first_cap_re = re.compile('(.)([A-Z][a-z]+)')
         
     | 
| 47 | 
         
            +
            _all_cap_re = re.compile('([a-z0-9])([A-Z])')
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            class BoxError(Exception):
         
     | 
| 51 | 
         
            +
                """Non standard dictionary exceptions"""
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            class BoxKeyError(BoxError, KeyError, AttributeError):
         
     | 
| 55 | 
         
            +
                """Key does not exist"""
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            # Abstract converter functions for use in any Box class
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            def _to_json(obj, filename=None,
         
     | 
| 62 | 
         
            +
                         encoding="utf-8", errors="strict", **json_kwargs):
         
     | 
| 63 | 
         
            +
                json_dump = json.dumps(obj,
         
     | 
| 64 | 
         
            +
                                       ensure_ascii=False, **json_kwargs)
         
     | 
| 65 | 
         
            +
                if filename:
         
     | 
| 66 | 
         
            +
                    with open(filename, 'w', encoding=encoding, errors=errors) as f:
         
     | 
| 67 | 
         
            +
                        f.write(json_dump if sys.version_info >= (3, 0) else
         
     | 
| 68 | 
         
            +
                                json_dump.decode("utf-8"))
         
     | 
| 69 | 
         
            +
                else:
         
     | 
| 70 | 
         
            +
                    return json_dump
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            def _from_json(json_string=None, filename=None,
         
     | 
| 74 | 
         
            +
                           encoding="utf-8", errors="strict", multiline=False, **kwargs):
         
     | 
| 75 | 
         
            +
                if filename:
         
     | 
| 76 | 
         
            +
                    with open(filename, 'r', encoding=encoding, errors=errors) as f:
         
     | 
| 77 | 
         
            +
                        if multiline:
         
     | 
| 78 | 
         
            +
                            data = [json.loads(line.strip(), **kwargs) for line in f
         
     | 
| 79 | 
         
            +
                                    if line.strip() and not line.strip().startswith("#")]
         
     | 
| 80 | 
         
            +
                        else:
         
     | 
| 81 | 
         
            +
                            data = json.load(f, **kwargs)
         
     | 
| 82 | 
         
            +
                elif json_string:
         
     | 
| 83 | 
         
            +
                    data = json.loads(json_string, **kwargs)
         
     | 
| 84 | 
         
            +
                else:
         
     | 
| 85 | 
         
            +
                    raise BoxError('from_json requires a string or filename')
         
     | 
| 86 | 
         
            +
                return data
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            def _to_yaml(obj, filename=None, default_flow_style=False,
         
     | 
| 90 | 
         
            +
                         encoding="utf-8", errors="strict",
         
     | 
| 91 | 
         
            +
                         **yaml_kwargs):
         
     | 
| 92 | 
         
            +
                if filename:
         
     | 
| 93 | 
         
            +
                    with open(filename, 'w',
         
     | 
| 94 | 
         
            +
                              encoding=encoding, errors=errors) as f:
         
     | 
| 95 | 
         
            +
                        yaml.dump(obj, stream=f,
         
     | 
| 96 | 
         
            +
                                  default_flow_style=default_flow_style,
         
     | 
| 97 | 
         
            +
                                  **yaml_kwargs)
         
     | 
| 98 | 
         
            +
                else:
         
     | 
| 99 | 
         
            +
                    return yaml.dump(obj,
         
     | 
| 100 | 
         
            +
                                     default_flow_style=default_flow_style,
         
     | 
| 101 | 
         
            +
                                     **yaml_kwargs)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            def _from_yaml(yaml_string=None, filename=None,
         
     | 
| 105 | 
         
            +
                           encoding="utf-8", errors="strict",
         
     | 
| 106 | 
         
            +
                           **kwargs):
         
     | 
| 107 | 
         
            +
                if filename:
         
     | 
| 108 | 
         
            +
                    with open(filename, 'r',
         
     | 
| 109 | 
         
            +
                              encoding=encoding, errors=errors) as f:
         
     | 
| 110 | 
         
            +
                        data = yaml.load(f, **kwargs)
         
     | 
| 111 | 
         
            +
                elif yaml_string:
         
     | 
| 112 | 
         
            +
                    data = yaml.load(yaml_string, **kwargs)
         
     | 
| 113 | 
         
            +
                else:
         
     | 
| 114 | 
         
            +
                    raise BoxError('from_yaml requires a string or filename')
         
     | 
| 115 | 
         
            +
                return data
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
            # Helper functions
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
            def _safe_key(key):
         
     | 
| 122 | 
         
            +
                try:
         
     | 
| 123 | 
         
            +
                    return str(key)
         
     | 
| 124 | 
         
            +
                except UnicodeEncodeError:
         
     | 
| 125 | 
         
            +
                    return key.encode("utf-8", "ignore")
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
            def _safe_attr(attr, camel_killer=False, replacement_char='x'):
         
     | 
| 129 | 
         
            +
                """Convert a key into something that is accessible as an attribute"""
         
     | 
| 130 | 
         
            +
                allowed = string.ascii_letters + string.digits + '_'
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                attr = _safe_key(attr)
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                if camel_killer:
         
     | 
| 135 | 
         
            +
                    attr = _camel_killer(attr)
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                attr = attr.replace(' ', '_')
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                out = ''
         
     | 
| 140 | 
         
            +
                for character in attr:
         
     | 
| 141 | 
         
            +
                    out += character if character in allowed else "_"
         
     | 
| 142 | 
         
            +
                out = out.strip("_")
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                try:
         
     | 
| 145 | 
         
            +
                    int(out[0])
         
     | 
| 146 | 
         
            +
                except (ValueError, IndexError):
         
     | 
| 147 | 
         
            +
                    pass
         
     | 
| 148 | 
         
            +
                else:
         
     | 
| 149 | 
         
            +
                    out = '{0}{1}'.format(replacement_char, out)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                if out in kwlist:
         
     | 
| 152 | 
         
            +
                    out = '{0}{1}'.format(replacement_char, out)
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                return re.sub('_+', '_', out)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            def _camel_killer(attr):
         
     | 
| 158 | 
         
            +
                """
         
     | 
| 159 | 
         
            +
                CamelKiller, qu'est-ce que c'est?
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                Taken from http://stackoverflow.com/a/1176023/3244542
         
     | 
| 162 | 
         
            +
                """
         
     | 
| 163 | 
         
            +
                try:
         
     | 
| 164 | 
         
            +
                    attr = str(attr)
         
     | 
| 165 | 
         
            +
                except UnicodeEncodeError:
         
     | 
| 166 | 
         
            +
                    attr = attr.encode("utf-8", "ignore")
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                s1 = _first_cap_re.sub(r'\1_\2', attr)
         
     | 
| 169 | 
         
            +
                s2 = _all_cap_re.sub(r'\1_\2', s1)
         
     | 
| 170 | 
         
            +
                return re.sub('_+', '_', s2.casefold() if hasattr(s2, 'casefold') else
         
     | 
| 171 | 
         
            +
                              s2.lower())
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
            def _recursive_tuples(iterable, box_class, recreate_tuples=False, **kwargs):
         
     | 
| 175 | 
         
            +
                out_list = []
         
     | 
| 176 | 
         
            +
                for i in iterable:
         
     | 
| 177 | 
         
            +
                    if isinstance(i, dict):
         
     | 
| 178 | 
         
            +
                        out_list.append(box_class(i, **kwargs))
         
     | 
| 179 | 
         
            +
                    elif isinstance(i, list) or (recreate_tuples and isinstance(i, tuple)):
         
     | 
| 180 | 
         
            +
                        out_list.append(_recursive_tuples(i, box_class,
         
     | 
| 181 | 
         
            +
                                                          recreate_tuples, **kwargs))
         
     | 
| 182 | 
         
            +
                    else:
         
     | 
| 183 | 
         
            +
                        out_list.append(i)
         
     | 
| 184 | 
         
            +
                return tuple(out_list)
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            def _conversion_checks(item, keys, box_config, check_only=False,
         
     | 
| 188 | 
         
            +
                                   pre_check=False):
         
     | 
| 189 | 
         
            +
                """
         
     | 
| 190 | 
         
            +
                Internal use for checking if a duplicate safe attribute already exists
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                :param item: Item to see if a dup exists
         
     | 
| 193 | 
         
            +
                :param keys: Keys to check against
         
     | 
| 194 | 
         
            +
                :param box_config: Easier to pass in than ask for specfic items
         
     | 
| 195 | 
         
            +
                :param check_only: Don't bother doing the conversion work
         
     | 
| 196 | 
         
            +
                :param pre_check: Need to add the item to the list of keys to check
         
     | 
| 197 | 
         
            +
                :return: the original unmodified key, if exists and not check_only
         
     | 
| 198 | 
         
            +
                """
         
     | 
| 199 | 
         
            +
                if box_config['box_duplicates'] != 'ignore':
         
     | 
| 200 | 
         
            +
                    if pre_check:
         
     | 
| 201 | 
         
            +
                        keys = list(keys) + [item]
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                    key_list = [(k,
         
     | 
| 204 | 
         
            +
                                 _safe_attr(k, camel_killer=box_config['camel_killer_box'],
         
     | 
| 205 | 
         
            +
                                            replacement_char=box_config['box_safe_prefix']
         
     | 
| 206 | 
         
            +
                                            )) for k in keys]
         
     | 
| 207 | 
         
            +
                    if len(key_list) > len(set(x[1] for x in key_list)):
         
     | 
| 208 | 
         
            +
                        seen = set()
         
     | 
| 209 | 
         
            +
                        dups = set()
         
     | 
| 210 | 
         
            +
                        for x in key_list:
         
     | 
| 211 | 
         
            +
                            if x[1] in seen:
         
     | 
| 212 | 
         
            +
                                dups.add("{0}({1})".format(x[0], x[1]))
         
     | 
| 213 | 
         
            +
                            seen.add(x[1])
         
     | 
| 214 | 
         
            +
                        if box_config['box_duplicates'].startswith("warn"):
         
     | 
| 215 | 
         
            +
                            warnings.warn('Duplicate conversion attributes exist: '
         
     | 
| 216 | 
         
            +
                                          '{0}'.format(dups))
         
     | 
| 217 | 
         
            +
                        else:
         
     | 
| 218 | 
         
            +
                            raise BoxError('Duplicate conversion attributes exist: '
         
     | 
| 219 | 
         
            +
                                           '{0}'.format(dups))
         
     | 
| 220 | 
         
            +
                if check_only:
         
     | 
| 221 | 
         
            +
                    return
         
     | 
| 222 | 
         
            +
                # This way will be slower for warnings, as it will have double work
         
     | 
| 223 | 
         
            +
                # But faster for the default 'ignore'
         
     | 
| 224 | 
         
            +
                for k in keys:
         
     | 
| 225 | 
         
            +
                    if item == _safe_attr(k, camel_killer=box_config['camel_killer_box'],
         
     | 
| 226 | 
         
            +
                                          replacement_char=box_config['box_safe_prefix']):
         
     | 
| 227 | 
         
            +
                        return k
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
            def _get_box_config(cls, kwargs):
         
     | 
| 231 | 
         
            +
                return {
         
     | 
| 232 | 
         
            +
                    # Internal use only
         
     | 
| 233 | 
         
            +
                    '__converted': set(),
         
     | 
| 234 | 
         
            +
                    '__box_heritage': kwargs.pop('__box_heritage', None),
         
     | 
| 235 | 
         
            +
                    '__created': False,
         
     | 
| 236 | 
         
            +
                    '__ordered_box_values': [],
         
     | 
| 237 | 
         
            +
                    # Can be changed by user after box creation
         
     | 
| 238 | 
         
            +
                    'default_box': kwargs.pop('default_box', False),
         
     | 
| 239 | 
         
            +
                    'default_box_attr': kwargs.pop('default_box_attr', cls),
         
     | 
| 240 | 
         
            +
                    'conversion_box': kwargs.pop('conversion_box', True),
         
     | 
| 241 | 
         
            +
                    'box_safe_prefix': kwargs.pop('box_safe_prefix', 'x'),
         
     | 
| 242 | 
         
            +
                    'frozen_box': kwargs.pop('frozen_box', False),
         
     | 
| 243 | 
         
            +
                    'camel_killer_box': kwargs.pop('camel_killer_box', False),
         
     | 
| 244 | 
         
            +
                    'modify_tuples_box': kwargs.pop('modify_tuples_box', False),
         
     | 
| 245 | 
         
            +
                    'box_duplicates': kwargs.pop('box_duplicates', 'ignore'),
         
     | 
| 246 | 
         
            +
                    'ordered_box': kwargs.pop('ordered_box', False)
         
     | 
| 247 | 
         
            +
                }
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
            class Box(dict):
         
     | 
| 251 | 
         
            +
                """
         
     | 
| 252 | 
         
            +
                Improved dictionary access through dot notation with additional tools.
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                :param default_box: Similar to defaultdict, return a default value
         
     | 
| 255 | 
         
            +
                :param default_box_attr: Specify the default replacement.
         
     | 
| 256 | 
         
            +
                    WARNING: If this is not the default 'Box', it will not be recursive
         
     | 
| 257 | 
         
            +
                :param frozen_box: After creation, the box cannot be modified
         
     | 
| 258 | 
         
            +
                :param camel_killer_box: Convert CamelCase to snake_case
         
     | 
| 259 | 
         
            +
                :param conversion_box: Check for near matching keys as attributes
         
     | 
| 260 | 
         
            +
                :param modify_tuples_box: Recreate incoming tuples with dicts into Boxes
         
     | 
| 261 | 
         
            +
                :param box_it_up: Recursively create all Boxes from the start
         
     | 
| 262 | 
         
            +
                :param box_safe_prefix: Conversion box prefix for unsafe attributes
         
     | 
| 263 | 
         
            +
                :param box_duplicates: "ignore", "error" or "warn" when duplicates exists
         
     | 
| 264 | 
         
            +
                    in a conversion_box
         
     | 
| 265 | 
         
            +
                :param ordered_box: Preserve the order of keys entered into the box
         
     | 
| 266 | 
         
            +
                """
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
                _protected_keys = dir({}) + ['to_dict', 'tree_view', 'to_json', 'to_yaml',
         
     | 
| 269 | 
         
            +
                                             'from_yaml', 'from_json']
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                def __new__(cls, *args, **kwargs):
         
     | 
| 272 | 
         
            +
                    """
         
     | 
| 273 | 
         
            +
                    Due to the way pickling works in python 3, we need to make sure
         
     | 
| 274 | 
         
            +
                    the box config is created as early as possible.
         
     | 
| 275 | 
         
            +
                    """
         
     | 
| 276 | 
         
            +
                    obj = super(Box, cls).__new__(cls, *args, **kwargs)
         
     | 
| 277 | 
         
            +
                    obj._box_config = _get_box_config(cls, kwargs)
         
     | 
| 278 | 
         
            +
                    return obj
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                def __init__(self, *args, **kwargs):
         
     | 
| 281 | 
         
            +
                    self._box_config = _get_box_config(self.__class__, kwargs)
         
     | 
| 282 | 
         
            +
                    if self._box_config['ordered_box']:
         
     | 
| 283 | 
         
            +
                        self._box_config['__ordered_box_values'] = []
         
     | 
| 284 | 
         
            +
                    if (not self._box_config['conversion_box'] and
         
     | 
| 285 | 
         
            +
                            self._box_config['box_duplicates'] != "ignore"):
         
     | 
| 286 | 
         
            +
                        raise BoxError('box_duplicates are only for conversion_boxes')
         
     | 
| 287 | 
         
            +
                    if len(args) == 1:
         
     | 
| 288 | 
         
            +
                        if isinstance(args[0], basestring):
         
     | 
| 289 | 
         
            +
                            raise ValueError('Cannot extrapolate Box from string')
         
     | 
| 290 | 
         
            +
                        if isinstance(args[0], Mapping):
         
     | 
| 291 | 
         
            +
                            for k, v in args[0].items():
         
     | 
| 292 | 
         
            +
                                if v is args[0]:
         
     | 
| 293 | 
         
            +
                                    v = self
         
     | 
| 294 | 
         
            +
                                self[k] = v
         
     | 
| 295 | 
         
            +
                                self.__add_ordered(k)
         
     | 
| 296 | 
         
            +
                        elif isinstance(args[0], Iterable):
         
     | 
| 297 | 
         
            +
                            for k, v in args[0]:
         
     | 
| 298 | 
         
            +
                                self[k] = v
         
     | 
| 299 | 
         
            +
                                self.__add_ordered(k)
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                        else:
         
     | 
| 302 | 
         
            +
                            raise ValueError('First argument must be mapping or iterable')
         
     | 
| 303 | 
         
            +
                    elif args:
         
     | 
| 304 | 
         
            +
                        raise TypeError('Box expected at most 1 argument, '
         
     | 
| 305 | 
         
            +
                                        'got {0}'.format(len(args)))
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                    box_it = kwargs.pop('box_it_up', False)
         
     | 
| 308 | 
         
            +
                    for k, v in kwargs.items():
         
     | 
| 309 | 
         
            +
                        if args and isinstance(args[0], Mapping) and v is args[0]:
         
     | 
| 310 | 
         
            +
                            v = self
         
     | 
| 311 | 
         
            +
                        self[k] = v
         
     | 
| 312 | 
         
            +
                        self.__add_ordered(k)
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
                    if (self._box_config['frozen_box'] or box_it or
         
     | 
| 315 | 
         
            +
                            self._box_config['box_duplicates'] != 'ignore'):
         
     | 
| 316 | 
         
            +
                        self.box_it_up()
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                    self._box_config['__created'] = True
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
                def __add_ordered(self, key):
         
     | 
| 321 | 
         
            +
                    if (self._box_config['ordered_box'] and
         
     | 
| 322 | 
         
            +
                            key not in self._box_config['__ordered_box_values']):
         
     | 
| 323 | 
         
            +
                        self._box_config['__ordered_box_values'].append(key)
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                def box_it_up(self):
         
     | 
| 326 | 
         
            +
                    """
         
     | 
| 327 | 
         
            +
                    Perform value lookup for all items in current dictionary,
         
     | 
| 328 | 
         
            +
                    generating all sub Box objects, while also running `box_it_up` on
         
     | 
| 329 | 
         
            +
                    any of those sub box objects.
         
     | 
| 330 | 
         
            +
                    """
         
     | 
| 331 | 
         
            +
                    for k in self:
         
     | 
| 332 | 
         
            +
                        _conversion_checks(k, self.keys(), self._box_config,
         
     | 
| 333 | 
         
            +
                                           check_only=True)
         
     | 
| 334 | 
         
            +
                        if self[k] is not self and hasattr(self[k], 'box_it_up'):
         
     | 
| 335 | 
         
            +
                            self[k].box_it_up()
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                def __hash__(self):
         
     | 
| 338 | 
         
            +
                    if self._box_config['frozen_box']:
         
     | 
| 339 | 
         
            +
                        hashing = 54321
         
     | 
| 340 | 
         
            +
                        for item in self.items():
         
     | 
| 341 | 
         
            +
                            hashing ^= hash(item)
         
     | 
| 342 | 
         
            +
                        return hashing
         
     | 
| 343 | 
         
            +
                    raise TypeError("unhashable type: 'Box'")
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
                def __dir__(self):
         
     | 
| 346 | 
         
            +
                    allowed = string.ascii_letters + string.digits + '_'
         
     | 
| 347 | 
         
            +
                    kill_camel = self._box_config['camel_killer_box']
         
     | 
| 348 | 
         
            +
                    items = set(dir(dict) + ['to_dict', 'to_json',
         
     | 
| 349 | 
         
            +
                                             'from_json', 'box_it_up'])
         
     | 
| 350 | 
         
            +
                    # Only show items accessible by dot notation
         
     | 
| 351 | 
         
            +
                    for key in self.keys():
         
     | 
| 352 | 
         
            +
                        key = _safe_key(key)
         
     | 
| 353 | 
         
            +
                        if (' ' not in key and key[0] not in string.digits and
         
     | 
| 354 | 
         
            +
                                key not in kwlist):
         
     | 
| 355 | 
         
            +
                            for letter in key:
         
     | 
| 356 | 
         
            +
                                if letter not in allowed:
         
     | 
| 357 | 
         
            +
                                    break
         
     | 
| 358 | 
         
            +
                            else:
         
     | 
| 359 | 
         
            +
                                items.add(key)
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    for key in self.keys():
         
     | 
| 362 | 
         
            +
                        key = _safe_key(key)
         
     | 
| 363 | 
         
            +
                        if key not in items:
         
     | 
| 364 | 
         
            +
                            if self._box_config['conversion_box']:
         
     | 
| 365 | 
         
            +
                                key = _safe_attr(key, camel_killer=kill_camel,
         
     | 
| 366 | 
         
            +
                                                 replacement_char=self._box_config[
         
     | 
| 367 | 
         
            +
                                                     'box_safe_prefix'])
         
     | 
| 368 | 
         
            +
                                if key:
         
     | 
| 369 | 
         
            +
                                    items.add(key)
         
     | 
| 370 | 
         
            +
                        if kill_camel:
         
     | 
| 371 | 
         
            +
                            snake_key = _camel_killer(key)
         
     | 
| 372 | 
         
            +
                            if snake_key:
         
     | 
| 373 | 
         
            +
                                items.remove(key)
         
     | 
| 374 | 
         
            +
                                items.add(snake_key)
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                    if yaml_support:
         
     | 
| 377 | 
         
            +
                        items.add('to_yaml')
         
     | 
| 378 | 
         
            +
                        items.add('from_yaml')
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                    return list(items)
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                def get(self, key, default=None):
         
     | 
| 383 | 
         
            +
                    try:
         
     | 
| 384 | 
         
            +
                        return self[key]
         
     | 
| 385 | 
         
            +
                    except KeyError:
         
     | 
| 386 | 
         
            +
                        if isinstance(default, dict) and not isinstance(default, Box):
         
     | 
| 387 | 
         
            +
                            return Box(default)
         
     | 
| 388 | 
         
            +
                        if isinstance(default, list) and not isinstance(default, BoxList):
         
     | 
| 389 | 
         
            +
                            return BoxList(default)
         
     | 
| 390 | 
         
            +
                        return default
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                def copy(self):
         
     | 
| 393 | 
         
            +
                    return self.__class__(super(self.__class__, self).copy())
         
     | 
| 394 | 
         
            +
             
     | 
| 395 | 
         
            +
                def __copy__(self):
         
     | 
| 396 | 
         
            +
                    return self.__class__(super(self.__class__, self).copy())
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                def __deepcopy__(self, memodict=None):
         
     | 
| 399 | 
         
            +
                    out = self.__class__()
         
     | 
| 400 | 
         
            +
                    memodict = memodict or {}
         
     | 
| 401 | 
         
            +
                    memodict[id(self)] = out
         
     | 
| 402 | 
         
            +
                    for k, v in self.items():
         
     | 
| 403 | 
         
            +
                        out[copy.deepcopy(k, memodict)] = copy.deepcopy(v, memodict)
         
     | 
| 404 | 
         
            +
                    return out
         
     | 
| 405 | 
         
            +
             
     | 
| 406 | 
         
            +
                def __setstate__(self, state):
         
     | 
| 407 | 
         
            +
                    self._box_config = state['_box_config']
         
     | 
| 408 | 
         
            +
                    self.__dict__.update(state)
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
                def __getitem__(self, item, _ignore_default=False):
         
     | 
| 411 | 
         
            +
                    try:
         
     | 
| 412 | 
         
            +
                        value = super(Box, self).__getitem__(item)
         
     | 
| 413 | 
         
            +
                    except KeyError as err:
         
     | 
| 414 | 
         
            +
                        if item == '_box_config':
         
     | 
| 415 | 
         
            +
                            raise BoxKeyError('_box_config should only exist as an '
         
     | 
| 416 | 
         
            +
                                              'attribute and is never defaulted')
         
     | 
| 417 | 
         
            +
                        if self._box_config['default_box'] and not _ignore_default:
         
     | 
| 418 | 
         
            +
                            return self.__get_default(item)
         
     | 
| 419 | 
         
            +
                        raise BoxKeyError(str(err))
         
     | 
| 420 | 
         
            +
                    else:
         
     | 
| 421 | 
         
            +
                        return self.__convert_and_store(item, value)
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                def keys(self):
         
     | 
| 424 | 
         
            +
                    if self._box_config['ordered_box']:
         
     | 
| 425 | 
         
            +
                        return self._box_config['__ordered_box_values']
         
     | 
| 426 | 
         
            +
                    return super(Box, self).keys()
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                def values(self):
         
     | 
| 429 | 
         
            +
                    return [self[x] for x in self.keys()]
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                def items(self):
         
     | 
| 432 | 
         
            +
                    return [(x, self[x]) for x in self.keys()]
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
                def __get_default(self, item):
         
     | 
| 435 | 
         
            +
                    default_value = self._box_config['default_box_attr']
         
     | 
| 436 | 
         
            +
                    if default_value is self.__class__:
         
     | 
| 437 | 
         
            +
                        return self.__class__(__box_heritage=(self, item),
         
     | 
| 438 | 
         
            +
                                              **self.__box_config())
         
     | 
| 439 | 
         
            +
                    elif isinstance(default_value, Callable):
         
     | 
| 440 | 
         
            +
                        return default_value()
         
     | 
| 441 | 
         
            +
                    elif hasattr(default_value, 'copy'):
         
     | 
| 442 | 
         
            +
                        return default_value.copy()
         
     | 
| 443 | 
         
            +
                    return default_value
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                def __box_config(self):
         
     | 
| 446 | 
         
            +
                    out = {}
         
     | 
| 447 | 
         
            +
                    for k, v in self._box_config.copy().items():
         
     | 
| 448 | 
         
            +
                        if not k.startswith("__"):
         
     | 
| 449 | 
         
            +
                            out[k] = v
         
     | 
| 450 | 
         
            +
                    return out
         
     | 
| 451 | 
         
            +
             
     | 
| 452 | 
         
            +
                def __convert_and_store(self, item, value):
         
     | 
| 453 | 
         
            +
                    if item in self._box_config['__converted']:
         
     | 
| 454 | 
         
            +
                        return value
         
     | 
| 455 | 
         
            +
                    if isinstance(value, dict) and not isinstance(value, Box):
         
     | 
| 456 | 
         
            +
                        value = self.__class__(value, __box_heritage=(self, item),
         
     | 
| 457 | 
         
            +
                                               **self.__box_config())
         
     | 
| 458 | 
         
            +
                        self[item] = value
         
     | 
| 459 | 
         
            +
                    elif isinstance(value, list) and not isinstance(value, BoxList):
         
     | 
| 460 | 
         
            +
                        if self._box_config['frozen_box']:
         
     | 
| 461 | 
         
            +
                            value = _recursive_tuples(value, self.__class__,
         
     | 
| 462 | 
         
            +
                                                      recreate_tuples=self._box_config[
         
     | 
| 463 | 
         
            +
                                                          'modify_tuples_box'],
         
     | 
| 464 | 
         
            +
                                                      __box_heritage=(self, item),
         
     | 
| 465 | 
         
            +
                                                      **self.__box_config())
         
     | 
| 466 | 
         
            +
                        else:
         
     | 
| 467 | 
         
            +
                            value = BoxList(value, __box_heritage=(self, item),
         
     | 
| 468 | 
         
            +
                                            box_class=self.__class__,
         
     | 
| 469 | 
         
            +
                                            **self.__box_config())
         
     | 
| 470 | 
         
            +
                        self[item] = value
         
     | 
| 471 | 
         
            +
                    elif (self._box_config['modify_tuples_box'] and
         
     | 
| 472 | 
         
            +
                          isinstance(value, tuple)):
         
     | 
| 473 | 
         
            +
                        value = _recursive_tuples(value, self.__class__,
         
     | 
| 474 | 
         
            +
                                                  recreate_tuples=True,
         
     | 
| 475 | 
         
            +
                                                  __box_heritage=(self, item),
         
     | 
| 476 | 
         
            +
                                                  **self.__box_config())
         
     | 
| 477 | 
         
            +
                        self[item] = value
         
     | 
| 478 | 
         
            +
                    self._box_config['__converted'].add(item)
         
     | 
| 479 | 
         
            +
                    return value
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
                def __create_lineage(self):
         
     | 
| 482 | 
         
            +
                    if (self._box_config['__box_heritage'] and
         
     | 
| 483 | 
         
            +
                            self._box_config['__created']):
         
     | 
| 484 | 
         
            +
                        past, item = self._box_config['__box_heritage']
         
     | 
| 485 | 
         
            +
                        if not past[item]:
         
     | 
| 486 | 
         
            +
                            past[item] = self
         
     | 
| 487 | 
         
            +
                        self._box_config['__box_heritage'] = None
         
     | 
| 488 | 
         
            +
             
     | 
| 489 | 
         
            +
                def __getattr__(self, item):
         
     | 
| 490 | 
         
            +
                    try:
         
     | 
| 491 | 
         
            +
                        try:
         
     | 
| 492 | 
         
            +
                            value = self.__getitem__(item, _ignore_default=True)
         
     | 
| 493 | 
         
            +
                        except KeyError:
         
     | 
| 494 | 
         
            +
                            value = object.__getattribute__(self, item)
         
     | 
| 495 | 
         
            +
                    except AttributeError as err:
         
     | 
| 496 | 
         
            +
                        if item == "__getstate__":
         
     | 
| 497 | 
         
            +
                            raise AttributeError(item)
         
     | 
| 498 | 
         
            +
                        if item == '_box_config':
         
     | 
| 499 | 
         
            +
                            raise BoxError('_box_config key must exist')
         
     | 
| 500 | 
         
            +
                        kill_camel = self._box_config['camel_killer_box']
         
     | 
| 501 | 
         
            +
                        if self._box_config['conversion_box'] and item:
         
     | 
| 502 | 
         
            +
                            k = _conversion_checks(item, self.keys(), self._box_config)
         
     | 
| 503 | 
         
            +
                            if k:
         
     | 
| 504 | 
         
            +
                                return self.__getitem__(k)
         
     | 
| 505 | 
         
            +
                        if kill_camel:
         
     | 
| 506 | 
         
            +
                            for k in self.keys():
         
     | 
| 507 | 
         
            +
                                if item == _camel_killer(k):
         
     | 
| 508 | 
         
            +
                                    return self.__getitem__(k)
         
     | 
| 509 | 
         
            +
                        if self._box_config['default_box']:
         
     | 
| 510 | 
         
            +
                            return self.__get_default(item)
         
     | 
| 511 | 
         
            +
                        raise BoxKeyError(str(err))
         
     | 
| 512 | 
         
            +
                    else:
         
     | 
| 513 | 
         
            +
                        if item == '_box_config':
         
     | 
| 514 | 
         
            +
                            return value
         
     | 
| 515 | 
         
            +
                        return self.__convert_and_store(item, value)
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                def __setitem__(self, key, value):
         
     | 
| 518 | 
         
            +
                    if (key != '_box_config' and self._box_config['__created'] and
         
     | 
| 519 | 
         
            +
                            self._box_config['frozen_box']):
         
     | 
| 520 | 
         
            +
                        raise BoxError('Box is frozen')
         
     | 
| 521 | 
         
            +
                    if self._box_config['conversion_box']:
         
     | 
| 522 | 
         
            +
                        _conversion_checks(key, self.keys(), self._box_config,
         
     | 
| 523 | 
         
            +
                                           check_only=True, pre_check=True)
         
     | 
| 524 | 
         
            +
                    super(Box, self).__setitem__(key, value)
         
     | 
| 525 | 
         
            +
                    self.__add_ordered(key)
         
     | 
| 526 | 
         
            +
                    self.__create_lineage()
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                def __setattr__(self, key, value):
         
     | 
| 529 | 
         
            +
                    if (key != '_box_config' and self._box_config['frozen_box'] and
         
     | 
| 530 | 
         
            +
                            self._box_config['__created']):
         
     | 
| 531 | 
         
            +
                        raise BoxError('Box is frozen')
         
     | 
| 532 | 
         
            +
                    if key in self._protected_keys:
         
     | 
| 533 | 
         
            +
                        raise AttributeError("Key name '{0}' is protected".format(key))
         
     | 
| 534 | 
         
            +
                    if key == '_box_config':
         
     | 
| 535 | 
         
            +
                        return object.__setattr__(self, key, value)
         
     | 
| 536 | 
         
            +
                    try:
         
     | 
| 537 | 
         
            +
                        object.__getattribute__(self, key)
         
     | 
| 538 | 
         
            +
                    except (AttributeError, UnicodeEncodeError):
         
     | 
| 539 | 
         
            +
                        if (key not in self.keys() and
         
     | 
| 540 | 
         
            +
                                (self._box_config['conversion_box'] or
         
     | 
| 541 | 
         
            +
                                 self._box_config['camel_killer_box'])):
         
     | 
| 542 | 
         
            +
                            if self._box_config['conversion_box']:
         
     | 
| 543 | 
         
            +
                                k = _conversion_checks(key, self.keys(),
         
     | 
| 544 | 
         
            +
                                                       self._box_config)
         
     | 
| 545 | 
         
            +
                                self[key if not k else k] = value
         
     | 
| 546 | 
         
            +
                            elif self._box_config['camel_killer_box']:
         
     | 
| 547 | 
         
            +
                                for each_key in self:
         
     | 
| 548 | 
         
            +
                                    if key == _camel_killer(each_key):
         
     | 
| 549 | 
         
            +
                                        self[each_key] = value
         
     | 
| 550 | 
         
            +
                                        break
         
     | 
| 551 | 
         
            +
                        else:
         
     | 
| 552 | 
         
            +
                            self[key] = value
         
     | 
| 553 | 
         
            +
                    else:
         
     | 
| 554 | 
         
            +
                        object.__setattr__(self, key, value)
         
     | 
| 555 | 
         
            +
                    self.__add_ordered(key)
         
     | 
| 556 | 
         
            +
                    self.__create_lineage()
         
     | 
| 557 | 
         
            +
             
     | 
| 558 | 
         
            +
                def __delitem__(self, key):
         
     | 
| 559 | 
         
            +
                    if self._box_config['frozen_box']:
         
     | 
| 560 | 
         
            +
                        raise BoxError('Box is frozen')
         
     | 
| 561 | 
         
            +
                    super(Box, self).__delitem__(key)
         
     | 
| 562 | 
         
            +
                    if (self._box_config['ordered_box'] and
         
     | 
| 563 | 
         
            +
                            key in self._box_config['__ordered_box_values']):
         
     | 
| 564 | 
         
            +
                        self._box_config['__ordered_box_values'].remove(key)
         
     | 
| 565 | 
         
            +
             
     | 
| 566 | 
         
            +
                def __delattr__(self, item):
         
     | 
| 567 | 
         
            +
                    if self._box_config['frozen_box']:
         
     | 
| 568 | 
         
            +
                        raise BoxError('Box is frozen')
         
     | 
| 569 | 
         
            +
                    if item == '_box_config':
         
     | 
| 570 | 
         
            +
                        raise BoxError('"_box_config" is protected')
         
     | 
| 571 | 
         
            +
                    if item in self._protected_keys:
         
     | 
| 572 | 
         
            +
                        raise AttributeError("Key name '{0}' is protected".format(item))
         
     | 
| 573 | 
         
            +
                    try:
         
     | 
| 574 | 
         
            +
                        object.__getattribute__(self, item)
         
     | 
| 575 | 
         
            +
                    except AttributeError:
         
     | 
| 576 | 
         
            +
                        del self[item]
         
     | 
| 577 | 
         
            +
                    else:
         
     | 
| 578 | 
         
            +
                        object.__delattr__(self, item)
         
     | 
| 579 | 
         
            +
                    if (self._box_config['ordered_box'] and
         
     | 
| 580 | 
         
            +
                            item in self._box_config['__ordered_box_values']):
         
     | 
| 581 | 
         
            +
                        self._box_config['__ordered_box_values'].remove(item)
         
     | 
| 582 | 
         
            +
             
     | 
| 583 | 
         
            +
                def pop(self, key, *args):
         
     | 
| 584 | 
         
            +
                    if args:
         
     | 
| 585 | 
         
            +
                        if len(args) != 1:
         
     | 
| 586 | 
         
            +
                            raise BoxError('pop() takes only one optional'
         
     | 
| 587 | 
         
            +
                                           ' argument "default"')
         
     | 
| 588 | 
         
            +
                        try:
         
     | 
| 589 | 
         
            +
                            item = self[key]
         
     | 
| 590 | 
         
            +
                        except KeyError:
         
     | 
| 591 | 
         
            +
                            return args[0]
         
     | 
| 592 | 
         
            +
                        else:
         
     | 
| 593 | 
         
            +
                            del self[key]
         
     | 
| 594 | 
         
            +
                            return item
         
     | 
| 595 | 
         
            +
                    try:
         
     | 
| 596 | 
         
            +
                        item = self[key]
         
     | 
| 597 | 
         
            +
                    except KeyError:
         
     | 
| 598 | 
         
            +
                        raise BoxKeyError('{0}'.format(key))
         
     | 
| 599 | 
         
            +
                    else:
         
     | 
| 600 | 
         
            +
                        del self[key]
         
     | 
| 601 | 
         
            +
                        return item
         
     | 
| 602 | 
         
            +
             
     | 
| 603 | 
         
            +
                def clear(self):
         
     | 
| 604 | 
         
            +
                    self._box_config['__ordered_box_values'] = []
         
     | 
| 605 | 
         
            +
                    super(Box, self).clear()
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                def popitem(self):
         
     | 
| 608 | 
         
            +
                    try:
         
     | 
| 609 | 
         
            +
                        key = next(self.__iter__())
         
     | 
| 610 | 
         
            +
                    except StopIteration:
         
     | 
| 611 | 
         
            +
                        raise BoxKeyError('Empty box')
         
     | 
| 612 | 
         
            +
                    return key, self.pop(key)
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
                def __repr__(self):
         
     | 
| 615 | 
         
            +
                    return '<Box: {0}>'.format(str(self.to_dict()))
         
     | 
| 616 | 
         
            +
             
     | 
| 617 | 
         
            +
                def __str__(self):
         
     | 
| 618 | 
         
            +
                    return str(self.to_dict())
         
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
                def __iter__(self):
         
     | 
| 621 | 
         
            +
                    for key in self.keys():
         
     | 
| 622 | 
         
            +
                        yield key
         
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
                def __reversed__(self):
         
     | 
| 625 | 
         
            +
                    for key in reversed(list(self.keys())):
         
     | 
| 626 | 
         
            +
                        yield key
         
     | 
| 627 | 
         
            +
             
     | 
| 628 | 
         
            +
                def to_dict(self):
         
     | 
| 629 | 
         
            +
                    """
         
     | 
| 630 | 
         
            +
                    Turn the Box and sub Boxes back into a native
         
     | 
| 631 | 
         
            +
                    python dictionary.
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
                    :return: python dictionary of this Box
         
     | 
| 634 | 
         
            +
                    """
         
     | 
| 635 | 
         
            +
                    out_dict = dict(self)
         
     | 
| 636 | 
         
            +
                    for k, v in out_dict.items():
         
     | 
| 637 | 
         
            +
                        if v is self:
         
     | 
| 638 | 
         
            +
                            out_dict[k] = out_dict
         
     | 
| 639 | 
         
            +
                        elif hasattr(v, 'to_dict'):
         
     | 
| 640 | 
         
            +
                            out_dict[k] = v.to_dict()
         
     | 
| 641 | 
         
            +
                        elif hasattr(v, 'to_list'):
         
     | 
| 642 | 
         
            +
                            out_dict[k] = v.to_list()
         
     | 
| 643 | 
         
            +
                    return out_dict
         
     | 
| 644 | 
         
            +
             
     | 
| 645 | 
         
            +
                def update(self, item=None, **kwargs):
         
     | 
| 646 | 
         
            +
                    if not item:
         
     | 
| 647 | 
         
            +
                        item = kwargs
         
     | 
| 648 | 
         
            +
                    iter_over = item.items() if hasattr(item, 'items') else item
         
     | 
| 649 | 
         
            +
                    for k, v in iter_over:
         
     | 
| 650 | 
         
            +
                        if isinstance(v, dict):
         
     | 
| 651 | 
         
            +
                            # Box objects must be created in case they are already
         
     | 
| 652 | 
         
            +
                            # in the `converted` box_config set
         
     | 
| 653 | 
         
            +
                            v = self.__class__(v)
         
     | 
| 654 | 
         
            +
                            if k in self and isinstance(self[k], dict):
         
     | 
| 655 | 
         
            +
                                self[k].update(v)
         
     | 
| 656 | 
         
            +
                                continue
         
     | 
| 657 | 
         
            +
                        if isinstance(v, list):
         
     | 
| 658 | 
         
            +
                            v = BoxList(v)
         
     | 
| 659 | 
         
            +
                        try:
         
     | 
| 660 | 
         
            +
                            self.__setattr__(k, v)
         
     | 
| 661 | 
         
            +
                        except (AttributeError, TypeError):
         
     | 
| 662 | 
         
            +
                            self.__setitem__(k, v)
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
                def setdefault(self, item, default=None):
         
     | 
| 665 | 
         
            +
                    if item in self:
         
     | 
| 666 | 
         
            +
                        return self[item]
         
     | 
| 667 | 
         
            +
             
     | 
| 668 | 
         
            +
                    if isinstance(default, dict):
         
     | 
| 669 | 
         
            +
                        default = self.__class__(default)
         
     | 
| 670 | 
         
            +
                    if isinstance(default, list):
         
     | 
| 671 | 
         
            +
                        default = BoxList(default)
         
     | 
| 672 | 
         
            +
                    self[item] = default
         
     | 
| 673 | 
         
            +
                    return default
         
     | 
| 674 | 
         
            +
             
     | 
| 675 | 
         
            +
                def to_json(self, filename=None,
         
     | 
| 676 | 
         
            +
                            encoding="utf-8", errors="strict", **json_kwargs):
         
     | 
| 677 | 
         
            +
                    """
         
     | 
| 678 | 
         
            +
                    Transform the Box object into a JSON string.
         
     | 
| 679 | 
         
            +
             
     | 
| 680 | 
         
            +
                    :param filename: If provided will save to file
         
     | 
| 681 | 
         
            +
                    :param encoding: File encoding
         
     | 
| 682 | 
         
            +
                    :param errors: How to handle encoding errors
         
     | 
| 683 | 
         
            +
                    :param json_kwargs: additional arguments to pass to json.dump(s)
         
     | 
| 684 | 
         
            +
                    :return: string of JSON or return of `json.dump`
         
     | 
| 685 | 
         
            +
                    """
         
     | 
| 686 | 
         
            +
                    return _to_json(self.to_dict(), filename=filename,
         
     | 
| 687 | 
         
            +
                                    encoding=encoding, errors=errors, **json_kwargs)
         
     | 
| 688 | 
         
            +
             
     | 
| 689 | 
         
            +
                @classmethod
         
     | 
| 690 | 
         
            +
                def from_json(cls, json_string=None, filename=None,
         
     | 
| 691 | 
         
            +
                              encoding="utf-8", errors="strict", **kwargs):
         
     | 
| 692 | 
         
            +
                    """
         
     | 
| 693 | 
         
            +
                    Transform a json object string into a Box object. If the incoming
         
     | 
| 694 | 
         
            +
                    json is a list, you must use BoxList.from_json.
         
     | 
| 695 | 
         
            +
             
     | 
| 696 | 
         
            +
                    :param json_string: string to pass to `json.loads`
         
     | 
| 697 | 
         
            +
                    :param filename: filename to open and pass to `json.load`
         
     | 
| 698 | 
         
            +
                    :param encoding: File encoding
         
     | 
| 699 | 
         
            +
                    :param errors: How to handle encoding errors
         
     | 
| 700 | 
         
            +
                    :param kwargs: parameters to pass to `Box()` or `json.loads`
         
     | 
| 701 | 
         
            +
                    :return: Box object from json data
         
     | 
| 702 | 
         
            +
                    """
         
     | 
| 703 | 
         
            +
                    bx_args = {}
         
     | 
| 704 | 
         
            +
                    for arg in kwargs.copy():
         
     | 
| 705 | 
         
            +
                        if arg in BOX_PARAMETERS:
         
     | 
| 706 | 
         
            +
                            bx_args[arg] = kwargs.pop(arg)
         
     | 
| 707 | 
         
            +
             
     | 
| 708 | 
         
            +
                    data = _from_json(json_string, filename=filename,
         
     | 
| 709 | 
         
            +
                                      encoding=encoding, errors=errors, **kwargs)
         
     | 
| 710 | 
         
            +
             
     | 
| 711 | 
         
            +
                    if not isinstance(data, dict):
         
     | 
| 712 | 
         
            +
                        raise BoxError('json data not returned as a dictionary, '
         
     | 
| 713 | 
         
            +
                                       'but rather a {0}'.format(type(data).__name__))
         
     | 
| 714 | 
         
            +
                    return cls(data, **bx_args)
         
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
                if yaml_support:
         
     | 
| 717 | 
         
            +
                    def to_yaml(self, filename=None, default_flow_style=False,
         
     | 
| 718 | 
         
            +
                                encoding="utf-8", errors="strict",
         
     | 
| 719 | 
         
            +
                                **yaml_kwargs):
         
     | 
| 720 | 
         
            +
                        """
         
     | 
| 721 | 
         
            +
                        Transform the Box object into a YAML string.
         
     | 
| 722 | 
         
            +
             
     | 
| 723 | 
         
            +
                        :param filename:  If provided will save to file
         
     | 
| 724 | 
         
            +
                        :param default_flow_style: False will recursively dump dicts
         
     | 
| 725 | 
         
            +
                        :param encoding: File encoding
         
     | 
| 726 | 
         
            +
                        :param errors: How to handle encoding errors
         
     | 
| 727 | 
         
            +
                        :param yaml_kwargs: additional arguments to pass to yaml.dump
         
     | 
| 728 | 
         
            +
                        :return: string of YAML or return of `yaml.dump`
         
     | 
| 729 | 
         
            +
                        """
         
     | 
| 730 | 
         
            +
                        return _to_yaml(self.to_dict(), filename=filename,
         
     | 
| 731 | 
         
            +
                                        default_flow_style=default_flow_style,
         
     | 
| 732 | 
         
            +
                                        encoding=encoding, errors=errors, **yaml_kwargs)
         
     | 
| 733 | 
         
            +
             
     | 
| 734 | 
         
            +
                    @classmethod
         
     | 
| 735 | 
         
            +
                    def from_yaml(cls, yaml_string=None, filename=None,
         
     | 
| 736 | 
         
            +
                                  encoding="utf-8", errors="strict",
         
     | 
| 737 | 
         
            +
                                  loader=yaml.SafeLoader, **kwargs):
         
     | 
| 738 | 
         
            +
                        """
         
     | 
| 739 | 
         
            +
                        Transform a yaml object string into a Box object.
         
     | 
| 740 | 
         
            +
             
     | 
| 741 | 
         
            +
                        :param yaml_string: string to pass to `yaml.load`
         
     | 
| 742 | 
         
            +
                        :param filename: filename to open and pass to `yaml.load`
         
     | 
| 743 | 
         
            +
                        :param encoding: File encoding
         
     | 
| 744 | 
         
            +
                        :param errors: How to handle encoding errors
         
     | 
| 745 | 
         
            +
                        :param loader: YAML Loader, defaults to SafeLoader
         
     | 
| 746 | 
         
            +
                        :param kwargs: parameters to pass to `Box()` or `yaml.load`
         
     | 
| 747 | 
         
            +
                        :return: Box object from yaml data
         
     | 
| 748 | 
         
            +
                        """
         
     | 
| 749 | 
         
            +
                        bx_args = {}
         
     | 
| 750 | 
         
            +
                        for arg in kwargs.copy():
         
     | 
| 751 | 
         
            +
                            if arg in BOX_PARAMETERS:
         
     | 
| 752 | 
         
            +
                                bx_args[arg] = kwargs.pop(arg)
         
     | 
| 753 | 
         
            +
             
     | 
| 754 | 
         
            +
                        data = _from_yaml(yaml_string=yaml_string, filename=filename,
         
     | 
| 755 | 
         
            +
                                          encoding=encoding, errors=errors,
         
     | 
| 756 | 
         
            +
                                          Loader=loader, **kwargs)
         
     | 
| 757 | 
         
            +
                        if not isinstance(data, dict):
         
     | 
| 758 | 
         
            +
                            raise BoxError('yaml data not returned as a dictionary'
         
     | 
| 759 | 
         
            +
                                           'but rather a {0}'.format(type(data).__name__))
         
     | 
| 760 | 
         
            +
                        return cls(data, **bx_args)
         
     | 
| 761 | 
         
            +
             
     | 
| 762 | 
         
            +
             
     | 
| 763 | 
         
            +
            class BoxList(list):
         
     | 
| 764 | 
         
            +
                """
         
     | 
| 765 | 
         
            +
                Drop in replacement of list, that converts added objects to Box or BoxList
         
     | 
| 766 | 
         
            +
                objects as necessary.
         
     | 
| 767 | 
         
            +
                """
         
     | 
| 768 | 
         
            +
             
     | 
| 769 | 
         
            +
                def __init__(self, iterable=None, box_class=Box, **box_options):
         
     | 
| 770 | 
         
            +
                    self.box_class = box_class
         
     | 
| 771 | 
         
            +
                    self.box_options = box_options
         
     | 
| 772 | 
         
            +
                    self.box_org_ref = self.box_org_ref = id(iterable) if iterable else 0
         
     | 
| 773 | 
         
            +
                    if iterable:
         
     | 
| 774 | 
         
            +
                        for x in iterable:
         
     | 
| 775 | 
         
            +
                            self.append(x)
         
     | 
| 776 | 
         
            +
                    if box_options.get('frozen_box'):
         
     | 
| 777 | 
         
            +
                        def frozen(*args, **kwargs):
         
     | 
| 778 | 
         
            +
                            raise BoxError('BoxList is frozen')
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
                        for method in ['append', 'extend', 'insert', 'pop',
         
     | 
| 781 | 
         
            +
                                       'remove', 'reverse', 'sort']:
         
     | 
| 782 | 
         
            +
                            self.__setattr__(method, frozen)
         
     | 
| 783 | 
         
            +
             
     | 
| 784 | 
         
            +
                def __delitem__(self, key):
         
     | 
| 785 | 
         
            +
                    if self.box_options.get('frozen_box'):
         
     | 
| 786 | 
         
            +
                        raise BoxError('BoxList is frozen')
         
     | 
| 787 | 
         
            +
                    super(BoxList, self).__delitem__(key)
         
     | 
| 788 | 
         
            +
             
     | 
| 789 | 
         
            +
                def __setitem__(self, key, value):
         
     | 
| 790 | 
         
            +
                    if self.box_options.get('frozen_box'):
         
     | 
| 791 | 
         
            +
                        raise BoxError('BoxList is frozen')
         
     | 
| 792 | 
         
            +
                    super(BoxList, self).__setitem__(key, value)
         
     | 
| 793 | 
         
            +
             
     | 
| 794 | 
         
            +
                def append(self, p_object):
         
     | 
| 795 | 
         
            +
                    if isinstance(p_object, dict):
         
     | 
| 796 | 
         
            +
                        try:
         
     | 
| 797 | 
         
            +
                            p_object = self.box_class(p_object, **self.box_options)
         
     | 
| 798 | 
         
            +
                        except AttributeError as err:
         
     | 
| 799 | 
         
            +
                            if 'box_class' in self.__dict__:
         
     | 
| 800 | 
         
            +
                                raise err
         
     | 
| 801 | 
         
            +
                    elif isinstance(p_object, list):
         
     | 
| 802 | 
         
            +
                        try:
         
     | 
| 803 | 
         
            +
                            p_object = (self if id(p_object) == self.box_org_ref else
         
     | 
| 804 | 
         
            +
                                        BoxList(p_object))
         
     | 
| 805 | 
         
            +
                        except AttributeError as err:
         
     | 
| 806 | 
         
            +
                            if 'box_org_ref' in self.__dict__:
         
     | 
| 807 | 
         
            +
                                raise err
         
     | 
| 808 | 
         
            +
                    super(BoxList, self).append(p_object)
         
     | 
| 809 | 
         
            +
             
     | 
| 810 | 
         
            +
                def extend(self, iterable):
         
     | 
| 811 | 
         
            +
                    for item in iterable:
         
     | 
| 812 | 
         
            +
                        self.append(item)
         
     | 
| 813 | 
         
            +
             
     | 
| 814 | 
         
            +
                def insert(self, index, p_object):
         
     | 
| 815 | 
         
            +
                    if isinstance(p_object, dict):
         
     | 
| 816 | 
         
            +
                        p_object = self.box_class(p_object, **self.box_options)
         
     | 
| 817 | 
         
            +
                    elif isinstance(p_object, list):
         
     | 
| 818 | 
         
            +
                        p_object = (self if id(p_object) == self.box_org_ref else
         
     | 
| 819 | 
         
            +
                                    BoxList(p_object))
         
     | 
| 820 | 
         
            +
                    super(BoxList, self).insert(index, p_object)
         
     | 
| 821 | 
         
            +
             
     | 
| 822 | 
         
            +
                def __repr__(self):
         
     | 
| 823 | 
         
            +
                    return "<BoxList: {0}>".format(self.to_list())
         
     | 
| 824 | 
         
            +
             
     | 
| 825 | 
         
            +
                def __str__(self):
         
     | 
| 826 | 
         
            +
                    return str(self.to_list())
         
     | 
| 827 | 
         
            +
             
     | 
| 828 | 
         
            +
                def __copy__(self):
         
     | 
| 829 | 
         
            +
                    return BoxList((x for x in self),
         
     | 
| 830 | 
         
            +
                                   self.box_class,
         
     | 
| 831 | 
         
            +
                                   **self.box_options)
         
     | 
| 832 | 
         
            +
             
     | 
| 833 | 
         
            +
                def __deepcopy__(self, memodict=None):
         
     | 
| 834 | 
         
            +
                    out = self.__class__()
         
     | 
| 835 | 
         
            +
                    memodict = memodict or {}
         
     | 
| 836 | 
         
            +
                    memodict[id(self)] = out
         
     | 
| 837 | 
         
            +
                    for k in self:
         
     | 
| 838 | 
         
            +
                        out.append(copy.deepcopy(k))
         
     | 
| 839 | 
         
            +
                    return out
         
     | 
| 840 | 
         
            +
             
     | 
| 841 | 
         
            +
                def __hash__(self):
         
     | 
| 842 | 
         
            +
                    if self.box_options.get('frozen_box'):
         
     | 
| 843 | 
         
            +
                        hashing = 98765
         
     | 
| 844 | 
         
            +
                        hashing ^= hash(tuple(self))
         
     | 
| 845 | 
         
            +
                        return hashing
         
     | 
| 846 | 
         
            +
                    raise TypeError("unhashable type: 'BoxList'")
         
     | 
| 847 | 
         
            +
             
     | 
| 848 | 
         
            +
                def to_list(self):
         
     | 
| 849 | 
         
            +
                    new_list = []
         
     | 
| 850 | 
         
            +
                    for x in self:
         
     | 
| 851 | 
         
            +
                        if x is self:
         
     | 
| 852 | 
         
            +
                            new_list.append(new_list)
         
     | 
| 853 | 
         
            +
                        elif isinstance(x, Box):
         
     | 
| 854 | 
         
            +
                            new_list.append(x.to_dict())
         
     | 
| 855 | 
         
            +
                        elif isinstance(x, BoxList):
         
     | 
| 856 | 
         
            +
                            new_list.append(x.to_list())
         
     | 
| 857 | 
         
            +
                        else:
         
     | 
| 858 | 
         
            +
                            new_list.append(x)
         
     | 
| 859 | 
         
            +
                    return new_list
         
     | 
| 860 | 
         
            +
             
     | 
| 861 | 
         
            +
                def to_json(self, filename=None,
         
     | 
| 862 | 
         
            +
                            encoding="utf-8", errors="strict",
         
     | 
| 863 | 
         
            +
                            multiline=False, **json_kwargs):
         
     | 
| 864 | 
         
            +
                    """
         
     | 
| 865 | 
         
            +
                    Transform the BoxList object into a JSON string.
         
     | 
| 866 | 
         
            +
             
     | 
| 867 | 
         
            +
                    :param filename: If provided will save to file
         
     | 
| 868 | 
         
            +
                    :param encoding: File encoding
         
     | 
| 869 | 
         
            +
                    :param errors: How to handle encoding errors
         
     | 
| 870 | 
         
            +
                    :param multiline: Put each item in list onto it's own line
         
     | 
| 871 | 
         
            +
                    :param json_kwargs: additional arguments to pass to json.dump(s)
         
     | 
| 872 | 
         
            +
                    :return: string of JSON or return of `json.dump`
         
     | 
| 873 | 
         
            +
                    """
         
     | 
| 874 | 
         
            +
                    if filename and multiline:
         
     | 
| 875 | 
         
            +
                        lines = [_to_json(item, filename=False, encoding=encoding,
         
     | 
| 876 | 
         
            +
                                          errors=errors, **json_kwargs) for item in self]
         
     | 
| 877 | 
         
            +
                        with open(filename, 'w', encoding=encoding, errors=errors) as f:
         
     | 
| 878 | 
         
            +
                            f.write("\n".join(lines).decode('utf-8') if
         
     | 
| 879 | 
         
            +
                                    sys.version_info < (3, 0) else "\n".join(lines))
         
     | 
| 880 | 
         
            +
                    else:
         
     | 
| 881 | 
         
            +
                        return _to_json(self.to_list(), filename=filename,
         
     | 
| 882 | 
         
            +
                                        encoding=encoding, errors=errors, **json_kwargs)
         
     | 
| 883 | 
         
            +
             
     | 
| 884 | 
         
            +
                @classmethod
         
     | 
| 885 | 
         
            +
                def from_json(cls, json_string=None, filename=None, encoding="utf-8",
         
     | 
| 886 | 
         
            +
                              errors="strict", multiline=False, **kwargs):
         
     | 
| 887 | 
         
            +
                    """
         
     | 
| 888 | 
         
            +
                    Transform a json object string into a BoxList object. If the incoming
         
     | 
| 889 | 
         
            +
                    json is a dict, you must use Box.from_json.
         
     | 
| 890 | 
         
            +
             
     | 
| 891 | 
         
            +
                    :param json_string: string to pass to `json.loads`
         
     | 
| 892 | 
         
            +
                    :param filename: filename to open and pass to `json.load`
         
     | 
| 893 | 
         
            +
                    :param encoding: File encoding
         
     | 
| 894 | 
         
            +
                    :param errors: How to handle encoding errors
         
     | 
| 895 | 
         
            +
                    :param multiline: One object per line
         
     | 
| 896 | 
         
            +
                    :param kwargs: parameters to pass to `Box()` or `json.loads`
         
     | 
| 897 | 
         
            +
                    :return: BoxList object from json data
         
     | 
| 898 | 
         
            +
                    """
         
     | 
| 899 | 
         
            +
                    bx_args = {}
         
     | 
| 900 | 
         
            +
                    for arg in kwargs.copy():
         
     | 
| 901 | 
         
            +
                        if arg in BOX_PARAMETERS:
         
     | 
| 902 | 
         
            +
                            bx_args[arg] = kwargs.pop(arg)
         
     | 
| 903 | 
         
            +
             
     | 
| 904 | 
         
            +
                    data = _from_json(json_string, filename=filename, encoding=encoding,
         
     | 
| 905 | 
         
            +
                                      errors=errors, multiline=multiline, **kwargs)
         
     | 
| 906 | 
         
            +
             
     | 
| 907 | 
         
            +
                    if not isinstance(data, list):
         
     | 
| 908 | 
         
            +
                        raise BoxError('json data not returned as a list, '
         
     | 
| 909 | 
         
            +
                                       'but rather a {0}'.format(type(data).__name__))
         
     | 
| 910 | 
         
            +
                    return cls(data, **bx_args)
         
     | 
| 911 | 
         
            +
             
     | 
| 912 | 
         
            +
                if yaml_support:
         
     | 
| 913 | 
         
            +
                    def to_yaml(self, filename=None, default_flow_style=False,
         
     | 
| 914 | 
         
            +
                                encoding="utf-8", errors="strict",
         
     | 
| 915 | 
         
            +
                                **yaml_kwargs):
         
     | 
| 916 | 
         
            +
                        """
         
     | 
| 917 | 
         
            +
                        Transform the BoxList object into a YAML string.
         
     | 
| 918 | 
         
            +
             
     | 
| 919 | 
         
            +
                        :param filename:  If provided will save to file
         
     | 
| 920 | 
         
            +
                        :param default_flow_style: False will recursively dump dicts
         
     | 
| 921 | 
         
            +
                        :param encoding: File encoding
         
     | 
| 922 | 
         
            +
                        :param errors: How to handle encoding errors
         
     | 
| 923 | 
         
            +
                        :param yaml_kwargs: additional arguments to pass to yaml.dump
         
     | 
| 924 | 
         
            +
                        :return: string of YAML or return of `yaml.dump`
         
     | 
| 925 | 
         
            +
                        """
         
     | 
| 926 | 
         
            +
                        return _to_yaml(self.to_list(), filename=filename,
         
     | 
| 927 | 
         
            +
                                        default_flow_style=default_flow_style,
         
     | 
| 928 | 
         
            +
                                        encoding=encoding, errors=errors, **yaml_kwargs)
         
     | 
| 929 | 
         
            +
             
     | 
| 930 | 
         
            +
                    @classmethod
         
     | 
| 931 | 
         
            +
                    def from_yaml(cls, yaml_string=None, filename=None,
         
     | 
| 932 | 
         
            +
                                  encoding="utf-8", errors="strict",
         
     | 
| 933 | 
         
            +
                                  loader=yaml.SafeLoader,
         
     | 
| 934 | 
         
            +
                                  **kwargs):
         
     | 
| 935 | 
         
            +
                        """
         
     | 
| 936 | 
         
            +
                        Transform a yaml object string into a BoxList object.
         
     | 
| 937 | 
         
            +
             
     | 
| 938 | 
         
            +
                        :param yaml_string: string to pass to `yaml.load`
         
     | 
| 939 | 
         
            +
                        :param filename: filename to open and pass to `yaml.load`
         
     | 
| 940 | 
         
            +
                        :param encoding: File encoding
         
     | 
| 941 | 
         
            +
                        :param errors: How to handle encoding errors
         
     | 
| 942 | 
         
            +
                        :param loader: YAML Loader, defaults to SafeLoader
         
     | 
| 943 | 
         
            +
                        :param kwargs: parameters to pass to `BoxList()` or `yaml.load`
         
     | 
| 944 | 
         
            +
                        :return: BoxList object from yaml data
         
     | 
| 945 | 
         
            +
                        """
         
     | 
| 946 | 
         
            +
                        bx_args = {}
         
     | 
| 947 | 
         
            +
                        for arg in kwargs.copy():
         
     | 
| 948 | 
         
            +
                            if arg in BOX_PARAMETERS:
         
     | 
| 949 | 
         
            +
                                bx_args[arg] = kwargs.pop(arg)
         
     | 
| 950 | 
         
            +
             
     | 
| 951 | 
         
            +
                        data = _from_yaml(yaml_string=yaml_string, filename=filename,
         
     | 
| 952 | 
         
            +
                                          encoding=encoding, errors=errors,
         
     | 
| 953 | 
         
            +
                                          Loader=loader, **kwargs)
         
     | 
| 954 | 
         
            +
                        if not isinstance(data, list):
         
     | 
| 955 | 
         
            +
                            raise BoxError('yaml data not returned as a list'
         
     | 
| 956 | 
         
            +
                                           'but rather a {0}'.format(type(data).__name__))
         
     | 
| 957 | 
         
            +
                        return cls(data, **bx_args)
         
     | 
| 958 | 
         
            +
             
     | 
| 959 | 
         
            +
                def box_it_up(self):
         
     | 
| 960 | 
         
            +
                    for v in self:
         
     | 
| 961 | 
         
            +
                        if hasattr(v, 'box_it_up') and v is not self:
         
     | 
| 962 | 
         
            +
                            v.box_it_up()
         
     | 
| 963 | 
         
            +
             
     | 
| 964 | 
         
            +
             
     | 
| 965 | 
         
            +
            class ConfigBox(Box):
         
     | 
| 966 | 
         
            +
                """
         
     | 
| 967 | 
         
            +
                Modified box object to add object transforms.
         
     | 
| 968 | 
         
            +
             
     | 
| 969 | 
         
            +
                Allows for build in transforms like:
         
     | 
| 970 | 
         
            +
             
     | 
| 971 | 
         
            +
                cns = ConfigBox(my_bool='yes', my_int='5', my_list='5,4,3,3,2')
         
     | 
| 972 | 
         
            +
             
     | 
| 973 | 
         
            +
                cns.bool('my_bool') # True
         
     | 
| 974 | 
         
            +
                cns.int('my_int') # 5
         
     | 
| 975 | 
         
            +
                cns.list('my_list', mod=lambda x: int(x)) # [5, 4, 3, 3, 2]
         
     | 
| 976 | 
         
            +
                """
         
     | 
| 977 | 
         
            +
             
     | 
| 978 | 
         
            +
                _protected_keys = dir({}) + ['to_dict', 'bool', 'int', 'float',
         
     | 
| 979 | 
         
            +
                                             'list', 'getboolean', 'to_json', 'to_yaml',
         
     | 
| 980 | 
         
            +
                                             'getfloat', 'getint',
         
     | 
| 981 | 
         
            +
                                             'from_json', 'from_yaml']
         
     | 
| 982 | 
         
            +
             
     | 
| 983 | 
         
            +
                def __getattr__(self, item):
         
     | 
| 984 | 
         
            +
                    """Config file keys are stored in lower case, be a little more
         
     | 
| 985 | 
         
            +
                    loosey goosey"""
         
     | 
| 986 | 
         
            +
                    try:
         
     | 
| 987 | 
         
            +
                        return super(ConfigBox, self).__getattr__(item)
         
     | 
| 988 | 
         
            +
                    except AttributeError:
         
     | 
| 989 | 
         
            +
                        return super(ConfigBox, self).__getattr__(item.lower())
         
     | 
| 990 | 
         
            +
             
     | 
| 991 | 
         
            +
                def __dir__(self):
         
     | 
| 992 | 
         
            +
                    return super(ConfigBox, self).__dir__() + ['bool', 'int', 'float',
         
     | 
| 993 | 
         
            +
                                                               'list', 'getboolean',
         
     | 
| 994 | 
         
            +
                                                               'getfloat', 'getint']
         
     | 
| 995 | 
         
            +
             
     | 
| 996 | 
         
            +
                def bool(self, item, default=None):
         
     | 
| 997 | 
         
            +
                    """ Return value of key as a boolean
         
     | 
| 998 | 
         
            +
             
     | 
| 999 | 
         
            +
                    :param item: key of value to transform
         
     | 
| 1000 | 
         
            +
                    :param default: value to return if item does not exist
         
     | 
| 1001 | 
         
            +
                    :return: approximated bool of value
         
     | 
| 1002 | 
         
            +
                    """
         
     | 
| 1003 | 
         
            +
                    try:
         
     | 
| 1004 | 
         
            +
                        item = self.__getattr__(item)
         
     | 
| 1005 | 
         
            +
                    except AttributeError as err:
         
     | 
| 1006 | 
         
            +
                        if default is not None:
         
     | 
| 1007 | 
         
            +
                            return default
         
     | 
| 1008 | 
         
            +
                        raise err
         
     | 
| 1009 | 
         
            +
             
     | 
| 1010 | 
         
            +
                    if isinstance(item, (bool, int)):
         
     | 
| 1011 | 
         
            +
                        return bool(item)
         
     | 
| 1012 | 
         
            +
             
     | 
| 1013 | 
         
            +
                    if (isinstance(item, str) and
         
     | 
| 1014 | 
         
            +
                            item.lower() in ('n', 'no', 'false', 'f', '0')):
         
     | 
| 1015 | 
         
            +
                        return False
         
     | 
| 1016 | 
         
            +
             
     | 
| 1017 | 
         
            +
                    return True if item else False
         
     | 
| 1018 | 
         
            +
             
     | 
| 1019 | 
         
            +
                def int(self, item, default=None):
         
     | 
| 1020 | 
         
            +
                    """ Return value of key as an int
         
     | 
| 1021 | 
         
            +
             
     | 
| 1022 | 
         
            +
                    :param item: key of value to transform
         
     | 
| 1023 | 
         
            +
                    :param default: value to return if item does not exist
         
     | 
| 1024 | 
         
            +
                    :return: int of value
         
     | 
| 1025 | 
         
            +
                    """
         
     | 
| 1026 | 
         
            +
                    try:
         
     | 
| 1027 | 
         
            +
                        item = self.__getattr__(item)
         
     | 
| 1028 | 
         
            +
                    except AttributeError as err:
         
     | 
| 1029 | 
         
            +
                        if default is not None:
         
     | 
| 1030 | 
         
            +
                            return default
         
     | 
| 1031 | 
         
            +
                        raise err
         
     | 
| 1032 | 
         
            +
                    return int(item)
         
     | 
| 1033 | 
         
            +
             
     | 
| 1034 | 
         
            +
                def float(self, item, default=None):
         
     | 
| 1035 | 
         
            +
                    """ Return value of key as a float
         
     | 
| 1036 | 
         
            +
             
     | 
| 1037 | 
         
            +
                    :param item: key of value to transform
         
     | 
| 1038 | 
         
            +
                    :param default: value to return if item does not exist
         
     | 
| 1039 | 
         
            +
                    :return: float of value
         
     | 
| 1040 | 
         
            +
                    """
         
     | 
| 1041 | 
         
            +
                    try:
         
     | 
| 1042 | 
         
            +
                        item = self.__getattr__(item)
         
     | 
| 1043 | 
         
            +
                    except AttributeError as err:
         
     | 
| 1044 | 
         
            +
                        if default is not None:
         
     | 
| 1045 | 
         
            +
                            return default
         
     | 
| 1046 | 
         
            +
                        raise err
         
     | 
| 1047 | 
         
            +
                    return float(item)
         
     | 
| 1048 | 
         
            +
             
     | 
| 1049 | 
         
            +
                def list(self, item, default=None, spliter=",", strip=True, mod=None):
         
     | 
| 1050 | 
         
            +
                    """ Return value of key as a list
         
     | 
| 1051 | 
         
            +
             
     | 
| 1052 | 
         
            +
                    :param item: key of value to transform
         
     | 
| 1053 | 
         
            +
                    :param mod: function to map against list
         
     | 
| 1054 | 
         
            +
                    :param default: value to return if item does not exist
         
     | 
| 1055 | 
         
            +
                    :param spliter: character to split str on
         
     | 
| 1056 | 
         
            +
                    :param strip: clean the list with the `strip`
         
     | 
| 1057 | 
         
            +
                    :return: list of items
         
     | 
| 1058 | 
         
            +
                    """
         
     | 
| 1059 | 
         
            +
                    try:
         
     | 
| 1060 | 
         
            +
                        item = self.__getattr__(item)
         
     | 
| 1061 | 
         
            +
                    except AttributeError as err:
         
     | 
| 1062 | 
         
            +
                        if default is not None:
         
     | 
| 1063 | 
         
            +
                            return default
         
     | 
| 1064 | 
         
            +
                        raise err
         
     | 
| 1065 | 
         
            +
                    if strip:
         
     | 
| 1066 | 
         
            +
                        item = item.lstrip('[').rstrip(']')
         
     | 
| 1067 | 
         
            +
                    out = [x.strip() if strip else x for x in item.split(spliter)]
         
     | 
| 1068 | 
         
            +
                    if mod:
         
     | 
| 1069 | 
         
            +
                        return list(map(mod, out))
         
     | 
| 1070 | 
         
            +
                    return out
         
     | 
| 1071 | 
         
            +
             
     | 
| 1072 | 
         
            +
                # loose configparser compatibility
         
     | 
| 1073 | 
         
            +
             
     | 
| 1074 | 
         
            +
                def getboolean(self, item, default=None):
         
     | 
| 1075 | 
         
            +
                    return self.bool(item, default)
         
     | 
| 1076 | 
         
            +
             
     | 
| 1077 | 
         
            +
                def getint(self, item, default=None):
         
     | 
| 1078 | 
         
            +
                    return self.int(item, default)
         
     | 
| 1079 | 
         
            +
             
     | 
| 1080 | 
         
            +
                def getfloat(self, item, default=None):
         
     | 
| 1081 | 
         
            +
                    return self.float(item, default)
         
     | 
| 1082 | 
         
            +
             
     | 
| 1083 | 
         
            +
                def __repr__(self):
         
     | 
| 1084 | 
         
            +
                    return '<ConfigBox: {0}>'.format(str(self.to_dict()))
         
     | 
| 1085 | 
         
            +
             
     | 
| 1086 | 
         
            +
             
     | 
| 1087 | 
         
            +
            class SBox(Box):
         
     | 
| 1088 | 
         
            +
                """
         
     | 
| 1089 | 
         
            +
                ShorthandBox (SBox) allows for
         
     | 
| 1090 | 
         
            +
                property access of `dict` `json` and `yaml`
         
     | 
| 1091 | 
         
            +
                """
         
     | 
| 1092 | 
         
            +
                _protected_keys = dir({}) + ['to_dict', 'tree_view', 'to_json', 'to_yaml',
         
     | 
| 1093 | 
         
            +
                                             'json', 'yaml', 'from_yaml', 'from_json',
         
     | 
| 1094 | 
         
            +
                                             'dict']
         
     | 
| 1095 | 
         
            +
             
     | 
| 1096 | 
         
            +
                @property
         
     | 
| 1097 | 
         
            +
                def dict(self):
         
     | 
| 1098 | 
         
            +
                    return self.to_dict()
         
     | 
| 1099 | 
         
            +
             
     | 
| 1100 | 
         
            +
                @property
         
     | 
| 1101 | 
         
            +
                def json(self):
         
     | 
| 1102 | 
         
            +
                    return self.to_json()
         
     | 
| 1103 | 
         
            +
             
     | 
| 1104 | 
         
            +
                if yaml_support:
         
     | 
| 1105 | 
         
            +
                    @property
         
     | 
| 1106 | 
         
            +
                    def yaml(self):
         
     | 
| 1107 | 
         
            +
                        return self.to_yaml()
         
     | 
| 1108 | 
         
            +
             
     | 
| 1109 | 
         
            +
                def __repr__(self):
         
     | 
| 1110 | 
         
            +
                    return '<ShorthandBox: {0}>'.format(str(self.to_dict()))
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/config.py
    ADDED
    
    | 
         @@ -0,0 +1,9 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            from neurvps.box import Box
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            # C is a dict storing all the configuration
         
     | 
| 6 | 
         
            +
            C = Box()
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            # shortcut for C.model
         
     | 
| 9 | 
         
            +
            M = Box()
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/datasets.py
    ADDED
    
    | 
         @@ -0,0 +1,184 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import json
         
     | 
| 3 | 
         
            +
            import math
         
     | 
| 4 | 
         
            +
            import random
         
     | 
| 5 | 
         
            +
            import os.path as osp
         
     | 
| 6 | 
         
            +
            from glob import glob
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import numpy as np
         
     | 
| 9 | 
         
            +
            import torch
         
     | 
| 10 | 
         
            +
            import skimage.io
         
     | 
| 11 | 
         
            +
            import numpy.linalg as LA
         
     | 
| 12 | 
         
            +
            import matplotlib.pyplot as plt
         
     | 
| 13 | 
         
            +
            import skimage.transform
         
     | 
| 14 | 
         
            +
            from torch.utils.data import Dataset
         
     | 
| 15 | 
         
            +
            from torch.utils.data.dataloader import default_collate
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            from neurvps.config import C
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class WireframeDataset(Dataset):
         
     | 
| 21 | 
         
            +
                def __init__(self, rootdir, split):
         
     | 
| 22 | 
         
            +
                    self.rootdir = rootdir
         
     | 
| 23 | 
         
            +
                    filelist = sorted(glob(f"{rootdir}/*/*.png"))
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                    self.split = split
         
     | 
| 26 | 
         
            +
                    if split == "train":
         
     | 
| 27 | 
         
            +
                        self.filelist = filelist[500:]
         
     | 
| 28 | 
         
            +
                        self.size = len(self.filelist) * C.io.augmentation_level
         
     | 
| 29 | 
         
            +
                    elif split == "valid":
         
     | 
| 30 | 
         
            +
                        self.filelist = [f for f in filelist[:500] if "a1" not in f]
         
     | 
| 31 | 
         
            +
                        self.size = len(self.filelist)
         
     | 
| 32 | 
         
            +
                    print(f"n{split}:", self.size)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                def __len__(self):
         
     | 
| 35 | 
         
            +
                    return self.size
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                def __getitem__(self, idx):
         
     | 
| 38 | 
         
            +
                    iname = self.filelist[idx % len(self.filelist)]
         
     | 
| 39 | 
         
            +
                    image = skimage.io.imread(iname).astype(float)[:, :, :3]
         
     | 
| 40 | 
         
            +
                    image = np.rollaxis(image, 2).copy()
         
     | 
| 41 | 
         
            +
                    with np.load(iname.replace(".png", "_label.npz")) as npz:
         
     | 
| 42 | 
         
            +
                        vpts = npz["vpts"]
         
     | 
| 43 | 
         
            +
                    return (torch.tensor(image).float(), {"vpts": torch.tensor(vpts).float()})
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            class ScanNetDataset(Dataset):
         
     | 
| 47 | 
         
            +
                def __init__(self, rootdir, split):
         
     | 
| 48 | 
         
            +
                    self.rootdir = rootdir
         
     | 
| 49 | 
         
            +
                    self.split = split
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                    dirs = np.genfromtxt(f"{rootdir}/scannetv2_{split}.txt", dtype=str)
         
     | 
| 52 | 
         
            +
                    self.filelist = sum([glob(f"{rootdir}/{d}/*.png") for d in dirs], [])
         
     | 
| 53 | 
         
            +
                    if split == "train":
         
     | 
| 54 | 
         
            +
                        self.size = len(self.filelist) * C.io.augmentation_level
         
     | 
| 55 | 
         
            +
                    elif split == "valid":
         
     | 
| 56 | 
         
            +
                        random.seed(0)
         
     | 
| 57 | 
         
            +
                        random.shuffle(self.filelist)
         
     | 
| 58 | 
         
            +
                        self.filelist = self.filelist[:500]
         
     | 
| 59 | 
         
            +
                        self.size = len(self.filelist)
         
     | 
| 60 | 
         
            +
                    print(f"n{split}:", self.size)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def __len__(self):
         
     | 
| 63 | 
         
            +
                    return self.size
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                def __getitem__(self, idx):
         
     | 
| 66 | 
         
            +
                    iname = self.filelist[idx % len(self.filelist)]
         
     | 
| 67 | 
         
            +
                    image = skimage.io.imread(iname)[:, :, :3]
         
     | 
| 68 | 
         
            +
                    with np.load(iname.replace("color.png", "vanish.npz")) as npz:
         
     | 
| 69 | 
         
            +
                        vpts = np.array([npz[d] for d in ["x", "y", "z"]])
         
     | 
| 70 | 
         
            +
                    vpts[:, 1] *= -1
         
     | 
| 71 | 
         
            +
                    # plt.imshow(image)
         
     | 
| 72 | 
         
            +
                    # cc = ["blue", "cyan", "orange"]
         
     | 
| 73 | 
         
            +
                    # for c, w in zip(cc, vpts):
         
     | 
| 74 | 
         
            +
                    #     x = w[0] / w[2] * C.io.focal_length * 256 + 256
         
     | 
| 75 | 
         
            +
                    #     y = -w[1] / w[2] * C.io.focal_length * 256 + 256
         
     | 
| 76 | 
         
            +
                    #     plt.scatter(x, y, color=c)
         
     | 
| 77 | 
         
            +
                    #     for xy in np.linspace(0, 512, 10):
         
     | 
| 78 | 
         
            +
                    #         plt.plot(
         
     | 
| 79 | 
         
            +
                    #             [x, xy, x, xy, x, 0, x, 511],
         
     | 
| 80 | 
         
            +
                    #             [y, 0, y, 511, y, xy, y, xy],
         
     | 
| 81 | 
         
            +
                    #             color=c,
         
     | 
| 82 | 
         
            +
                    #         )
         
     | 
| 83 | 
         
            +
                    # plt.show()
         
     | 
| 84 | 
         
            +
                    image = np.rollaxis(image.astype(np.float), 2).copy()
         
     | 
| 85 | 
         
            +
                    return (torch.tensor(image).float(), {"vpts": torch.tensor(vpts).float()})
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            class Tmm17Dataset(Dataset):
         
     | 
| 89 | 
         
            +
                def __init__(self, rootdir, split):
         
     | 
| 90 | 
         
            +
                    self.rootdir = rootdir
         
     | 
| 91 | 
         
            +
                    self.split = split
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                    filelist = np.genfromtxt(f"{rootdir}/{split}.txt", dtype=str)
         
     | 
| 94 | 
         
            +
                    self.filelist = [osp.join(rootdir, f) for f in filelist]
         
     | 
| 95 | 
         
            +
                    if split == "train":
         
     | 
| 96 | 
         
            +
                        self.size = len(self.filelist) * C.io.augmentation_level
         
     | 
| 97 | 
         
            +
                    elif split == "valid":
         
     | 
| 98 | 
         
            +
                        self.size = len(self.filelist)
         
     | 
| 99 | 
         
            +
                    print(f"n{split}:", self.size)
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                def __len__(self):
         
     | 
| 102 | 
         
            +
                    return self.size
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                def __getitem__(self, idx):
         
     | 
| 105 | 
         
            +
                    iname = self.filelist[idx % len(self.filelist)]
         
     | 
| 106 | 
         
            +
                    image = skimage.io.imread(iname)
         
     | 
| 107 | 
         
            +
                    tname = iname.replace(".jpg", ".txt")
         
     | 
| 108 | 
         
            +
                    axy, bxy = np.genfromtxt(tname, skip_header=1)
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    a0, a1 = np.array(axy[:2]), np.array(axy[2:])
         
     | 
| 111 | 
         
            +
                    b0, b1 = np.array(bxy[:2]), np.array(bxy[2:])
         
     | 
| 112 | 
         
            +
                    xy = intersect(a0, a1, b0, b1) - 0.5
         
     | 
| 113 | 
         
            +
                    xy[0] *= 512 / image.shape[1]
         
     | 
| 114 | 
         
            +
                    xy[1] *= 512 / image.shape[0]
         
     | 
| 115 | 
         
            +
                    image = skimage.transform.resize(image, (512, 512))
         
     | 
| 116 | 
         
            +
                    if image.ndim == 2:
         
     | 
| 117 | 
         
            +
                        image = image[:, :, None].repeat(3, 2)
         
     | 
| 118 | 
         
            +
                    if self.split == "train":
         
     | 
| 119 | 
         
            +
                        i, j, h, w = crop(image.shape)
         
     | 
| 120 | 
         
            +
                    else:
         
     | 
| 121 | 
         
            +
                        i, j, h, w = 0, 0, image.shape[0], image.shape[1]
         
     | 
| 122 | 
         
            +
                    image = skimage.transform.resize(image[j : j + h, i : i + w], (512, 512))
         
     | 
| 123 | 
         
            +
                    xy[1] = (xy[1] - j) / h * 512
         
     | 
| 124 | 
         
            +
                    xy[0] = (xy[0] - i) / w * 512
         
     | 
| 125 | 
         
            +
                    # plt.imshow(image)
         
     | 
| 126 | 
         
            +
                    # plt.scatter(xy[0], xy[1])
         
     | 
| 127 | 
         
            +
                    # plt.show()
         
     | 
| 128 | 
         
            +
                    vpts = np.array([[xy[0] / 256 - 1, 1 - xy[1] / 256, C.io.focal_length]])
         
     | 
| 129 | 
         
            +
                    vpts[0] /= LA.norm(vpts[0])
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                    image, vpts = augment(image, vpts, idx // len(self.filelist))
         
     | 
| 132 | 
         
            +
                    image = np.rollaxis(image, 2)
         
     | 
| 133 | 
         
            +
                    return (torch.tensor(image * 255).float(), {"vpts": torch.tensor(vpts).float()})
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
            def augment(image, vpts, division):
         
     | 
| 137 | 
         
            +
                if division == 1:  # left-right flip
         
     | 
| 138 | 
         
            +
                    return image[:, ::-1].copy(), (vpts * [-1, 1, 1]).copy()
         
     | 
| 139 | 
         
            +
                elif division == 2:  # up-down flip
         
     | 
| 140 | 
         
            +
                    return image[::-1, :].copy(), (vpts * [1, -1, 1]).copy()
         
     | 
| 141 | 
         
            +
                elif division == 3:  # all flip
         
     | 
| 142 | 
         
            +
                    return image[::-1, ::-1].copy(), (vpts * [-1, -1, 1]).copy()
         
     | 
| 143 | 
         
            +
                return image, vpts
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
            def intersect(a0, a1, b0, b1):
         
     | 
| 147 | 
         
            +
                c0 = ccw(a0, a1, b0)
         
     | 
| 148 | 
         
            +
                c1 = ccw(a0, a1, b1)
         
     | 
| 149 | 
         
            +
                d0 = ccw(b0, b1, a0)
         
     | 
| 150 | 
         
            +
                d1 = ccw(b0, b1, a1)
         
     | 
| 151 | 
         
            +
                if abs(d1 - d0) > abs(c1 - c0):
         
     | 
| 152 | 
         
            +
                    return (a0 * d1 - a1 * d0) / (d1 - d0)
         
     | 
| 153 | 
         
            +
                else:
         
     | 
| 154 | 
         
            +
                    return (b0 * c1 - b1 * c0) / (c1 - c0)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            def ccw(c, a, b):
         
     | 
| 158 | 
         
            +
                a0 = a - c
         
     | 
| 159 | 
         
            +
                b0 = b - c
         
     | 
| 160 | 
         
            +
                return a0[0] * b0[1] - b0[0] * a0[1]
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
            def crop(shape, scale=(0.35, 1.0), ratio=(9 / 16, 16 / 9)):
         
     | 
| 164 | 
         
            +
                for attempt in range(20):
         
     | 
| 165 | 
         
            +
                    area = shape[0] * shape[1]
         
     | 
| 166 | 
         
            +
                    target_area = random.uniform(*scale) * area
         
     | 
| 167 | 
         
            +
                    aspect_ratio = random.uniform(*ratio)
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                    w = int(round(math.sqrt(target_area * aspect_ratio)))
         
     | 
| 170 | 
         
            +
                    h = int(round(math.sqrt(target_area / aspect_ratio)))
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                    if random.random() < 0.5:
         
     | 
| 173 | 
         
            +
                        w, h = h, w
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    if h <= shape[0] and w <= shape[1]:
         
     | 
| 176 | 
         
            +
                        j = random.randint(0, shape[0] - h)
         
     | 
| 177 | 
         
            +
                        i = random.randint(0, shape[1] - w)
         
     | 
| 178 | 
         
            +
                        return i, j, h, w
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                # Fallback
         
     | 
| 181 | 
         
            +
                w = min(shape[0], shape[1])
         
     | 
| 182 | 
         
            +
                i = (shape[1] - w) // 2
         
     | 
| 183 | 
         
            +
                j = (shape[0] - w) // 2
         
     | 
| 184 | 
         
            +
                return i, j, w, w
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,2 @@ 
     | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from .hourglass_pose import hg
         
     | 
| 2 | 
         
            +
            from .vanishing_net import VanishingNet
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/__pycache__/__init__.cpython-38.pyc
    ADDED
    
    | 
         Binary file (249 Bytes). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/__pycache__/conic.cpython-38.pyc
    ADDED
    
    | 
         Binary file (1.73 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/__pycache__/deformable.cpython-38.pyc
    ADDED
    
    | 
         Binary file (4.03 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/__pycache__/hourglass_pose.cpython-38.pyc
    ADDED
    
    | 
         Binary file (5.72 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/__pycache__/vanishing_net.cpython-38.pyc
    ADDED
    
    | 
         Binary file (5.74 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/conic.py
    ADDED
    
    | 
         @@ -0,0 +1,50 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch import nn
         
     | 
| 3 | 
         
            +
            from torch.nn.modules.utils import _pair
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            from neurvps.config import M
         
     | 
| 6 | 
         
            +
            from neurvps.models.deformable import DeformConv
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            class ConicConv(nn.Module):
         
     | 
| 10 | 
         
            +
                def __init__(self, c_in, c_out, kernel_size=3, bias=False):
         
     | 
| 11 | 
         
            +
                    super().__init__()
         
     | 
| 12 | 
         
            +
                    self.deform_conv = DeformConv(
         
     | 
| 13 | 
         
            +
                        c_in,
         
     | 
| 14 | 
         
            +
                        c_out,
         
     | 
| 15 | 
         
            +
                        kernel_size=kernel_size,
         
     | 
| 16 | 
         
            +
                        stride=1,
         
     | 
| 17 | 
         
            +
                        padding=1,
         
     | 
| 18 | 
         
            +
                        im2col_step=M.im2col_step,
         
     | 
| 19 | 
         
            +
                        bias=bias,
         
     | 
| 20 | 
         
            +
                    )
         
     | 
| 21 | 
         
            +
                    self.kernel_size = _pair(kernel_size)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                def forward(self, input, vpts):
         
     | 
| 24 | 
         
            +
                    N, C, H, W = input.shape
         
     | 
| 25 | 
         
            +
                    Kh, Kw = self.kernel_size
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                    with torch.no_grad():
         
     | 
| 28 | 
         
            +
                        ys, xs = torch.meshgrid(
         
     | 
| 29 | 
         
            +
                            torch.arange(0, H).float().to(input.device),
         
     | 
| 30 | 
         
            +
                            torch.arange(0, W).float().to(input.device),
         
     | 
| 31 | 
         
            +
                        )
         
     | 
| 32 | 
         
            +
                        # d: [N, H, W, 2]
         
     | 
| 33 | 
         
            +
                        d = torch.cat(
         
     | 
| 34 | 
         
            +
                            [
         
     | 
| 35 | 
         
            +
                                (vpts[:, 0, None, None] - ys)[..., None],
         
     | 
| 36 | 
         
            +
                                (vpts[:, 1, None, None] - xs)[..., None],
         
     | 
| 37 | 
         
            +
                            ],
         
     | 
| 38 | 
         
            +
                            dim=-1,
         
     | 
| 39 | 
         
            +
                        )
         
     | 
| 40 | 
         
            +
                        d /= torch.norm(d, dim=-1, keepdim=True).clamp(min=1e-5)
         
     | 
| 41 | 
         
            +
                        n = torch.cat([-d[..., 1:2], d[..., 0:1]], dim=-1)
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                        offset = torch.zeros((N, H, W, Kh, Kw, 2)).to(input.device)
         
     | 
| 44 | 
         
            +
                        for i in range(Kh):
         
     | 
| 45 | 
         
            +
                            for j in range(Kw):
         
     | 
| 46 | 
         
            +
                                offset[..., i, j, :] = d * (1 - i) + n * (1 - j)
         
     | 
| 47 | 
         
            +
                                offset[..., i, j, 0] += 1 - i
         
     | 
| 48 | 
         
            +
                                offset[..., i, j, 1] += 1 - j
         
     | 
| 49 | 
         
            +
                        offset = offset.permute(0, 3, 4, 5, 1, 2).reshape((N, -1, H, W))
         
     | 
| 50 | 
         
            +
                    return self.deform_conv(input, offset)
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/.ninja_deps
    ADDED
    
    | 
         Binary file (644 Bytes). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/.ninja_log
    ADDED
    
    | 
         @@ -0,0 +1,7 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # ninja log v5
         
     | 
| 2 | 
         
            +
            0	16103	1705843691094256220	deform_conv_cuda.cuda.o	faf06c0154fdd95
         
     | 
| 3 | 
         
            +
            0	17978	1705843692978288598	deform_conv.o	9bdf84a104d95de9
         
     | 
| 4 | 
         
            +
            17978	18346	1705843693342294852	DCN.so	d5002c9f854b5479
         
     | 
| 5 | 
         
            +
            1	14024	1720225807965090925	deform_conv_cuda.cuda.o	12c1d8fa6984d93
         
     | 
| 6 | 
         
            +
            1	16540	1720225810493145171	deform_conv.o	84f97a3edd60cf1e
         
     | 
| 7 | 
         
            +
            16540	16855	1720225810805151862	DCN.so	d5002c9f854b5479
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/DCN.so
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:1d858d752cacb6eedb4f05258437d2dfdf45a2a4e8fbbba467b8e7f8553b0140
         
     | 
| 3 | 
         
            +
            size 580640
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/build.ninja
    ADDED
    
    | 
         @@ -0,0 +1,30 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ninja_required_version = 1.3
         
     | 
| 2 | 
         
            +
            cxx = c++
         
     | 
| 3 | 
         
            +
            nvcc = /usr/local/cuda/bin/nvcc
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            cflags = -DTORCH_EXTENSION_NAME=DCN -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/envs/neurvps/lib/python3.8/site-packages/torch/include -isystem /opt/conda/envs/neurvps/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/envs/neurvps/lib/python3.8/site-packages/torch/include/TH -isystem /opt/conda/envs/neurvps/lib/python3.8/site-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /opt/conda/envs/neurvps/include/python3.8 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++14 -O3
         
     | 
| 6 | 
         
            +
            post_cflags = 
         
     | 
| 7 | 
         
            +
            cuda_cflags = -DTORCH_EXTENSION_NAME=DCN -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/envs/neurvps/lib/python3.8/site-packages/torch/include -isystem /opt/conda/envs/neurvps/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/envs/neurvps/lib/python3.8/site-packages/torch/include/TH -isystem /opt/conda/envs/neurvps/lib/python3.8/site-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /opt/conda/envs/neurvps/include/python3.8 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_86,code=sm_86 --compiler-options '-fPIC' -std=c++14
         
     | 
| 8 | 
         
            +
            cuda_post_cflags = 
         
     | 
| 9 | 
         
            +
            ldflags = -shared -L/opt/conda/envs/neurvps/lib/python3.8/site-packages/torch/lib -lc10 -lc10_cuda -ltorch_cpu -ltorch_cuda_cu -ltorch_cuda_cpp -ltorch -ltorch_python -L/usr/local/cuda/lib64 -lcudart
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            rule compile
         
     | 
| 12 | 
         
            +
              command = $cxx -MMD -MF $out.d $cflags -c $in -o $out $post_cflags
         
     | 
| 13 | 
         
            +
              depfile = $out.d
         
     | 
| 14 | 
         
            +
              deps = gcc
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            rule cuda_compile
         
     | 
| 17 | 
         
            +
              depfile = $out.d
         
     | 
| 18 | 
         
            +
              deps = gcc
         
     | 
| 19 | 
         
            +
              command = $nvcc  $cuda_cflags -c $in -o $out $cuda_post_cflags
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            rule link
         
     | 
| 22 | 
         
            +
              command = $cxx $in $ldflags -o $out
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            build deform_conv_cuda.cuda.o: cuda_compile /root/dev/junhee/vanishing_point/neurvps/neurvps/models/cpp/deform_conv_cuda.cu
         
     | 
| 25 | 
         
            +
            build deform_conv.o: compile /root/dev/junhee/vanishing_point/neurvps/neurvps/models/cpp/deform_conv.cpp
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            build DCN.so: link deform_conv_cuda.cuda.o deform_conv.o
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            default DCN.so
         
     | 
| 30 | 
         
            +
             
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/deform_conv.o
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:fe3c7f68e8eefb0ce25c505d4e1c74ebdc200d2bf2dbdb335750788635a1e114
         
     | 
| 3 | 
         
            +
            size 234296
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/build/DCN/deform_conv_cuda.cuda.o
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:67b0f98276530eb69dd8ad586e105adb457b4f506c4acbfe8418d192f49dcf7e
         
     | 
| 3 | 
         
            +
            size 603176
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/deform_conv.cpp
    ADDED
    
    | 
         @@ -0,0 +1,75 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #include "deform_conv_cpu.h"
         
     | 
| 2 | 
         
            +
            #include "deform_conv_cuda.h"
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            at::Tensor
         
     | 
| 5 | 
         
            +
            deform_conv_forward(const at::Tensor &input,
         
     | 
| 6 | 
         
            +
                           const at::Tensor &weight,
         
     | 
| 7 | 
         
            +
                           const at::Tensor &bias,
         
     | 
| 8 | 
         
            +
                           const at::Tensor &offset,
         
     | 
| 9 | 
         
            +
                           const int kernel_h,
         
     | 
| 10 | 
         
            +
                           const int kernel_w,
         
     | 
| 11 | 
         
            +
                           const int stride_h,
         
     | 
| 12 | 
         
            +
                           const int stride_w,
         
     | 
| 13 | 
         
            +
                           const int pad_h,
         
     | 
| 14 | 
         
            +
                           const int pad_w,
         
     | 
| 15 | 
         
            +
                           const int dilation_h,
         
     | 
| 16 | 
         
            +
                           const int dilation_w,
         
     | 
| 17 | 
         
            +
                           const int group,
         
     | 
| 18 | 
         
            +
                           const int deformable_group,
         
     | 
| 19 | 
         
            +
                           const int im2col_step)
         
     | 
| 20 | 
         
            +
            {
         
     | 
| 21 | 
         
            +
                if (input.type().is_cuda())
         
     | 
| 22 | 
         
            +
                {
         
     | 
| 23 | 
         
            +
                    return deform_conv_cuda_forward(input, weight, bias, offset,
         
     | 
| 24 | 
         
            +
                                               kernel_h, kernel_w,
         
     | 
| 25 | 
         
            +
                                               stride_h, stride_w,
         
     | 
| 26 | 
         
            +
                                               pad_h, pad_w,
         
     | 
| 27 | 
         
            +
                                               dilation_h, dilation_w,
         
     | 
| 28 | 
         
            +
                                               group,
         
     | 
| 29 | 
         
            +
                                               deformable_group,
         
     | 
| 30 | 
         
            +
                                               im2col_step);
         
     | 
| 31 | 
         
            +
                }
         
     | 
| 32 | 
         
            +
                AT_ERROR("Not implemented on the CPU");
         
     | 
| 33 | 
         
            +
            }
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            std::vector<at::Tensor>
         
     | 
| 36 | 
         
            +
            deform_conv_backward(const at::Tensor &input,
         
     | 
| 37 | 
         
            +
                            const at::Tensor &weight,
         
     | 
| 38 | 
         
            +
                            const at::Tensor &bias,
         
     | 
| 39 | 
         
            +
                            const at::Tensor &offset,
         
     | 
| 40 | 
         
            +
                            const at::Tensor &grad_output,
         
     | 
| 41 | 
         
            +
                            const int kernel_h,
         
     | 
| 42 | 
         
            +
                            const int kernel_w,
         
     | 
| 43 | 
         
            +
                            const int stride_h,
         
     | 
| 44 | 
         
            +
                            const int stride_w,
         
     | 
| 45 | 
         
            +
                            const int pad_h,
         
     | 
| 46 | 
         
            +
                            const int pad_w,
         
     | 
| 47 | 
         
            +
                            const int dilation_h,
         
     | 
| 48 | 
         
            +
                            const int dilation_w,
         
     | 
| 49 | 
         
            +
                            const int group,
         
     | 
| 50 | 
         
            +
                            const int deformable_group,
         
     | 
| 51 | 
         
            +
                            const int im2col_step)
         
     | 
| 52 | 
         
            +
            {
         
     | 
| 53 | 
         
            +
                if (input.type().is_cuda())
         
     | 
| 54 | 
         
            +
                {
         
     | 
| 55 | 
         
            +
                    return deform_conv_cuda_backward(input,
         
     | 
| 56 | 
         
            +
                                                weight,
         
     | 
| 57 | 
         
            +
                                                bias,
         
     | 
| 58 | 
         
            +
                                                offset,
         
     | 
| 59 | 
         
            +
                                                grad_output,
         
     | 
| 60 | 
         
            +
                                                kernel_h, kernel_w,
         
     | 
| 61 | 
         
            +
                                                stride_h, stride_w,
         
     | 
| 62 | 
         
            +
                                                pad_h, pad_w,
         
     | 
| 63 | 
         
            +
                                                dilation_h, dilation_w,
         
     | 
| 64 | 
         
            +
                                                group,
         
     | 
| 65 | 
         
            +
                                                deformable_group,
         
     | 
| 66 | 
         
            +
                                                im2col_step);
         
     | 
| 67 | 
         
            +
                }
         
     | 
| 68 | 
         
            +
                AT_ERROR("Not implemented on the CPU");
         
     | 
| 69 | 
         
            +
            }
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
            PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
         
     | 
| 73 | 
         
            +
                m.def("deform_conv_forward", &deform_conv_forward, "Backward pass of deformable convolution");
         
     | 
| 74 | 
         
            +
                m.def("deform_conv_backward", &deform_conv_backward, "Backward pass of deformable convolution");
         
     | 
| 75 | 
         
            +
            }
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/deform_conv_cpu.h
    ADDED
    
    | 
         @@ -0,0 +1,39 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #pragma once
         
     | 
| 2 | 
         
            +
            #include <torch/extension.h>
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            at::Tensor
         
     | 
| 5 | 
         
            +
            deform_conv_cpu_forward(const at::Tensor &input,
         
     | 
| 6 | 
         
            +
                                const at::Tensor &weight,
         
     | 
| 7 | 
         
            +
                                const at::Tensor &bias,
         
     | 
| 8 | 
         
            +
                                const at::Tensor &offset,
         
     | 
| 9 | 
         
            +
                                const int kernel_h,
         
     | 
| 10 | 
         
            +
                                const int kernel_w,
         
     | 
| 11 | 
         
            +
                                const int stride_h,
         
     | 
| 12 | 
         
            +
                                const int stride_w,
         
     | 
| 13 | 
         
            +
                                const int pad_h,
         
     | 
| 14 | 
         
            +
                                const int pad_w,
         
     | 
| 15 | 
         
            +
                                const int dilation_h,
         
     | 
| 16 | 
         
            +
                                const int dilation_w,
         
     | 
| 17 | 
         
            +
                                const int group,
         
     | 
| 18 | 
         
            +
                                const int deformable_group,
         
     | 
| 19 | 
         
            +
                                const int im2col_step);
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            std::vector<at::Tensor>
         
     | 
| 22 | 
         
            +
            deform_conv_cpu_backward(const at::Tensor &input,
         
     | 
| 23 | 
         
            +
                                 const at::Tensor &weight,
         
     | 
| 24 | 
         
            +
                                 const at::Tensor &bias,
         
     | 
| 25 | 
         
            +
                                 const at::Tensor &offset,
         
     | 
| 26 | 
         
            +
                                 const at::Tensor &grad_output,
         
     | 
| 27 | 
         
            +
                                 const int kernel_h, 
         
     | 
| 28 | 
         
            +
                                 const int kernel_w,
         
     | 
| 29 | 
         
            +
                                 const int stride_h, 
         
     | 
| 30 | 
         
            +
                                 const int stride_w,
         
     | 
| 31 | 
         
            +
                                 const int pad_h, 
         
     | 
| 32 | 
         
            +
                                 const int pad_w,
         
     | 
| 33 | 
         
            +
                                 const int dilation_h, 
         
     | 
| 34 | 
         
            +
                                 const int dilation_w,
         
     | 
| 35 | 
         
            +
                                 const int group,
         
     | 
| 36 | 
         
            +
                                 const int deformable_group,
         
     | 
| 37 | 
         
            +
                                 const int im2col_step);
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
             
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/deform_conv_cuda.cu
    ADDED
    
    | 
         @@ -0,0 +1,271 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #include <vector>
         
     | 
| 2 | 
         
            +
            #include "deform_im2col_cuda.cuh"
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            #include <ATen/ATen.h>
         
     | 
| 5 | 
         
            +
            #include <ATen/cuda/CUDAContext.h>
         
     | 
| 6 | 
         
            +
            #include <cuda.h>
         
     | 
| 7 | 
         
            +
            #include <cuda_runtime.h>
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            // #include <THC/THC.h>
         
     | 
| 10 | 
         
            +
            // #include <THC/THCAtomics.cuh>
         
     | 
| 11 | 
         
            +
            // #include <THC/THCDeviceUtils.cuh>
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            // extern THCState *state;
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            // author: Charles Shang
         
     | 
| 16 | 
         
            +
            // https://github.com/torch/cunn/blob/master/lib/THCUNN/generic/SpatialConvolutionMM.cu
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            at::Tensor
         
     | 
| 20 | 
         
            +
            deform_conv_cuda_forward(const at::Tensor &input,
         
     | 
| 21 | 
         
            +
                                const at::Tensor &weight,
         
     | 
| 22 | 
         
            +
                                const at::Tensor &bias,
         
     | 
| 23 | 
         
            +
                                const at::Tensor &offset,
         
     | 
| 24 | 
         
            +
                                const int kernel_h,
         
     | 
| 25 | 
         
            +
                                const int kernel_w,
         
     | 
| 26 | 
         
            +
                                const int stride_h,
         
     | 
| 27 | 
         
            +
                                const int stride_w,
         
     | 
| 28 | 
         
            +
                                const int pad_h,
         
     | 
| 29 | 
         
            +
                                const int pad_w,
         
     | 
| 30 | 
         
            +
                                const int dilation_h,
         
     | 
| 31 | 
         
            +
                                const int dilation_w,
         
     | 
| 32 | 
         
            +
                                const int group,
         
     | 
| 33 | 
         
            +
                                const int deformable_group,
         
     | 
| 34 | 
         
            +
                                const int im2col_step)
         
     | 
| 35 | 
         
            +
            {
         
     | 
| 36 | 
         
            +
                // THCAssertSameGPU(THCudaTensor_checkGPU(state, 5, input, weight, bias, offset, mask));
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                AT_ASSERTM(input.is_contiguous(), "input tensor has to be contiguous");
         
     | 
| 39 | 
         
            +
                AT_ASSERTM(weight.is_contiguous(), "weight tensor has to be contiguous");
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                AT_ASSERTM(input.type().is_cuda(), "input must be a CUDA tensor");
         
     | 
| 42 | 
         
            +
                AT_ASSERTM(weight.type().is_cuda(), "weight must be a CUDA tensor");
         
     | 
| 43 | 
         
            +
                AT_ASSERTM(bias.type().is_cuda(), "bias must be a CUDA tensor");
         
     | 
| 44 | 
         
            +
                AT_ASSERTM(offset.type().is_cuda(), "offset must be a CUDA tensor");
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                const int batch = input.size(0);
         
     | 
| 47 | 
         
            +
                const int channels = input.size(1);
         
     | 
| 48 | 
         
            +
                const int height = input.size(2);
         
     | 
| 49 | 
         
            +
                const int width = input.size(3);
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                const int channels_out = weight.size(0);
         
     | 
| 52 | 
         
            +
                const int channels_kernel = weight.size(1);
         
     | 
| 53 | 
         
            +
                const int kernel_h_ = weight.size(2);
         
     | 
| 54 | 
         
            +
                const int kernel_w_ = weight.size(3);
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                const int im2col_step_ = std::min(batch, im2col_step);
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                AT_ASSERTM((channels % group == 0) && (channels_out % group == 0), 
         
     | 
| 61 | 
         
            +
                    "channels(%d) and channels_out(%d) must divide group(%d)", channels, channels_out, group);
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                // printf("Kernels: %d %d %d %d\n", kernel_h_, kernel_w_, kernel_w, kernel_h);
         
     | 
| 64 | 
         
            +
                // printf("Channels: %d %d\n", channels, channels_kernel);
         
     | 
| 65 | 
         
            +
                // printf("Channels: %d %d\n", channels_out, channels_kernel);
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                AT_ASSERTM(kernel_h_ == kernel_h && kernel_w_ == kernel_w,
         
     | 
| 68 | 
         
            +
                           "Input shape and kernel shape wont match: (%d x %d vs %d x %d).", kernel_h_, kernel_w, kernel_h_, kernel_w_);
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                AT_ASSERTM(channels == (channels_kernel * group),
         
     | 
| 71 | 
         
            +
                           "Input shape and kernel channels wont match: (%d vs %d).", channels, channels_kernel * group);
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                const int height_out = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
         
     | 
| 74 | 
         
            +
                const int width_out = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                auto output = at::empty({batch * height_out * width_out, channels_out}, input.options());
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                // prepare group weight and bias
         
     | 
| 79 | 
         
            +
                auto weight_g = weight.view({group, channels_out/group, channels_kernel, kernel_h, kernel_w});
         
     | 
| 80 | 
         
            +
                auto bias_g = bias.view({group, channels_out/group});
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                // define alias for easy use
         
     | 
| 83 | 
         
            +
                const int batch_n = im2col_step_;
         
     | 
| 84 | 
         
            +
                const int per_input_size = channels * height * width;
         
     | 
| 85 | 
         
            +
                const int per_offset_size = offset.size(1) * offset.size(2) * offset.size(3);
         
     | 
| 86 | 
         
            +
                auto output_n = output.view({batch/im2col_step_, batch_n * height_out * width_out, channels_out});
         
     | 
| 87 | 
         
            +
                for (int n = 0; n < batch/im2col_step_; ++n)
         
     | 
| 88 | 
         
            +
                {
         
     | 
| 89 | 
         
            +
                    auto columns = at::empty({channels * kernel_h * kernel_w, batch_n * height_out * width_out}, input.options());
         
     | 
| 90 | 
         
            +
                    AT_DISPATCH_FLOATING_TYPES(input.type(), "deform_conv_forward_cuda", ([&] {
         
     | 
| 91 | 
         
            +
                        deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
         
     | 
| 92 | 
         
            +
                                                         input.data<scalar_t>() + n * im2col_step_ * per_input_size,
         
     | 
| 93 | 
         
            +
                                                         offset.data<scalar_t>() + n * im2col_step_ * per_offset_size,
         
     | 
| 94 | 
         
            +
                                                         batch_n, channels, height, width,
         
     | 
| 95 | 
         
            +
                                                         height_out, width_out, kernel_h, kernel_w,
         
     | 
| 96 | 
         
            +
                                                         pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
         
     | 
| 97 | 
         
            +
                                                         deformable_group,
         
     | 
| 98 | 
         
            +
                                                         columns.data<scalar_t>());
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    }));
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    // auto columns_m = columns.t();
         
     | 
| 103 | 
         
            +
                    // auto weight_m = weight.view({channels_out, channels_kernel * kernel_h * kernel_w}).t();
         
     | 
| 104 | 
         
            +
                    // output = at::addmm(bias, columns_m, weight_m);
         
     | 
| 105 | 
         
            +
                    auto columns_g = columns.view({group, channels/group * kernel_h * kernel_w, batch_n * height_out * width_out});
         
     | 
| 106 | 
         
            +
                    auto output_g = output_n.select(0, n).view({batch_n * height_out * width_out, group, channels_out/group});
         
     | 
| 107 | 
         
            +
                    for (int g = 0; g < group; ++g)
         
     | 
| 108 | 
         
            +
                    {
         
     | 
| 109 | 
         
            +
                        auto columns_gm = columns_g.select(0, g).t();
         
     | 
| 110 | 
         
            +
                        auto weight_gm = weight_g.select(0, g).view({channels_out/group, channels_kernel * kernel_h * kernel_w}).t();
         
     | 
| 111 | 
         
            +
                        auto output_m = at::addmm(bias_g.select(0, g), columns_gm, weight_gm);
         
     | 
| 112 | 
         
            +
                        output_g.select(1, g) = output_m.view({batch_n * height_out * width_out, channels_out/group});
         
     | 
| 113 | 
         
            +
                    }
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                }
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                output = output.view({batch, height_out, width_out, channels_out}).permute({0, 3, 1, 2}).contiguous();
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                return output;
         
     | 
| 120 | 
         
            +
            }
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
            std::vector<at::Tensor> deform_conv_cuda_backward(const at::Tensor &input,
         
     | 
| 123 | 
         
            +
                                                         const at::Tensor &weight,
         
     | 
| 124 | 
         
            +
                                                         const at::Tensor &bias,
         
     | 
| 125 | 
         
            +
                                                         const at::Tensor &offset,
         
     | 
| 126 | 
         
            +
                                                         const at::Tensor &grad_output,
         
     | 
| 127 | 
         
            +
                                                         const int kernel_h, 
         
     | 
| 128 | 
         
            +
                                                         const int kernel_w,
         
     | 
| 129 | 
         
            +
                                                         const int stride_h, 
         
     | 
| 130 | 
         
            +
                                                         const int stride_w,
         
     | 
| 131 | 
         
            +
                                                         const int pad_h, 
         
     | 
| 132 | 
         
            +
                                                         const int pad_w,
         
     | 
| 133 | 
         
            +
                                                         const int dilation_h, 
         
     | 
| 134 | 
         
            +
                                                         const int dilation_w,
         
     | 
| 135 | 
         
            +
                                                         const int group,
         
     | 
| 136 | 
         
            +
                                                         const int deformable_group,
         
     | 
| 137 | 
         
            +
                                                         const int im2col_step)
         
     | 
| 138 | 
         
            +
            {
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                AT_ASSERTM(input.is_contiguous(), "input tensor has to be contiguous");
         
     | 
| 141 | 
         
            +
                AT_ASSERTM(weight.is_contiguous(), "weight tensor has to be contiguous");
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                AT_ASSERTM(input.type().is_cuda(), "input must be a CUDA tensor");
         
     | 
| 144 | 
         
            +
                AT_ASSERTM(weight.type().is_cuda(), "weight must be a CUDA tensor");
         
     | 
| 145 | 
         
            +
                AT_ASSERTM(bias.type().is_cuda(), "bias must be a CUDA tensor");
         
     | 
| 146 | 
         
            +
                AT_ASSERTM(offset.type().is_cuda(), "offset must be a CUDA tensor");
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                const int batch = input.size(0);
         
     | 
| 149 | 
         
            +
                const int channels = input.size(1);
         
     | 
| 150 | 
         
            +
                const int height = input.size(2);
         
     | 
| 151 | 
         
            +
                const int width = input.size(3);
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                const int channels_out = weight.size(0);
         
     | 
| 154 | 
         
            +
                const int channels_kernel = weight.size(1);
         
     | 
| 155 | 
         
            +
                const int kernel_h_ = weight.size(2);
         
     | 
| 156 | 
         
            +
                const int kernel_w_ = weight.size(3);
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                const int batch_ = grad_output.size(0);
         
     | 
| 159 | 
         
            +
                const int channels_out_ = grad_output.size(1);
         
     | 
| 160 | 
         
            +
                const int height_out_ = grad_output.size(2);
         
     | 
| 161 | 
         
            +
                const int width_out_ = grad_output.size(3);
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                const int im2col_step_ = std::min(im2col_step, batch);
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                AT_ASSERTM((channels % group == 0) && (channels_out % group == 0), 
         
     | 
| 168 | 
         
            +
                    "channels(%d) and channels_out(%d) must divide group(%d)", channels, channels_out, group);
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                AT_ASSERTM(kernel_h_ == kernel_h && kernel_w_ == kernel_w,
         
     | 
| 171 | 
         
            +
                           "Input shape and kernel shape wont match: (%d x %d vs %d x %d).", kernel_h_, kernel_w, kernel_h_, kernel_w_);
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                AT_ASSERTM(channels == (channels_kernel * group),
         
     | 
| 174 | 
         
            +
                           "Input shape and kernel channels wont match: (%d vs %d).", channels, channels_kernel * group);
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                const int height_out = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
         
     | 
| 177 | 
         
            +
                const int width_out = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                AT_ASSERTM(batch == batch_,
         
     | 
| 180 | 
         
            +
                           "Input shape and grad_out batch wont match: (%d vs %d).", batch, batch_);
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                AT_ASSERTM(channels_out == channels_out_,
         
     | 
| 183 | 
         
            +
                           "Input shape and grad_out channels_out wont match: (%d vs %d).", channels_out, channels_out_);
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                AT_ASSERTM(height_out == height_out_ && width_out == width_out_,
         
     | 
| 186 | 
         
            +
                           "Input shape and grad_out shape wont match: (%d x %d vs %d x %d).", height_out, height_out_, width_out, width_out_);
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                auto grad_input = at::zeros_like(input);
         
     | 
| 189 | 
         
            +
                auto grad_offset = at::zeros_like(offset);
         
     | 
| 190 | 
         
            +
                auto grad_weight = at::zeros_like(weight);
         
     | 
| 191 | 
         
            +
                auto grad_bias = at::zeros_like(bias);
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                // auto grad_output_m = grad_output.permute({1, 0, 2, 3}).contiguous().view({channels_out, batch * height_out * width_out});
         
     | 
| 194 | 
         
            +
                // auto weight_m = weight.view({channels_out, channels_kernel * kernel_h * kernel_w}).t();
         
     | 
| 195 | 
         
            +
                // columns = at::mm(weight_m, grad_output_m);
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                // prepare group weight and bias
         
     | 
| 198 | 
         
            +
                auto weight_g = weight.view({group, channels_out/group, channels_kernel, kernel_h, kernel_w});
         
     | 
| 199 | 
         
            +
                auto grad_weight_g = grad_weight.view({group, channels_out/group, channels_kernel, kernel_h, kernel_w});
         
     | 
| 200 | 
         
            +
                auto grad_bias_g = grad_bias.view({group, channels_out/group});
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                const int batch_n = im2col_step_;
         
     | 
| 203 | 
         
            +
                const int per_input_size = channels * height * width;
         
     | 
| 204 | 
         
            +
                const int per_offset_size = offset.size(1) * offset.size(2) * offset.size(3);
         
     | 
| 205 | 
         
            +
                auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, channels_out, height_out, width_out});
         
     | 
| 206 | 
         
            +
                for (int n = 0; n < batch/im2col_step_; ++n)
         
     | 
| 207 | 
         
            +
                {
         
     | 
| 208 | 
         
            +
                    auto grad_output_g = grad_output_n.select(0, n).view({batch_n, group, channels_out/group, height_out, width_out});
         
     | 
| 209 | 
         
            +
                    auto ones = at::ones({batch_n * height_out * width_out}, input.options());
         
     | 
| 210 | 
         
            +
                    auto columns = at::empty({channels * kernel_h * kernel_w, batch_n * 1 * height_out * width_out}, input.options());
         
     | 
| 211 | 
         
            +
                    auto columns_g = columns.view({group, channels/group * kernel_h * kernel_w, batch_n * height_out * width_out});
         
     | 
| 212 | 
         
            +
                    for (int g = 0; g < group; ++g)
         
     | 
| 213 | 
         
            +
                    {
         
     | 
| 214 | 
         
            +
                        auto grad_output_gm = grad_output_g.select(1, g).permute({1, 0, 2, 3}).contiguous().view({channels_out/group, batch_n * height_out * width_out});
         
     | 
| 215 | 
         
            +
                        auto weight_gm = weight_g.select(0, g).view({channels_out/group, channels_kernel * kernel_h * kernel_w}).t();
         
     | 
| 216 | 
         
            +
                        columns_g.select(0, g) = at::mm(weight_gm, grad_output_gm);
         
     | 
| 217 | 
         
            +
                    }
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                    AT_DISPATCH_FLOATING_TYPES(input.type(), "deform_conv_backward_cuda", ([&] {
         
     | 
| 220 | 
         
            +
                        deformable_col2im_coord_cuda(at::cuda::getCurrentCUDAStream(),
         
     | 
| 221 | 
         
            +
                                                               columns.data<scalar_t>(),
         
     | 
| 222 | 
         
            +
                                                               input.data<scalar_t>() + n * im2col_step_ * per_input_size,
         
     | 
| 223 | 
         
            +
                                                               offset.data<scalar_t>() + n * im2col_step_ * per_offset_size,
         
     | 
| 224 | 
         
            +
                                                               batch_n, channels, height, width,
         
     | 
| 225 | 
         
            +
                                                               height_out, width_out, kernel_h, kernel_w,
         
     | 
| 226 | 
         
            +
                                                               pad_h, pad_w, stride_h, stride_w,
         
     | 
| 227 | 
         
            +
                                                               dilation_h, dilation_w, deformable_group,
         
     | 
| 228 | 
         
            +
                                                               grad_offset.data<scalar_t>() + n * im2col_step_ * per_offset_size);
         
     | 
| 229 | 
         
            +
                        // gradient w.r.t. input data
         
     | 
| 230 | 
         
            +
                        deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
         
     | 
| 231 | 
         
            +
                                                         columns.data<scalar_t>(),
         
     | 
| 232 | 
         
            +
                                                         offset.data<scalar_t>() + n * im2col_step_ * per_offset_size,
         
     | 
| 233 | 
         
            +
                                                         batch_n, channels, height, width,
         
     | 
| 234 | 
         
            +
                                                         height_out, width_out, kernel_h, kernel_w,
         
     | 
| 235 | 
         
            +
                                                         pad_h, pad_w, stride_h, stride_w,
         
     | 
| 236 | 
         
            +
                                                         dilation_h, dilation_w, deformable_group,
         
     | 
| 237 | 
         
            +
                                                         grad_input.data<scalar_t>() + n * im2col_step_ * per_input_size);
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                        // gradient w.r.t. weight, dWeight should accumulate across the batch and group
         
     | 
| 240 | 
         
            +
                        deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
         
     | 
| 241 | 
         
            +
                                                         input.data<scalar_t>() + n * im2col_step_ * per_input_size,
         
     | 
| 242 | 
         
            +
                                                         offset.data<scalar_t>() + n * im2col_step_ * per_offset_size,
         
     | 
| 243 | 
         
            +
                                                         batch_n, channels, height, width,
         
     | 
| 244 | 
         
            +
                                                         height_out, width_out, kernel_h, kernel_w,
         
     | 
| 245 | 
         
            +
                                                         pad_h, pad_w, stride_h, stride_w,
         
     | 
| 246 | 
         
            +
                                                         dilation_h, dilation_w, deformable_group,
         
     | 
| 247 | 
         
            +
                                                         columns.data<scalar_t>());
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    }));
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                    // auto grad_output_m = grad_output.permute({1, 0, 2, 3}).contiguous().view({channels_out, batch * height_out * width_out});
         
     | 
| 252 | 
         
            +
                    // grad_weight = at::mm(grad_output_m, columns.t()).view_as(weight);
         
     | 
| 253 | 
         
            +
                    // grad_bias = at::mv(grad_output_m, ones);
         
     | 
| 254 | 
         
            +
                    // auto grad_output_g = grad_output.view({batch, group, channels_out/group, height_out, width_out});
         
     | 
| 255 | 
         
            +
                    // auto columns_g = columns.view({group, channels/group * kernel_h * kernel_w, batch * height_out * width_out});
         
     | 
| 256 | 
         
            +
                    for (int g = 0; g < group; ++g)
         
     | 
| 257 | 
         
            +
                    {
         
     | 
| 258 | 
         
            +
                        auto grad_output_gm = grad_output_g.select(1, g).permute({1, 0, 2, 3}).contiguous().view({channels_out/group, batch_n * height_out * width_out});
         
     | 
| 259 | 
         
            +
                        auto columns_gm = columns_g.select(0, g).t();
         
     | 
| 260 | 
         
            +
                        auto grad_weight_gm = grad_weight_g.select(0, g).view({channels_out/group, channels_kernel * kernel_h * kernel_w});
         
     | 
| 261 | 
         
            +
                        auto grad_bias_gm = grad_bias_g.select(0, g);
         
     | 
| 262 | 
         
            +
                        grad_weight_g.select(0, g) = at::addmm(grad_weight_gm, grad_output_gm, columns_gm).view_as(grad_weight_g.select(0, g));
         
     | 
| 263 | 
         
            +
                        grad_bias_g.select(0, g) = at::addmv(grad_bias_gm, grad_output_gm, ones);
         
     | 
| 264 | 
         
            +
                    }
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
                }
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
                return {
         
     | 
| 269 | 
         
            +
                    grad_input, grad_offset, grad_weight, grad_bias
         
     | 
| 270 | 
         
            +
                };
         
     | 
| 271 | 
         
            +
            }
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/deform_conv_cuda.h
    ADDED
    
    | 
         @@ -0,0 +1,38 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #pragma once
         
     | 
| 2 | 
         
            +
            #include <torch/extension.h>
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            at::Tensor
         
     | 
| 5 | 
         
            +
            deform_conv_cuda_forward(const at::Tensor &input,
         
     | 
| 6 | 
         
            +
                                const at::Tensor &weight,
         
     | 
| 7 | 
         
            +
                                const at::Tensor &bias,
         
     | 
| 8 | 
         
            +
                                const at::Tensor &offset,
         
     | 
| 9 | 
         
            +
                                const int kernel_h,
         
     | 
| 10 | 
         
            +
                                const int kernel_w,
         
     | 
| 11 | 
         
            +
                                const int stride_h,
         
     | 
| 12 | 
         
            +
                                const int stride_w,
         
     | 
| 13 | 
         
            +
                                const int pad_h,
         
     | 
| 14 | 
         
            +
                                const int pad_w,
         
     | 
| 15 | 
         
            +
                                const int dilation_h,
         
     | 
| 16 | 
         
            +
                                const int dilation_w,
         
     | 
| 17 | 
         
            +
                                const int group,
         
     | 
| 18 | 
         
            +
                                const int deformable_group, 
         
     | 
| 19 | 
         
            +
                                const int im2col_step);
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            std::vector<at::Tensor>
         
     | 
| 22 | 
         
            +
            deform_conv_cuda_backward(const at::Tensor &input,
         
     | 
| 23 | 
         
            +
                                 const at::Tensor &weight,
         
     | 
| 24 | 
         
            +
                                 const at::Tensor &bias,
         
     | 
| 25 | 
         
            +
                                 const at::Tensor &offset,
         
     | 
| 26 | 
         
            +
                                 const at::Tensor &grad_output,
         
     | 
| 27 | 
         
            +
                                 const int kernel_h, 
         
     | 
| 28 | 
         
            +
                                 const int kernel_w,
         
     | 
| 29 | 
         
            +
                                 const int stride_h, 
         
     | 
| 30 | 
         
            +
                                 const int stride_w,
         
     | 
| 31 | 
         
            +
                                 const int pad_h, 
         
     | 
| 32 | 
         
            +
                                 const int pad_w,
         
     | 
| 33 | 
         
            +
                                 const int dilation_h, 
         
     | 
| 34 | 
         
            +
                                 const int dilation_w,
         
     | 
| 35 | 
         
            +
                                 const int group,
         
     | 
| 36 | 
         
            +
                                 const int deformable_group, 
         
     | 
| 37 | 
         
            +
                                 const int im2col_step);
         
     | 
| 38 | 
         
            +
             
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/cpp/deform_im2col_cuda.cuh
    ADDED
    
    | 
         @@ -0,0 +1,388 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #include <cstdio>
         
     | 
| 2 | 
         
            +
            #include <algorithm>
         
     | 
| 3 | 
         
            +
            #include <cstring>
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            #include <ATen/ATen.h>
         
     | 
| 6 | 
         
            +
            #include <ATen/cuda/CUDAContext.h>
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            // #include <THC/THC.h>
         
     | 
| 9 | 
         
            +
            #include <THC/THCAtomics.cuh>
         
     | 
| 10 | 
         
            +
            // #include <THC/THCDeviceUtils.cuh>
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            #define CUDA_KERNEL_LOOP(i, n)                          \
         
     | 
| 13 | 
         
            +
              for (int i = blockIdx.x * blockDim.x + threadIdx.x;   \
         
     | 
| 14 | 
         
            +
                  i < (n);                                          \
         
     | 
| 15 | 
         
            +
                  i += blockDim.x * gridDim.x)
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            const int CUDA_NUM_THREADS = 1024;
         
     | 
| 18 | 
         
            +
            inline int GET_BLOCKS(const int N)
         
     | 
| 19 | 
         
            +
            {
         
     | 
| 20 | 
         
            +
              return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
         
     | 
| 21 | 
         
            +
            }
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            template <typename scalar_t>
         
     | 
| 24 | 
         
            +
            __device__ scalar_t dmcn_im2col_bilinear(const scalar_t *bottom_data, const int data_width,
         
     | 
| 25 | 
         
            +
                                                  const int height, const int width, scalar_t h, scalar_t w)
         
     | 
| 26 | 
         
            +
            {
         
     | 
| 27 | 
         
            +
              int h_low = floor(h);
         
     | 
| 28 | 
         
            +
              int w_low = floor(w);
         
     | 
| 29 | 
         
            +
              int h_high = h_low + 1;
         
     | 
| 30 | 
         
            +
              int w_high = w_low + 1;
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
              scalar_t lh = h - h_low;
         
     | 
| 33 | 
         
            +
              scalar_t lw = w - w_low;
         
     | 
| 34 | 
         
            +
              scalar_t hh = 1 - lh, hw = 1 - lw;
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
              scalar_t v1 = 0;
         
     | 
| 37 | 
         
            +
              if (h_low >= 0 && w_low >= 0)
         
     | 
| 38 | 
         
            +
                v1 = bottom_data[h_low * data_width + w_low];
         
     | 
| 39 | 
         
            +
              scalar_t v2 = 0;
         
     | 
| 40 | 
         
            +
              if (h_low >= 0 && w_high <= width - 1)
         
     | 
| 41 | 
         
            +
                v2 = bottom_data[h_low * data_width + w_high];
         
     | 
| 42 | 
         
            +
              scalar_t v3 = 0;
         
     | 
| 43 | 
         
            +
              if (h_high <= height - 1 && w_low >= 0)
         
     | 
| 44 | 
         
            +
                v3 = bottom_data[h_high * data_width + w_low];
         
     | 
| 45 | 
         
            +
              scalar_t v4 = 0;
         
     | 
| 46 | 
         
            +
              if (h_high <= height - 1 && w_high <= width - 1)
         
     | 
| 47 | 
         
            +
                v4 = bottom_data[h_high * data_width + w_high];
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
              scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
              scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
         
     | 
| 52 | 
         
            +
              return val;
         
     | 
| 53 | 
         
            +
            }
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            template <typename scalar_t>
         
     | 
| 56 | 
         
            +
            __device__ scalar_t dmcn_get_gradient_weight(scalar_t argmax_h, scalar_t argmax_w,
         
     | 
| 57 | 
         
            +
                                                      const int h, const int w, const int height, const int width)
         
     | 
| 58 | 
         
            +
            {
         
     | 
| 59 | 
         
            +
              if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
         
     | 
| 60 | 
         
            +
              {
         
     | 
| 61 | 
         
            +
                //empty
         
     | 
| 62 | 
         
            +
                return 0;
         
     | 
| 63 | 
         
            +
              }
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
              int argmax_h_low = floor(argmax_h);
         
     | 
| 66 | 
         
            +
              int argmax_w_low = floor(argmax_w);
         
     | 
| 67 | 
         
            +
              int argmax_h_high = argmax_h_low + 1;
         
     | 
| 68 | 
         
            +
              int argmax_w_high = argmax_w_low + 1;
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
              scalar_t weight = 0;
         
     | 
| 71 | 
         
            +
              if (h == argmax_h_low && w == argmax_w_low)
         
     | 
| 72 | 
         
            +
                weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
         
     | 
| 73 | 
         
            +
              if (h == argmax_h_low && w == argmax_w_high)
         
     | 
| 74 | 
         
            +
                weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
         
     | 
| 75 | 
         
            +
              if (h == argmax_h_high && w == argmax_w_low)
         
     | 
| 76 | 
         
            +
                weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
         
     | 
| 77 | 
         
            +
              if (h == argmax_h_high && w == argmax_w_high)
         
     | 
| 78 | 
         
            +
                weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
         
     | 
| 79 | 
         
            +
              return weight;
         
     | 
| 80 | 
         
            +
            }
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            template <typename scalar_t>
         
     | 
| 83 | 
         
            +
            __device__ scalar_t dmcn_get_coordinate_weight(scalar_t argmax_h, scalar_t argmax_w,
         
     | 
| 84 | 
         
            +
                                                        const int height, const int width, const scalar_t *im_data,
         
     | 
| 85 | 
         
            +
                                                        const int data_width, const int bp_dir)
         
     | 
| 86 | 
         
            +
            {
         
     | 
| 87 | 
         
            +
              if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
         
     | 
| 88 | 
         
            +
              {
         
     | 
| 89 | 
         
            +
                //empty
         
     | 
| 90 | 
         
            +
                return 0;
         
     | 
| 91 | 
         
            +
              }
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
              int argmax_h_low = floor(argmax_h);
         
     | 
| 94 | 
         
            +
              int argmax_w_low = floor(argmax_w);
         
     | 
| 95 | 
         
            +
              int argmax_h_high = argmax_h_low + 1;
         
     | 
| 96 | 
         
            +
              int argmax_w_high = argmax_w_low + 1;
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
              scalar_t weight = 0;
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
              if (bp_dir == 0)
         
     | 
| 101 | 
         
            +
              {
         
     | 
| 102 | 
         
            +
                if (argmax_h_low >= 0 && argmax_w_low >= 0)
         
     | 
| 103 | 
         
            +
                  weight += -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low];
         
     | 
| 104 | 
         
            +
                if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
         
     | 
| 105 | 
         
            +
                  weight += -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high];
         
     | 
| 106 | 
         
            +
                if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
         
     | 
| 107 | 
         
            +
                  weight += (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low];
         
     | 
| 108 | 
         
            +
                if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
         
     | 
| 109 | 
         
            +
                  weight += (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high];
         
     | 
| 110 | 
         
            +
              }
         
     | 
| 111 | 
         
            +
              else if (bp_dir == 1)
         
     | 
| 112 | 
         
            +
              {
         
     | 
| 113 | 
         
            +
                if (argmax_h_low >= 0 && argmax_w_low >= 0)
         
     | 
| 114 | 
         
            +
                  weight += -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low];
         
     | 
| 115 | 
         
            +
                if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
         
     | 
| 116 | 
         
            +
                  weight += (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high];
         
     | 
| 117 | 
         
            +
                if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
         
     | 
| 118 | 
         
            +
                  weight += -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low];
         
     | 
| 119 | 
         
            +
                if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
         
     | 
| 120 | 
         
            +
                  weight += (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high];
         
     | 
| 121 | 
         
            +
              }
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
              return weight;
         
     | 
| 124 | 
         
            +
            }
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            template <typename scalar_t>
         
     | 
| 127 | 
         
            +
            __global__ void deformable_im2col_gpu_kernel(const int n,
         
     | 
| 128 | 
         
            +
                                                                   const scalar_t *data_im, const scalar_t *data_offset,
         
     | 
| 129 | 
         
            +
                                                                   const int height, const int width, const int kernel_h, const int kernel_w,
         
     | 
| 130 | 
         
            +
                                                                   const int pad_h, const int pad_w,
         
     | 
| 131 | 
         
            +
                                                                   const int stride_h, const int stride_w,
         
     | 
| 132 | 
         
            +
                                                                   const int dilation_h, const int dilation_w,
         
     | 
| 133 | 
         
            +
                                                                   const int channel_per_deformable_group,
         
     | 
| 134 | 
         
            +
                                                                   const int batch_size, const int num_channels, const int deformable_group,
         
     | 
| 135 | 
         
            +
                                                                   const int height_col, const int width_col,
         
     | 
| 136 | 
         
            +
                                                                   scalar_t *data_col)
         
     | 
| 137 | 
         
            +
            {
         
     | 
| 138 | 
         
            +
              // launch channels * batch_size * height_col * width_col cores
         
     | 
| 139 | 
         
            +
              CUDA_KERNEL_LOOP(index, n)
         
     | 
| 140 | 
         
            +
              {
         
     | 
| 141 | 
         
            +
                // NOTE(CharlesShang): different from Dai Jifeng's MXNet implementation, col_buffer is of shape (c*kw*kh, N, oh, ow)
         
     | 
| 142 | 
         
            +
                // here columns is of shape (N, c*kw*kh, oh * ow), need to adapt axis
         
     | 
| 143 | 
         
            +
                // NOTE(Jiarui XU): different from CharlesShang's implementation, col_buffer is of shape (N, c*kw*kh, oh * ow)
         
     | 
| 144 | 
         
            +
                // here columns is of shape (c*kw*kh, N, oh, ow), need to adapt axis
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                // index index of output matrix
         
     | 
| 147 | 
         
            +
                const int w_col = index % width_col;
         
     | 
| 148 | 
         
            +
                const int h_col = (index / width_col) % height_col;
         
     | 
| 149 | 
         
            +
                const int b_col = (index / width_col / height_col) % batch_size;
         
     | 
| 150 | 
         
            +
                const int c_im = (index / width_col / height_col) / batch_size;
         
     | 
| 151 | 
         
            +
                const int c_col = c_im * kernel_h * kernel_w;
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                // compute deformable group index
         
     | 
| 154 | 
         
            +
                const int deformable_group_index = c_im / channel_per_deformable_group;
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                const int h_in = h_col * stride_h - pad_h;
         
     | 
| 157 | 
         
            +
                const int w_in = w_col * stride_w - pad_w;
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                 scalar_t *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
         
     | 
| 160 | 
         
            +
                // const scalar_t* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in;
         
     | 
| 161 | 
         
            +
                const scalar_t *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width;
         
     | 
| 162 | 
         
            +
                const scalar_t *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                for (int i = 0; i < kernel_h; ++i)
         
     | 
| 165 | 
         
            +
                {
         
     | 
| 166 | 
         
            +
                  for (int j = 0; j < kernel_w; ++j)
         
     | 
| 167 | 
         
            +
                  {
         
     | 
| 168 | 
         
            +
                    const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
         
     | 
| 169 | 
         
            +
                    const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col;
         
     | 
| 170 | 
         
            +
                    const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
         
     | 
| 171 | 
         
            +
                    const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
         
     | 
| 172 | 
         
            +
                    scalar_t val = static_cast<scalar_t>(0);
         
     | 
| 173 | 
         
            +
                    const scalar_t h_im = h_in + i * dilation_h + offset_h;
         
     | 
| 174 | 
         
            +
                    const scalar_t w_im = w_in + j * dilation_w + offset_w;
         
     | 
| 175 | 
         
            +
                    if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
         
     | 
| 176 | 
         
            +
                    {
         
     | 
| 177 | 
         
            +
                      //const scalar_t map_h = i * dilation_h + offset_h;
         
     | 
| 178 | 
         
            +
                      //const scalar_t map_w = j * dilation_w + offset_w;
         
     | 
| 179 | 
         
            +
                      //const int cur_height = height - h_in;
         
     | 
| 180 | 
         
            +
                      //const int cur_width = width - w_in;
         
     | 
| 181 | 
         
            +
                      //val = dmcn_im2col_bilinear(data_im_ptr, width, cur_height, cur_width, map_h, map_w);
         
     | 
| 182 | 
         
            +
                      val = dmcn_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im);
         
     | 
| 183 | 
         
            +
                    }
         
     | 
| 184 | 
         
            +
                    *data_col_ptr = val;
         
     | 
| 185 | 
         
            +
                    data_col_ptr += batch_size * height_col * width_col;
         
     | 
| 186 | 
         
            +
                  }
         
     | 
| 187 | 
         
            +
                }
         
     | 
| 188 | 
         
            +
              }
         
     | 
| 189 | 
         
            +
            }
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
            template <typename scalar_t>
         
     | 
| 192 | 
         
            +
            __global__ void deformable_col2im_gpu_kernel(const int n,
         
     | 
| 193 | 
         
            +
                                                                   const scalar_t *data_col, const scalar_t *data_offset,
         
     | 
| 194 | 
         
            +
                                                                   const int channels, const int height, const int width,
         
     | 
| 195 | 
         
            +
                                                                   const int kernel_h, const int kernel_w,
         
     | 
| 196 | 
         
            +
                                                                   const int pad_h, const int pad_w,
         
     | 
| 197 | 
         
            +
                                                                   const int stride_h, const int stride_w,
         
     | 
| 198 | 
         
            +
                                                                   const int dilation_h, const int dilation_w,
         
     | 
| 199 | 
         
            +
                                                                   const int channel_per_deformable_group,
         
     | 
| 200 | 
         
            +
                                                                   const int batch_size, const int deformable_group,
         
     | 
| 201 | 
         
            +
                                                                   const int height_col, const int width_col,
         
     | 
| 202 | 
         
            +
                                                                   scalar_t *grad_im)
         
     | 
| 203 | 
         
            +
            {
         
     | 
| 204 | 
         
            +
              CUDA_KERNEL_LOOP(index, n)
         
     | 
| 205 | 
         
            +
              {
         
     | 
| 206 | 
         
            +
                const int j = (index / width_col / height_col / batch_size) % kernel_w;
         
     | 
| 207 | 
         
            +
                const int i = (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
         
     | 
| 208 | 
         
            +
                const int c = index / width_col / height_col / batch_size / kernel_w / kernel_h;
         
     | 
| 209 | 
         
            +
                // compute the start and end of the output
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                const int deformable_group_index = c / channel_per_deformable_group;
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                int w_out = index % width_col;
         
     | 
| 214 | 
         
            +
                int h_out = (index / width_col) % height_col;
         
     | 
| 215 | 
         
            +
                int b = (index / width_col / height_col) % batch_size;
         
     | 
| 216 | 
         
            +
                int w_in = w_out * stride_w - pad_w;
         
     | 
| 217 | 
         
            +
                int h_in = h_out * stride_h - pad_h;
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
         
     | 
| 220 | 
         
            +
                const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
         
     | 
| 221 | 
         
            +
                const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
         
     | 
| 222 | 
         
            +
                const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
         
     | 
| 223 | 
         
            +
                const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
         
     | 
| 224 | 
         
            +
                const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h;
         
     | 
| 225 | 
         
            +
                const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w;
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                const scalar_t cur_top_grad = data_col[index];
         
     | 
| 228 | 
         
            +
                const int cur_h = (int)cur_inv_h_data;
         
     | 
| 229 | 
         
            +
                const int cur_w = (int)cur_inv_w_data;
         
     | 
| 230 | 
         
            +
                for (int dy = -2; dy <= 2; dy++)
         
     | 
| 231 | 
         
            +
                {
         
     | 
| 232 | 
         
            +
                  for (int dx = -2; dx <= 2; dx++)
         
     | 
| 233 | 
         
            +
                  {
         
     | 
| 234 | 
         
            +
                    if (cur_h + dy >= 0 && cur_h + dy < height &&
         
     | 
| 235 | 
         
            +
                        cur_w + dx >= 0 && cur_w + dx < width &&
         
     | 
| 236 | 
         
            +
                        abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
         
     | 
| 237 | 
         
            +
                        abs(cur_inv_w_data - (cur_w + dx)) < 1)
         
     | 
| 238 | 
         
            +
                    {
         
     | 
| 239 | 
         
            +
                      int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
         
     | 
| 240 | 
         
            +
                      scalar_t weight = dmcn_get_gradient_weight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width);
         
     | 
| 241 | 
         
            +
                      atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
         
     | 
| 242 | 
         
            +
                    }
         
     | 
| 243 | 
         
            +
                  }
         
     | 
| 244 | 
         
            +
                }
         
     | 
| 245 | 
         
            +
              }
         
     | 
| 246 | 
         
            +
            }
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
            template <typename scalar_t>
         
     | 
| 249 | 
         
            +
            __global__ void deformable_col2im_coord_gpu_kernel(const int n,
         
     | 
| 250 | 
         
            +
                                                                         const scalar_t *data_col, const scalar_t *data_im,
         
     | 
| 251 | 
         
            +
                                                                         const scalar_t *data_offset,
         
     | 
| 252 | 
         
            +
                                                                         const int channels, const int height, const int width,
         
     | 
| 253 | 
         
            +
                                                                         const int kernel_h, const int kernel_w,
         
     | 
| 254 | 
         
            +
                                                                         const int pad_h, const int pad_w,
         
     | 
| 255 | 
         
            +
                                                                         const int stride_h, const int stride_w,
         
     | 
| 256 | 
         
            +
                                                                         const int dilation_h, const int dilation_w,
         
     | 
| 257 | 
         
            +
                                                                         const int channel_per_deformable_group,
         
     | 
| 258 | 
         
            +
                                                                         const int batch_size, const int offset_channels, const int deformable_group,
         
     | 
| 259 | 
         
            +
                                                                         const int height_col, const int width_col,
         
     | 
| 260 | 
         
            +
                                                                         scalar_t *grad_offset)
         
     | 
| 261 | 
         
            +
            {
         
     | 
| 262 | 
         
            +
              CUDA_KERNEL_LOOP(index, n)
         
     | 
| 263 | 
         
            +
              {
         
     | 
| 264 | 
         
            +
                scalar_t val = 0;
         
     | 
| 265 | 
         
            +
                int w = index % width_col;
         
     | 
| 266 | 
         
            +
                int h = (index / width_col) % height_col;
         
     | 
| 267 | 
         
            +
                int c = (index / width_col / height_col) % offset_channels;
         
     | 
| 268 | 
         
            +
                int b = (index / width_col / height_col) / offset_channels;
         
     | 
| 269 | 
         
            +
                // compute the start and end of the output
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                const int deformable_group_index = c / (2 * kernel_h * kernel_w);
         
     | 
| 272 | 
         
            +
                const int col_step = kernel_h * kernel_w;
         
     | 
| 273 | 
         
            +
                int cnt = 0;
         
     | 
| 274 | 
         
            +
                const scalar_t *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group * batch_size * width_col * height_col;
         
     | 
| 275 | 
         
            +
                const scalar_t *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) * channel_per_deformable_group / kernel_h / kernel_w * height * width;
         
     | 
| 276 | 
         
            +
                const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step)
         
     | 
| 281 | 
         
            +
                {
         
     | 
| 282 | 
         
            +
                  const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w;
         
     | 
| 283 | 
         
            +
                  const int bp_dir = offset_c % 2;
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                  int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
         
     | 
| 286 | 
         
            +
                  int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
         
     | 
| 287 | 
         
            +
                  int w_out = col_pos % width_col;
         
     | 
| 288 | 
         
            +
                  int h_out = (col_pos / width_col) % height_col;
         
     | 
| 289 | 
         
            +
                  int w_in = w_out * stride_w - pad_w;
         
     | 
| 290 | 
         
            +
                  int h_in = h_out * stride_h - pad_h;
         
     | 
| 291 | 
         
            +
                  const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
         
     | 
| 292 | 
         
            +
                  const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out);
         
     | 
| 293 | 
         
            +
                  const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
         
     | 
| 294 | 
         
            +
                  const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
         
     | 
| 295 | 
         
            +
                  scalar_t inv_h = h_in + i * dilation_h + offset_h;
         
     | 
| 296 | 
         
            +
                  scalar_t inv_w = w_in + j * dilation_w + offset_w;
         
     | 
| 297 | 
         
            +
                  if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
         
     | 
| 298 | 
         
            +
                  {
         
     | 
| 299 | 
         
            +
                    inv_h = inv_w = -2;
         
     | 
| 300 | 
         
            +
                  }
         
     | 
| 301 | 
         
            +
                  const scalar_t weight = dmcn_get_coordinate_weight(
         
     | 
| 302 | 
         
            +
                      inv_h, inv_w,
         
     | 
| 303 | 
         
            +
                      height, width, data_im_ptr + cnt * height * width, width, bp_dir);
         
     | 
| 304 | 
         
            +
                  val += weight * data_col_ptr[col_pos];
         
     | 
| 305 | 
         
            +
                  cnt += 1;
         
     | 
| 306 | 
         
            +
                }
         
     | 
| 307 | 
         
            +
                // KERNEL_ASSIGN(grad_offset[index], offset_req, val);
         
     | 
| 308 | 
         
            +
                grad_offset[index] = val;
         
     | 
| 309 | 
         
            +
              }
         
     | 
| 310 | 
         
            +
            }
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
            template <typename scalar_t>
         
     | 
| 313 | 
         
            +
            void deformable_im2col_cuda(cudaStream_t stream,
         
     | 
| 314 | 
         
            +
              const scalar_t* data_im, const scalar_t* data_offset,
         
     | 
| 315 | 
         
            +
              const int batch_size, const int channels, const int height_im, const int width_im, 
         
     | 
| 316 | 
         
            +
              const int height_col, const int width_col, const int kernel_h, const int kernel_w,
         
     | 
| 317 | 
         
            +
              const int pad_h, const int pad_w, const int stride_h, const int stride_w, 
         
     | 
| 318 | 
         
            +
              const int dilation_h, const int dilation_w,
         
     | 
| 319 | 
         
            +
              const int deformable_group, scalar_t* data_col) {
         
     | 
| 320 | 
         
            +
              // num_axes should be smaller than block size
         
     | 
| 321 | 
         
            +
              const int channel_per_deformable_group = channels / deformable_group;
         
     | 
| 322 | 
         
            +
              const int num_kernels = channels * batch_size * height_col * width_col;
         
     | 
| 323 | 
         
            +
              deformable_im2col_gpu_kernel<scalar_t>
         
     | 
| 324 | 
         
            +
                  <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS,
         
     | 
| 325 | 
         
            +
                      0, stream>>>(
         
     | 
| 326 | 
         
            +
                  num_kernels, data_im, data_offset, height_im, width_im, kernel_h, kernel_w,
         
     | 
| 327 | 
         
            +
                  pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, channel_per_deformable_group,
         
     | 
| 328 | 
         
            +
                  batch_size, channels, deformable_group, height_col, width_col, data_col);
         
     | 
| 329 | 
         
            +
              
         
     | 
| 330 | 
         
            +
              cudaError_t err = cudaGetLastError();
         
     | 
| 331 | 
         
            +
              if (err != cudaSuccess)
         
     | 
| 332 | 
         
            +
              {
         
     | 
| 333 | 
         
            +
                printf("error in deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
         
     | 
| 334 | 
         
            +
              }
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
            }
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
            template <typename scalar_t>
         
     | 
| 339 | 
         
            +
            void deformable_col2im_cuda(cudaStream_t stream,
         
     | 
| 340 | 
         
            +
              const scalar_t* data_col, const scalar_t* data_offset,
         
     | 
| 341 | 
         
            +
              const int batch_size, const int channels, const int height_im, const int width_im, 
         
     | 
| 342 | 
         
            +
              const int height_col, const int width_col, const int kernel_h, const int kernel_w,
         
     | 
| 343 | 
         
            +
              const int pad_h, const int pad_w, const int stride_h, const int stride_w, 
         
     | 
| 344 | 
         
            +
              const int dilation_h, const int dilation_w, 
         
     | 
| 345 | 
         
            +
              const int deformable_group, scalar_t* grad_im){
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
              const int channel_per_deformable_group = channels / deformable_group;
         
     | 
| 348 | 
         
            +
              const int num_kernels = channels * kernel_h * kernel_w * batch_size * height_col * width_col;
         
     | 
| 349 | 
         
            +
              deformable_col2im_gpu_kernel<scalar_t>
         
     | 
| 350 | 
         
            +
                  <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS,
         
     | 
| 351 | 
         
            +
                      0, stream>>>(
         
     | 
| 352 | 
         
            +
                    num_kernels, data_col, data_offset, channels, height_im, width_im,
         
     | 
| 353 | 
         
            +
                    kernel_h, kernel_w, pad_h, pad_h, stride_h, stride_w,
         
     | 
| 354 | 
         
            +
                    dilation_h, dilation_w, channel_per_deformable_group,
         
     | 
| 355 | 
         
            +
                    batch_size, deformable_group, height_col, width_col, grad_im);
         
     | 
| 356 | 
         
            +
              cudaError_t err = cudaGetLastError();
         
     | 
| 357 | 
         
            +
              if (err != cudaSuccess)
         
     | 
| 358 | 
         
            +
              {
         
     | 
| 359 | 
         
            +
                printf("error in deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
         
     | 
| 360 | 
         
            +
              }
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
            }
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
            template <typename scalar_t>
         
     | 
| 365 | 
         
            +
            void deformable_col2im_coord_cuda(cudaStream_t stream,
         
     | 
| 366 | 
         
            +
              const scalar_t* data_col, const scalar_t* data_im, const scalar_t* data_offset,
         
     | 
| 367 | 
         
            +
              const int batch_size, const int channels, const int height_im, const int width_im, 
         
     | 
| 368 | 
         
            +
              const int height_col, const int width_col, const int kernel_h, const int kernel_w,
         
     | 
| 369 | 
         
            +
              const int pad_h, const int pad_w, const int stride_h, const int stride_w, 
         
     | 
| 370 | 
         
            +
              const int dilation_h, const int dilation_w, 
         
     | 
| 371 | 
         
            +
              const int deformable_group,
         
     | 
| 372 | 
         
            +
              scalar_t* grad_offset) {
         
     | 
| 373 | 
         
            +
              const int num_kernels = batch_size * height_col * width_col * 2 * kernel_h * kernel_w * deformable_group;
         
     | 
| 374 | 
         
            +
              const int channel_per_deformable_group = channels * kernel_h * kernel_w / deformable_group;
         
     | 
| 375 | 
         
            +
              deformable_col2im_coord_gpu_kernel<scalar_t>
         
     | 
| 376 | 
         
            +
                  <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS,
         
     | 
| 377 | 
         
            +
                    0, stream>>>(
         
     | 
| 378 | 
         
            +
                    num_kernels, data_col, data_im, data_offset, channels, height_im, width_im,
         
     | 
| 379 | 
         
            +
                    kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
         
     | 
| 380 | 
         
            +
                    dilation_h, dilation_w, channel_per_deformable_group,
         
     | 
| 381 | 
         
            +
                    batch_size, 2 * kernel_h * kernel_w * deformable_group, deformable_group, height_col, width_col, 
         
     | 
| 382 | 
         
            +
                    grad_offset);
         
     | 
| 383 | 
         
            +
              cudaError_t err = cudaGetLastError();
         
     | 
| 384 | 
         
            +
              if (err != cudaSuccess)
         
     | 
| 385 | 
         
            +
              {
         
     | 
| 386 | 
         
            +
                printf("error in deformable_col2im_coord_cuda: %s\n", cudaGetErrorString(err));
         
     | 
| 387 | 
         
            +
              }
         
     | 
| 388 | 
         
            +
            }
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/deformable.py
    ADDED
    
    | 
         @@ -0,0 +1,193 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import warnings
         
     | 
| 4 | 
         
            +
            from glob import glob
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            import torch
         
     | 
| 7 | 
         
            +
            from torch import nn
         
     | 
| 8 | 
         
            +
            from torch.autograd import Function
         
     | 
| 9 | 
         
            +
            from torch.nn.modules.utils import _pair
         
     | 
| 10 | 
         
            +
            from torch.autograd.function import once_differentiable
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            def load_cpp_ext(ext_name):
         
     | 
| 14 | 
         
            +
                root_dir = os.path.join(os.path.split(__file__)[0])
         
     | 
| 15 | 
         
            +
                src_dir = os.path.join(root_dir, "cpp")
         
     | 
| 16 | 
         
            +
                tar_dir = os.path.join(src_dir, "build", ext_name)
         
     | 
| 17 | 
         
            +
                os.makedirs(tar_dir, exist_ok=True)
         
     | 
| 18 | 
         
            +
                srcs = glob(f"{src_dir}/*.cu") + glob(f"{src_dir}/*.cpp")
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                with warnings.catch_warnings():
         
     | 
| 21 | 
         
            +
                    warnings.simplefilter("ignore")
         
     | 
| 22 | 
         
            +
                    from torch.utils.cpp_extension import load
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                    ext = load(
         
     | 
| 25 | 
         
            +
                        name=ext_name,
         
     | 
| 26 | 
         
            +
                        sources=srcs,
         
     | 
| 27 | 
         
            +
                        extra_cflags=["-O3"],
         
     | 
| 28 | 
         
            +
                        extra_cuda_cflags=[],
         
     | 
| 29 | 
         
            +
                        build_directory=tar_dir,
         
     | 
| 30 | 
         
            +
                    )
         
     | 
| 31 | 
         
            +
                return ext
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            # defer calling load_cpp_ext to make CUDA_VISIBLE_DEVICES happy
         
     | 
| 35 | 
         
            +
            DCN = None
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            class DeformConvFunction(Function):
         
     | 
| 39 | 
         
            +
                @staticmethod
         
     | 
| 40 | 
         
            +
                def forward(
         
     | 
| 41 | 
         
            +
                    ctx,
         
     | 
| 42 | 
         
            +
                    input,
         
     | 
| 43 | 
         
            +
                    offset,
         
     | 
| 44 | 
         
            +
                    weight,
         
     | 
| 45 | 
         
            +
                    bias,
         
     | 
| 46 | 
         
            +
                    stride,
         
     | 
| 47 | 
         
            +
                    padding,
         
     | 
| 48 | 
         
            +
                    dilation,
         
     | 
| 49 | 
         
            +
                    group,
         
     | 
| 50 | 
         
            +
                    deformable_groups,
         
     | 
| 51 | 
         
            +
                    im2col_step,
         
     | 
| 52 | 
         
            +
                ):
         
     | 
| 53 | 
         
            +
                    ctx.stride = _pair(stride)
         
     | 
| 54 | 
         
            +
                    ctx.padding = _pair(padding)
         
     | 
| 55 | 
         
            +
                    ctx.dilation = _pair(dilation)
         
     | 
| 56 | 
         
            +
                    ctx.kernel_size = _pair(weight.shape[2:4])
         
     | 
| 57 | 
         
            +
                    ctx.group = group
         
     | 
| 58 | 
         
            +
                    ctx.deformable_groups = deformable_groups
         
     | 
| 59 | 
         
            +
                    ctx.im2col_step = im2col_step
         
     | 
| 60 | 
         
            +
                    output = DCN.deform_conv_forward(
         
     | 
| 61 | 
         
            +
                        input,
         
     | 
| 62 | 
         
            +
                        weight,
         
     | 
| 63 | 
         
            +
                        bias,
         
     | 
| 64 | 
         
            +
                        offset,
         
     | 
| 65 | 
         
            +
                        ctx.kernel_size[0],
         
     | 
| 66 | 
         
            +
                        ctx.kernel_size[1],
         
     | 
| 67 | 
         
            +
                        ctx.stride[0],
         
     | 
| 68 | 
         
            +
                        ctx.stride[1],
         
     | 
| 69 | 
         
            +
                        ctx.padding[0],
         
     | 
| 70 | 
         
            +
                        ctx.padding[1],
         
     | 
| 71 | 
         
            +
                        ctx.dilation[0],
         
     | 
| 72 | 
         
            +
                        ctx.dilation[1],
         
     | 
| 73 | 
         
            +
                        ctx.group,
         
     | 
| 74 | 
         
            +
                        ctx.deformable_groups,
         
     | 
| 75 | 
         
            +
                        ctx.im2col_step,
         
     | 
| 76 | 
         
            +
                    )
         
     | 
| 77 | 
         
            +
                    ctx.save_for_backward(input, offset, weight, bias)
         
     | 
| 78 | 
         
            +
                    return output
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                @staticmethod
         
     | 
| 81 | 
         
            +
                @once_differentiable
         
     | 
| 82 | 
         
            +
                def backward(ctx, grad_output):
         
     | 
| 83 | 
         
            +
                    input, offset, weight, bias = ctx.saved_tensors
         
     | 
| 84 | 
         
            +
                    grad_input, grad_offset, grad_weight, grad_bias = DCN.deform_conv_backward(
         
     | 
| 85 | 
         
            +
                        input,
         
     | 
| 86 | 
         
            +
                        weight,
         
     | 
| 87 | 
         
            +
                        bias,
         
     | 
| 88 | 
         
            +
                        offset,
         
     | 
| 89 | 
         
            +
                        grad_output,
         
     | 
| 90 | 
         
            +
                        ctx.kernel_size[0],
         
     | 
| 91 | 
         
            +
                        ctx.kernel_size[1],
         
     | 
| 92 | 
         
            +
                        ctx.stride[0],
         
     | 
| 93 | 
         
            +
                        ctx.stride[1],
         
     | 
| 94 | 
         
            +
                        ctx.padding[0],
         
     | 
| 95 | 
         
            +
                        ctx.padding[1],
         
     | 
| 96 | 
         
            +
                        ctx.dilation[0],
         
     | 
| 97 | 
         
            +
                        ctx.dilation[1],
         
     | 
| 98 | 
         
            +
                        ctx.group,
         
     | 
| 99 | 
         
            +
                        ctx.deformable_groups,
         
     | 
| 100 | 
         
            +
                        ctx.im2col_step,
         
     | 
| 101 | 
         
            +
                    )
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                    return (
         
     | 
| 104 | 
         
            +
                        grad_input,
         
     | 
| 105 | 
         
            +
                        grad_offset,
         
     | 
| 106 | 
         
            +
                        grad_weight,
         
     | 
| 107 | 
         
            +
                        grad_bias,
         
     | 
| 108 | 
         
            +
                        None,
         
     | 
| 109 | 
         
            +
                        None,
         
     | 
| 110 | 
         
            +
                        None,
         
     | 
| 111 | 
         
            +
                        None,
         
     | 
| 112 | 
         
            +
                        None,
         
     | 
| 113 | 
         
            +
                        None,
         
     | 
| 114 | 
         
            +
                    )
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            class DeformConv(nn.Module):
         
     | 
| 118 | 
         
            +
                def __init__(
         
     | 
| 119 | 
         
            +
                    self,
         
     | 
| 120 | 
         
            +
                    in_channels,
         
     | 
| 121 | 
         
            +
                    out_channels,
         
     | 
| 122 | 
         
            +
                    kernel_size,
         
     | 
| 123 | 
         
            +
                    stride,
         
     | 
| 124 | 
         
            +
                    padding,
         
     | 
| 125 | 
         
            +
                    dilation=1,
         
     | 
| 126 | 
         
            +
                    groups=1,
         
     | 
| 127 | 
         
            +
                    deformable_groups=1,
         
     | 
| 128 | 
         
            +
                    im2col_step=11,
         
     | 
| 129 | 
         
            +
                    bias=True,
         
     | 
| 130 | 
         
            +
                ):
         
     | 
| 131 | 
         
            +
                    global DCN
         
     | 
| 132 | 
         
            +
                    DCN = load_cpp_ext("DCN")
         
     | 
| 133 | 
         
            +
                    super(DeformConv, self).__init__()
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    if in_channels % groups != 0:
         
     | 
| 136 | 
         
            +
                        raise ValueError(
         
     | 
| 137 | 
         
            +
                            "in_channels {} must be divisible by groups {}".format(
         
     | 
| 138 | 
         
            +
                                in_channels, groups
         
     | 
| 139 | 
         
            +
                            )
         
     | 
| 140 | 
         
            +
                        )
         
     | 
| 141 | 
         
            +
                    if out_channels % groups != 0:
         
     | 
| 142 | 
         
            +
                        raise ValueError(
         
     | 
| 143 | 
         
            +
                            "out_channels {} must be divisible by groups {}".format(
         
     | 
| 144 | 
         
            +
                                out_channels, groups
         
     | 
| 145 | 
         
            +
                            )
         
     | 
| 146 | 
         
            +
                        )
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 149 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 150 | 
         
            +
                    self.kernel_size = _pair(kernel_size)
         
     | 
| 151 | 
         
            +
                    self.stride = _pair(stride)
         
     | 
| 152 | 
         
            +
                    self.padding = _pair(padding)
         
     | 
| 153 | 
         
            +
                    self.dilation = _pair(dilation)
         
     | 
| 154 | 
         
            +
                    self.groups = groups
         
     | 
| 155 | 
         
            +
                    self.deformable_groups = deformable_groups
         
     | 
| 156 | 
         
            +
                    self.im2col_step = im2col_step
         
     | 
| 157 | 
         
            +
                    self.use_bias = bias
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                    self.weight = nn.Parameter(
         
     | 
| 160 | 
         
            +
                        torch.Tensor(out_channels, in_channels // groups, *self.kernel_size)
         
     | 
| 161 | 
         
            +
                    )
         
     | 
| 162 | 
         
            +
                    self.bias = nn.Parameter(torch.Tensor(out_channels))
         
     | 
| 163 | 
         
            +
                    self.reset_parameters()
         
     | 
| 164 | 
         
            +
                    if not self.use_bias:
         
     | 
| 165 | 
         
            +
                        self.bias.requires_grad = False
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                def reset_parameters(self):
         
     | 
| 168 | 
         
            +
                    nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
         
     | 
| 169 | 
         
            +
                    if self.bias is not None:
         
     | 
| 170 | 
         
            +
                        if self.use_bias:
         
     | 
| 171 | 
         
            +
                            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
         
     | 
| 172 | 
         
            +
                            bound = 1 / math.sqrt(fan_in)
         
     | 
| 173 | 
         
            +
                            nn.init.uniform_(self.bias, -bound, bound)
         
     | 
| 174 | 
         
            +
                        else:
         
     | 
| 175 | 
         
            +
                            nn.init.zeros_(self.bias)
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                def forward(self, input, offset):
         
     | 
| 178 | 
         
            +
                    assert (
         
     | 
| 179 | 
         
            +
                        2 * self.deformable_groups * self.kernel_size[0] * self.kernel_size[1]
         
     | 
| 180 | 
         
            +
                        == offset.shape[1]
         
     | 
| 181 | 
         
            +
                    )
         
     | 
| 182 | 
         
            +
                    return DeformConvFunction.apply(
         
     | 
| 183 | 
         
            +
                        input.contiguous(),
         
     | 
| 184 | 
         
            +
                        offset.contiguous(),
         
     | 
| 185 | 
         
            +
                        self.weight,
         
     | 
| 186 | 
         
            +
                        self.bias,
         
     | 
| 187 | 
         
            +
                        self.stride,
         
     | 
| 188 | 
         
            +
                        self.padding,
         
     | 
| 189 | 
         
            +
                        self.dilation,
         
     | 
| 190 | 
         
            +
                        self.groups,
         
     | 
| 191 | 
         
            +
                        self.deformable_groups,
         
     | 
| 192 | 
         
            +
                        self.im2col_step,
         
     | 
| 193 | 
         
            +
                    )
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/hourglass_pose.py
    ADDED
    
    | 
         @@ -0,0 +1,192 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            Hourglass network inserted in the pre-activated Resnet
         
     | 
| 3 | 
         
            +
            Use lr=0.01 for current version
         
     | 
| 4 | 
         
            +
            (c) Yichao Zhou (VanishingNet)
         
     | 
| 5 | 
         
            +
            (c) Yichao Zhou (LCNN)
         
     | 
| 6 | 
         
            +
            (c) YANG, Wei
         
     | 
| 7 | 
         
            +
            """
         
     | 
| 8 | 
         
            +
            import torch
         
     | 
| 9 | 
         
            +
            import torch.nn as nn
         
     | 
| 10 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            __all__ = ["HourglassNet", "hg"]
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            class Bottleneck2D(nn.Module):
         
     | 
| 16 | 
         
            +
                expansion = 2
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                def __init__(self, inplanes, planes, stride=1, resample=None):
         
     | 
| 19 | 
         
            +
                    super(Bottleneck2D, self).__init__()
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                    self.bn1 = nn.BatchNorm2d(inplanes)
         
     | 
| 22 | 
         
            +
                    self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1)
         
     | 
| 23 | 
         
            +
                    self.bn2 = nn.BatchNorm2d(planes)
         
     | 
| 24 | 
         
            +
                    self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1)
         
     | 
| 25 | 
         
            +
                    self.bn3 = nn.BatchNorm2d(planes)
         
     | 
| 26 | 
         
            +
                    self.conv3 = nn.Conv2d(planes, planes * Bottleneck2D.expansion, kernel_size=1)
         
     | 
| 27 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 28 | 
         
            +
                    self.resample = resample
         
     | 
| 29 | 
         
            +
                    self.stride = stride
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                def forward(self, x):
         
     | 
| 32 | 
         
            +
                    residual = x
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    out = self.bn1(x)
         
     | 
| 35 | 
         
            +
                    out = self.relu(out)
         
     | 
| 36 | 
         
            +
                    out = self.conv1(out)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    out = self.bn2(out)
         
     | 
| 39 | 
         
            +
                    out = self.relu(out)
         
     | 
| 40 | 
         
            +
                    out = self.conv2(out)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                    out = self.bn3(out)
         
     | 
| 43 | 
         
            +
                    out = self.relu(out)
         
     | 
| 44 | 
         
            +
                    out = self.conv3(out)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                    if self.resample is not None:
         
     | 
| 47 | 
         
            +
                        residual = self.resample(x)
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                    out += residual
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                    return out
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            class Hourglass(nn.Module):
         
     | 
| 55 | 
         
            +
                def __init__(self, block, num_blocks, planes, depth):
         
     | 
| 56 | 
         
            +
                    super(Hourglass, self).__init__()
         
     | 
| 57 | 
         
            +
                    self.depth = depth
         
     | 
| 58 | 
         
            +
                    self.block = block
         
     | 
| 59 | 
         
            +
                    self.hg = self._make_hour_glass(block, num_blocks, planes, depth)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                def _make_residual(self, block, num_blocks, planes):
         
     | 
| 62 | 
         
            +
                    layers = []
         
     | 
| 63 | 
         
            +
                    for i in range(0, num_blocks):
         
     | 
| 64 | 
         
            +
                        layers.append(block(planes * block.expansion, planes))
         
     | 
| 65 | 
         
            +
                    return nn.Sequential(*layers)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                def _make_hour_glass(self, block, num_blocks, planes, depth):
         
     | 
| 68 | 
         
            +
                    hg = []
         
     | 
| 69 | 
         
            +
                    for i in range(depth):
         
     | 
| 70 | 
         
            +
                        res = []
         
     | 
| 71 | 
         
            +
                        for j in range(3):
         
     | 
| 72 | 
         
            +
                            res.append(self._make_residual(block, num_blocks, planes))
         
     | 
| 73 | 
         
            +
                        if i == 0:
         
     | 
| 74 | 
         
            +
                            res.append(self._make_residual(block, num_blocks, planes))
         
     | 
| 75 | 
         
            +
                        hg.append(nn.ModuleList(res))
         
     | 
| 76 | 
         
            +
                    return nn.ModuleList(hg)
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                def _hour_glass_forward(self, n, x):
         
     | 
| 79 | 
         
            +
                    up1 = self.hg[n - 1][0](x)
         
     | 
| 80 | 
         
            +
                    low1 = F.max_pool2d(x, 2, stride=2)
         
     | 
| 81 | 
         
            +
                    low1 = self.hg[n - 1][1](low1)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    if n > 1:
         
     | 
| 84 | 
         
            +
                        low2 = self._hour_glass_forward(n - 1, low1)
         
     | 
| 85 | 
         
            +
                    else:
         
     | 
| 86 | 
         
            +
                        low2 = self.hg[n - 1][3](low1)
         
     | 
| 87 | 
         
            +
                    low3 = self.hg[n - 1][2](low2)
         
     | 
| 88 | 
         
            +
                    up2 = F.interpolate(low3, scale_factor=2)
         
     | 
| 89 | 
         
            +
                    out = up1 + up2
         
     | 
| 90 | 
         
            +
                    return out
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                def forward(self, x):
         
     | 
| 93 | 
         
            +
                    return self._hour_glass_forward(self.depth, x)
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
            class HourglassNet(nn.Module):
         
     | 
| 97 | 
         
            +
                def __init__(self, planes, block, head, depth, num_stacks, num_blocks):
         
     | 
| 98 | 
         
            +
                    super(HourglassNet, self).__init__()
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    self.inplanes = 64
         
     | 
| 101 | 
         
            +
                    self.num_feats = 128
         
     | 
| 102 | 
         
            +
                    self.num_stacks = num_stacks
         
     | 
| 103 | 
         
            +
                    self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3)
         
     | 
| 104 | 
         
            +
                    self.bn1 = nn.BatchNorm2d(self.inplanes)
         
     | 
| 105 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 106 | 
         
            +
                    self.layer1 = self._make_residual(block, self.inplanes, 1)
         
     | 
| 107 | 
         
            +
                    self.layer2 = self._make_residual(block, self.inplanes, 1)
         
     | 
| 108 | 
         
            +
                    self.layer3 = self._make_residual(block, self.num_feats, 1)
         
     | 
| 109 | 
         
            +
                    self.maxpool = nn.MaxPool2d(2, stride=2)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    # build hourglass modules
         
     | 
| 112 | 
         
            +
                    ch = self.num_feats * block.expansion
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                    hg, res, fc, score, fc_, score_ = [], [], [], [], [], []
         
     | 
| 115 | 
         
            +
                    for i in range(num_stacks):
         
     | 
| 116 | 
         
            +
                        hg.append(Hourglass(block, num_blocks, self.num_feats, depth))
         
     | 
| 117 | 
         
            +
                        res.append(self._make_residual(block, self.num_feats, num_blocks))
         
     | 
| 118 | 
         
            +
                        fc.append(self._make_fc(ch, ch))
         
     | 
| 119 | 
         
            +
                        score.append(head(ch, planes))
         
     | 
| 120 | 
         
            +
                        if i < num_stacks - 1:
         
     | 
| 121 | 
         
            +
                            fc_.append(nn.Conv2d(ch, ch, kernel_size=1))
         
     | 
| 122 | 
         
            +
                            score_.append(nn.Conv2d(planes, ch, kernel_size=1))
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                    self.hg = nn.ModuleList(hg)
         
     | 
| 125 | 
         
            +
                    self.res = nn.ModuleList(res)
         
     | 
| 126 | 
         
            +
                    self.fc = nn.ModuleList(fc)
         
     | 
| 127 | 
         
            +
                    self.score = nn.ModuleList(score)
         
     | 
| 128 | 
         
            +
                    self.fc_ = nn.ModuleList(fc_)
         
     | 
| 129 | 
         
            +
                    self.score_ = nn.ModuleList(score_)
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                def _make_residual(self, block, planes, blocks, stride=1):
         
     | 
| 132 | 
         
            +
                    resample = None
         
     | 
| 133 | 
         
            +
                    if stride != 1 or self.inplanes != planes * block.expansion:
         
     | 
| 134 | 
         
            +
                        resample = nn.Conv2d(
         
     | 
| 135 | 
         
            +
                            self.inplanes, planes * block.expansion, kernel_size=1, stride=stride
         
     | 
| 136 | 
         
            +
                        )
         
     | 
| 137 | 
         
            +
                    layers = [block(self.inplanes, planes, stride, resample)]
         
     | 
| 138 | 
         
            +
                    self.inplanes = planes * block.expansion
         
     | 
| 139 | 
         
            +
                    for i in range(blocks - 1):
         
     | 
| 140 | 
         
            +
                        layers.append(block(self.inplanes, planes))
         
     | 
| 141 | 
         
            +
                    return nn.Sequential(*layers)
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                def _make_fc(self, inplanes, outplanes):
         
     | 
| 144 | 
         
            +
                    return nn.Sequential(
         
     | 
| 145 | 
         
            +
                        nn.Conv2d(inplanes, outplanes, kernel_size=1),
         
     | 
| 146 | 
         
            +
                        nn.BatchNorm2d(inplanes),
         
     | 
| 147 | 
         
            +
                        nn.ReLU(inplace=True),
         
     | 
| 148 | 
         
            +
                    )
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                def forward(self, x):
         
     | 
| 151 | 
         
            +
                    out = []
         
     | 
| 152 | 
         
            +
                    x = self.conv1(x)
         
     | 
| 153 | 
         
            +
                    x = self.bn1(x)
         
     | 
| 154 | 
         
            +
                    x = self.relu(x)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                    x = self.layer1(x)
         
     | 
| 157 | 
         
            +
                    x = self.maxpool(x)
         
     | 
| 158 | 
         
            +
                    x = self.layer2(x)
         
     | 
| 159 | 
         
            +
                    x = self.layer3(x)
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    for i in range(self.num_stacks):
         
     | 
| 162 | 
         
            +
                        y = self.hg[i](x)
         
     | 
| 163 | 
         
            +
                        y = self.res[i](y)
         
     | 
| 164 | 
         
            +
                        y = self.fc[i](y)
         
     | 
| 165 | 
         
            +
                        score = self.score[i](y)
         
     | 
| 166 | 
         
            +
                        out.append(score)
         
     | 
| 167 | 
         
            +
                        if i < self.num_stacks - 1:
         
     | 
| 168 | 
         
            +
                            fc_ = self.fc_[i](y)
         
     | 
| 169 | 
         
            +
                            score_ = self.score_[i](score)
         
     | 
| 170 | 
         
            +
                            x = x + fc_ + score_
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                    return out[::-1]
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
            def hg(**kwargs):
         
     | 
| 176 | 
         
            +
                model = HourglassNet(
         
     | 
| 177 | 
         
            +
                    planes=kwargs["planes"],
         
     | 
| 178 | 
         
            +
                    block=Bottleneck2D,
         
     | 
| 179 | 
         
            +
                    head=kwargs.get("head", lambda c_in, c_out: nn.Conv2d(c_in, c_out, 1)),
         
     | 
| 180 | 
         
            +
                    depth=kwargs["depth"],
         
     | 
| 181 | 
         
            +
                    num_stacks=kwargs["num_stacks"],
         
     | 
| 182 | 
         
            +
                    num_blocks=kwargs["num_blocks"],
         
     | 
| 183 | 
         
            +
                )
         
     | 
| 184 | 
         
            +
                return model
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            def main():
         
     | 
| 188 | 
         
            +
                hg(depth=2, num_stacks=1, num_blocks=1)
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 192 | 
         
            +
                main()
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/models/vanishing_net.py
    ADDED
    
    | 
         @@ -0,0 +1,181 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import sys
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import random
         
     | 
| 4 | 
         
            +
            import itertools
         
     | 
| 5 | 
         
            +
            from collections import defaultdict
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            import numpy as np
         
     | 
| 8 | 
         
            +
            import torch
         
     | 
| 9 | 
         
            +
            import torch.nn as nn
         
     | 
| 10 | 
         
            +
            import numpy.linalg as LA
         
     | 
| 11 | 
         
            +
            import matplotlib.pyplot as plt
         
     | 
| 12 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            from neurvps.utils import plot_image_grid
         
     | 
| 15 | 
         
            +
            from neurvps.config import C, M
         
     | 
| 16 | 
         
            +
            from neurvps.models.conic import ConicConv
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            class VanishingNet(nn.Module):
         
     | 
| 20 | 
         
            +
                def __init__(self, backbone, output_stride=4, upsample_scale=1):
         
     | 
| 21 | 
         
            +
                    super().__init__()
         
     | 
| 22 | 
         
            +
                    self.backbone = backbone
         
     | 
| 23 | 
         
            +
                    self.anet = ApolloniusNet(output_stride, upsample_scale)
         
     | 
| 24 | 
         
            +
                    self.loss = nn.BCEWithLogitsLoss(reduction="none")
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                def forward(self, input_dict):
         
     | 
| 27 | 
         
            +
                    x = self.backbone(input_dict["image"])[0]
         
     | 
| 28 | 
         
            +
                    N, _, H, W = x.shape
         
     | 
| 29 | 
         
            +
                    test = input_dict.get("test", False)
         
     | 
| 30 | 
         
            +
                    if test:
         
     | 
| 31 | 
         
            +
                        c = len(input_dict["vpts"])
         
     | 
| 32 | 
         
            +
                    else:
         
     | 
| 33 | 
         
            +
                        c = M.smp_rnd + C.io.num_vpts * len(M.multires) * (M.smp_pos + M.smp_neg)
         
     | 
| 34 | 
         
            +
                    x = x[:, None].repeat(1, c, 1, 1, 1).reshape(N * c, _, H, W)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    if test:
         
     | 
| 37 | 
         
            +
                        vpts = [to_pixel(v) for v in input_dict["vpts"]]
         
     | 
| 38 | 
         
            +
                        vpts = torch.tensor(vpts, device=x.device)
         
     | 
| 39 | 
         
            +
                        return self.anet(x, vpts).sigmoid()
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    vpts_gt = input_dict["vpts"].cpu().numpy()
         
     | 
| 42 | 
         
            +
                    vpts, y = [], []
         
     | 
| 43 | 
         
            +
                    for n in range(N):
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                        def add_sample(p):
         
     | 
| 46 | 
         
            +
                            vpts.append(to_pixel(p))
         
     | 
| 47 | 
         
            +
                            y.append(to_label(p, vpts_gt[n]))
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                        for vgt in vpts_gt[n]:
         
     | 
| 50 | 
         
            +
                            for st, ed in zip([0] + M.multires[:-1], M.multires):
         
     | 
| 51 | 
         
            +
                                # positive samples
         
     | 
| 52 | 
         
            +
                                for _ in range(M.smp_pos):
         
     | 
| 53 | 
         
            +
                                    add_sample(sample_sphere(vgt, st, ed))
         
     | 
| 54 | 
         
            +
                                # negative samples
         
     | 
| 55 | 
         
            +
                                for _ in range(M.smp_neg):
         
     | 
| 56 | 
         
            +
                                    add_sample(sample_sphere(vgt, ed, ed * M.smp_multiplier))
         
     | 
| 57 | 
         
            +
                        # random samples
         
     | 
| 58 | 
         
            +
                        for _ in range(M.smp_rnd):
         
     | 
| 59 | 
         
            +
                            add_sample(sample_sphere(np.array([0, 0, 1]), 0, math.pi / 2))
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                    y = torch.tensor(y, device=x.device, dtype=torch.float)
         
     | 
| 62 | 
         
            +
                    vpts = torch.tensor(vpts, device=x.device)
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    x = self.anet(x, vpts)
         
     | 
| 65 | 
         
            +
                    L = self.loss(x, y)
         
     | 
| 66 | 
         
            +
                    maskn = (y == 0).float()
         
     | 
| 67 | 
         
            +
                    maskp = (y == 1).float()
         
     | 
| 68 | 
         
            +
                    losses = {}
         
     | 
| 69 | 
         
            +
                    for i in range(len(M.multires)):
         
     | 
| 70 | 
         
            +
                        assert maskn[:, i].sum().item() != 0
         
     | 
| 71 | 
         
            +
                        assert maskp[:, i].sum().item() != 0
         
     | 
| 72 | 
         
            +
                        losses[f"lneg{i}"] = (L[:, i] * maskn[:, i]).sum() / maskn[:, i].sum()
         
     | 
| 73 | 
         
            +
                        losses[f"lpos{i}"] = (L[:, i] * maskp[:, i]).sum() / maskp[:, i].sum()
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                    return {
         
     | 
| 76 | 
         
            +
                        "losses": [losses],
         
     | 
| 77 | 
         
            +
                        "preds": {"vpts": vpts, "scores": x.sigmoid(), "ys": y},
         
     | 
| 78 | 
         
            +
                    }
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            class ApolloniusNet(nn.Module):
         
     | 
| 82 | 
         
            +
                def __init__(self, output_stride, upsample_scale):
         
     | 
| 83 | 
         
            +
                    super().__init__()
         
     | 
| 84 | 
         
            +
                    self.fc0 = nn.Conv2d(64, 32, 1)
         
     | 
| 85 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 86 | 
         
            +
                    self.pool = nn.MaxPool2d(2, 2)
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    if M.conic_6x:
         
     | 
| 89 | 
         
            +
                        self.bn00 = nn.BatchNorm2d(32)
         
     | 
| 90 | 
         
            +
                        self.conv00 = ConicConv(32, 32)
         
     | 
| 91 | 
         
            +
                        self.bn0 = nn.BatchNorm2d(32)
         
     | 
| 92 | 
         
            +
                        self.conv0 = ConicConv(32, 32)
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                    self.bn1 = nn.BatchNorm2d(32)
         
     | 
| 95 | 
         
            +
                    self.conv1 = ConicConv(32, 64)
         
     | 
| 96 | 
         
            +
                    self.bn2 = nn.BatchNorm2d(64)
         
     | 
| 97 | 
         
            +
                    self.conv2 = ConicConv(64, 128)
         
     | 
| 98 | 
         
            +
                    self.bn3 = nn.BatchNorm2d(128)
         
     | 
| 99 | 
         
            +
                    self.conv3 = ConicConv(128, 256)
         
     | 
| 100 | 
         
            +
                    self.bn4 = nn.BatchNorm2d(256)
         
     | 
| 101 | 
         
            +
                    self.conv4 = ConicConv(256, 256)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                    self.fc1 = nn.Linear(16384, M.fc_channel)
         
     | 
| 104 | 
         
            +
                    self.fc2 = nn.Linear(M.fc_channel, M.fc_channel)
         
     | 
| 105 | 
         
            +
                    self.fc3 = nn.Linear(M.fc_channel, len(M.multires))
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                    self.upsample_scale = upsample_scale
         
     | 
| 108 | 
         
            +
                    self.stride = output_stride / upsample_scale
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                def forward(self, input, vpts):
         
     | 
| 111 | 
         
            +
                    # for now we did not do interpolation
         
     | 
| 112 | 
         
            +
                    if self.upsample_scale != 1:
         
     | 
| 113 | 
         
            +
                        input = F.interpolate(input, scale_factor=self.upsample_scale)
         
     | 
| 114 | 
         
            +
                    x = self.fc0(input)
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                    if M.conic_6x:
         
     | 
| 117 | 
         
            +
                        x = self.bn00(x)
         
     | 
| 118 | 
         
            +
                        x = self.relu(x)
         
     | 
| 119 | 
         
            +
                        x = self.conv00(x, vpts / self.stride - 0.5)
         
     | 
| 120 | 
         
            +
                        x = self.bn0(x)
         
     | 
| 121 | 
         
            +
                        x = self.relu(x)
         
     | 
| 122 | 
         
            +
                        x = self.conv0(x, vpts / self.stride - 0.5)
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                    # 128
         
     | 
| 125 | 
         
            +
                    x = self.bn1(x)
         
     | 
| 126 | 
         
            +
                    x = self.relu(x)
         
     | 
| 127 | 
         
            +
                    x = self.conv1(x, vpts / self.stride - 0.5)
         
     | 
| 128 | 
         
            +
                    x = self.pool(x)
         
     | 
| 129 | 
         
            +
                    # 64
         
     | 
| 130 | 
         
            +
                    x = self.bn2(x)
         
     | 
| 131 | 
         
            +
                    x = self.relu(x)
         
     | 
| 132 | 
         
            +
                    x = self.conv2(x, vpts / self.stride / 2 - 0.5)
         
     | 
| 133 | 
         
            +
                    x = self.pool(x)
         
     | 
| 134 | 
         
            +
                    # 32
         
     | 
| 135 | 
         
            +
                    x = self.bn3(x)
         
     | 
| 136 | 
         
            +
                    x = self.relu(x)
         
     | 
| 137 | 
         
            +
                    x = self.conv3(x, vpts / self.stride / 4 - 0.5)
         
     | 
| 138 | 
         
            +
                    x = self.pool(x)
         
     | 
| 139 | 
         
            +
                    # 16
         
     | 
| 140 | 
         
            +
                    x = self.bn4(x)
         
     | 
| 141 | 
         
            +
                    x = self.relu(x)
         
     | 
| 142 | 
         
            +
                    x = self.conv4(x, vpts / self.stride / 8 - 0.5)
         
     | 
| 143 | 
         
            +
                    x = self.pool(x)
         
     | 
| 144 | 
         
            +
                    # 8
         
     | 
| 145 | 
         
            +
                    x = x.view(x.shape[0], -1)
         
     | 
| 146 | 
         
            +
                    x = self.relu(x)
         
     | 
| 147 | 
         
            +
                    x = self.fc1(x)
         
     | 
| 148 | 
         
            +
                    x = self.relu(x)
         
     | 
| 149 | 
         
            +
                    x = self.fc2(x)
         
     | 
| 150 | 
         
            +
                    x = self.relu(x)
         
     | 
| 151 | 
         
            +
                    x = self.fc3(x)
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    return x
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
            def orth(v):
         
     | 
| 157 | 
         
            +
                x, y, z = v
         
     | 
| 158 | 
         
            +
                o = np.array([0.0, -z, y] if abs(x) < abs(y) else [-z, 0.0, x])
         
     | 
| 159 | 
         
            +
                o /= LA.norm(o)
         
     | 
| 160 | 
         
            +
                return o
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
            def sample_sphere(v, theta0, theta1):
         
     | 
| 164 | 
         
            +
                costheta = random.uniform(math.cos(theta1), math.cos(theta0))
         
     | 
| 165 | 
         
            +
                phi = random.random() * math.pi * 2
         
     | 
| 166 | 
         
            +
                v1 = orth(v)
         
     | 
| 167 | 
         
            +
                v2 = np.cross(v, v1)
         
     | 
| 168 | 
         
            +
                r = math.sqrt(1 - costheta ** 2)
         
     | 
| 169 | 
         
            +
                w = v * costheta + r * (v1 * math.cos(phi) + v2 * math.sin(phi))
         
     | 
| 170 | 
         
            +
                return w / LA.norm(w)
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
            def to_label(w, vpts):
         
     | 
| 174 | 
         
            +
                degree = np.min(np.arccos(np.abs(vpts @ w).clip(max=1)))
         
     | 
| 175 | 
         
            +
                return [int(degree < res + 1e-6) for res in M.multires]
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
            def to_pixel(w):
         
     | 
| 179 | 
         
            +
                x = w[0] / w[2] * C.io.focal_length * 256 + 256
         
     | 
| 180 | 
         
            +
                y = -w[1] / w[2] * C.io.focal_length * 256 + 256
         
     | 
| 181 | 
         
            +
                return y, x
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/trainer.py
    ADDED
    
    | 
         @@ -0,0 +1,304 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import atexit
         
     | 
| 3 | 
         
            +
            import random
         
     | 
| 4 | 
         
            +
            import shutil
         
     | 
| 5 | 
         
            +
            import signal
         
     | 
| 6 | 
         
            +
            import os.path as osp
         
     | 
| 7 | 
         
            +
            import threading
         
     | 
| 8 | 
         
            +
            import subprocess
         
     | 
| 9 | 
         
            +
            from timeit import default_timer as timer
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            import numpy as np
         
     | 
| 12 | 
         
            +
            import torch
         
     | 
| 13 | 
         
            +
            import matplotlib as mpl
         
     | 
| 14 | 
         
            +
            import matplotlib.pyplot as plt
         
     | 
| 15 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 16 | 
         
            +
            from skimage import io
         
     | 
| 17 | 
         
            +
            from tensorboardX import SummaryWriter
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            import neurvps.utils as utils
         
     | 
| 20 | 
         
            +
            from neurvps.config import C, M
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            class Trainer(object):
         
     | 
| 24 | 
         
            +
                def __init__(
         
     | 
| 25 | 
         
            +
                    self, device, model, optimizer, train_loader, val_loader, batch_size, out
         
     | 
| 26 | 
         
            +
                ):
         
     | 
| 27 | 
         
            +
                    self.device = device
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                    self.model = model
         
     | 
| 30 | 
         
            +
                    self.optim = optimizer
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                    self.train_loader = train_loader
         
     | 
| 33 | 
         
            +
                    self.val_loader = val_loader
         
     | 
| 34 | 
         
            +
                    self.batch_size = batch_size
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    self.out = out
         
     | 
| 37 | 
         
            +
                    if not osp.exists(self.out):
         
     | 
| 38 | 
         
            +
                        os.makedirs(self.out)
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                    board_out = osp.join(self.out, "tensorboard")
         
     | 
| 41 | 
         
            +
                    if not osp.exists(board_out):
         
     | 
| 42 | 
         
            +
                        os.makedirs(board_out)
         
     | 
| 43 | 
         
            +
                    self.writer = SummaryWriter(board_out)
         
     | 
| 44 | 
         
            +
                    # self.run_tensorboard(board_out)
         
     | 
| 45 | 
         
            +
                    # time.sleep(1)
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                    self.epoch = 0
         
     | 
| 48 | 
         
            +
                    self.iteration = 0
         
     | 
| 49 | 
         
            +
                    self.max_epoch = C.optim.max_epoch
         
     | 
| 50 | 
         
            +
                    self.lr_decay_epoch = C.optim.lr_decay_epoch
         
     | 
| 51 | 
         
            +
                    self.num_stacks = C.model.num_stacks
         
     | 
| 52 | 
         
            +
                    self.mean_loss = self.best_mean_loss = 1e1000
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                    self.loss_labels = None
         
     | 
| 55 | 
         
            +
                    self.avg_metrics = None
         
     | 
| 56 | 
         
            +
                    self.metrics = np.zeros(0)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                def run_tensorboard(self, board_out):
         
     | 
| 59 | 
         
            +
                    os.environ["CUDA_VISIBLE_DEVICES"] = ""
         
     | 
| 60 | 
         
            +
                    p = subprocess.Popen(
         
     | 
| 61 | 
         
            +
                        ["tensorboard", f"--logdir={board_out}", f"--port={C.io.tensorboard_port}"]
         
     | 
| 62 | 
         
            +
                    )
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    def killme():
         
     | 
| 65 | 
         
            +
                        os.kill(p.pid, signal.SIGTERM)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                    atexit.register(killme)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                def _loss(self, result):
         
     | 
| 70 | 
         
            +
                    losses = result["losses"]
         
     | 
| 71 | 
         
            +
                    # Don't move loss label to other place.
         
     | 
| 72 | 
         
            +
                    # If I want to change the loss, I just need to change this function.
         
     | 
| 73 | 
         
            +
                    if self.loss_labels is None:
         
     | 
| 74 | 
         
            +
                        self.loss_labels = ["sum"] + list(losses[0].keys())
         
     | 
| 75 | 
         
            +
                        self.metrics = np.zeros([self.num_stacks, len(self.loss_labels)])
         
     | 
| 76 | 
         
            +
                        print()
         
     | 
| 77 | 
         
            +
                        print(
         
     | 
| 78 | 
         
            +
                            "| ".join(
         
     | 
| 79 | 
         
            +
                                ["progress "]
         
     | 
| 80 | 
         
            +
                                + list(map("{:7}".format, self.loss_labels))
         
     | 
| 81 | 
         
            +
                                + ["speed"]
         
     | 
| 82 | 
         
            +
                            )
         
     | 
| 83 | 
         
            +
                        )
         
     | 
| 84 | 
         
            +
                        with open(f"{self.out}/loss.csv", "a") as fout:
         
     | 
| 85 | 
         
            +
                            print(",".join(["progress"] + self.loss_labels), file=fout)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                    total_loss = 0
         
     | 
| 88 | 
         
            +
                    for i in range(self.num_stacks):
         
     | 
| 89 | 
         
            +
                        for j, name in enumerate(self.loss_labels):
         
     | 
| 90 | 
         
            +
                            if name == "sum":
         
     | 
| 91 | 
         
            +
                                continue
         
     | 
| 92 | 
         
            +
                            if name not in losses[i]:
         
     | 
| 93 | 
         
            +
                                assert i != 0
         
     | 
| 94 | 
         
            +
                                continue
         
     | 
| 95 | 
         
            +
                            loss = losses[i][name].mean()
         
     | 
| 96 | 
         
            +
                            self.metrics[i, 0] += loss.item()
         
     | 
| 97 | 
         
            +
                            self.metrics[i, j] += loss.item()
         
     | 
| 98 | 
         
            +
                            total_loss += loss
         
     | 
| 99 | 
         
            +
                    return total_loss
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                def validate(self):
         
     | 
| 102 | 
         
            +
                    tprint("Running validation...", " " * 75)
         
     | 
| 103 | 
         
            +
                    training = self.model.training
         
     | 
| 104 | 
         
            +
                    self.model.eval()
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                    viz = osp.join(self.out, "viz", f"{self.iteration * self.batch_size:09d}")
         
     | 
| 107 | 
         
            +
                    npz = osp.join(self.out, "npz", f"{self.iteration * self.batch_size:09d}")
         
     | 
| 108 | 
         
            +
                    osp.exists(viz) or os.makedirs(viz)
         
     | 
| 109 | 
         
            +
                    osp.exists(npz) or os.makedirs(npz)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    total_loss = 0
         
     | 
| 112 | 
         
            +
                    self.metrics[...] = 0
         
     | 
| 113 | 
         
            +
                    c = M.smp_rnd + C.io.num_vpts * len(M.multires) * (M.smp_pos + M.smp_neg)
         
     | 
| 114 | 
         
            +
                    with torch.no_grad():
         
     | 
| 115 | 
         
            +
                        for batch_idx, (image, target) in enumerate(self.val_loader):
         
     | 
| 116 | 
         
            +
                            image = image.to(self.device)
         
     | 
| 117 | 
         
            +
                            input_dict = {"image": image, "vpts": target["vpts"], "eval": True}
         
     | 
| 118 | 
         
            +
                            result = self.model(input_dict)
         
     | 
| 119 | 
         
            +
                            total_loss += self._loss(result)
         
     | 
| 120 | 
         
            +
                            # permute output to be (batch x (nneg + npos) x 2)
         
     | 
| 121 | 
         
            +
                            preds = result["preds"]
         
     | 
| 122 | 
         
            +
                            vpts = preds["vpts"].reshape(-1, c, 2).cpu().numpy()
         
     | 
| 123 | 
         
            +
                            scores = preds["scores"].reshape(-1, c, len(M.multires)).cpu().numpy()
         
     | 
| 124 | 
         
            +
                            ys = preds["ys"].reshape(-1, c, len(M.multires)).cpu().numpy()
         
     | 
| 125 | 
         
            +
                            for i in range(self.batch_size):
         
     | 
| 126 | 
         
            +
                                index = batch_idx * self.batch_size + i
         
     | 
| 127 | 
         
            +
                                np.savez(
         
     | 
| 128 | 
         
            +
                                    f"{npz}/{index:06}.npz",
         
     | 
| 129 | 
         
            +
                                    **{k: v[i].cpu().numpy() for k, v in preds.items()},
         
     | 
| 130 | 
         
            +
                                )
         
     | 
| 131 | 
         
            +
                                if index >= 8:
         
     | 
| 132 | 
         
            +
                                    continue
         
     | 
| 133 | 
         
            +
                                self.plot(index, image[i], vpts[i], scores[i], ys[i], f"{viz}/{index:06}")
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    self._write_metrics(len(self.val_loader), total_loss, "validation", True)
         
     | 
| 136 | 
         
            +
                    self.mean_loss = total_loss / len(self.val_loader)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    torch.save(
         
     | 
| 139 | 
         
            +
                        {
         
     | 
| 140 | 
         
            +
                            "iteration": self.iteration,
         
     | 
| 141 | 
         
            +
                            "arch": self.model.__class__.__name__,
         
     | 
| 142 | 
         
            +
                            "optim_state_dict": self.optim.state_dict(),
         
     | 
| 143 | 
         
            +
                            "model_state_dict": self.model.state_dict(),
         
     | 
| 144 | 
         
            +
                            "best_mean_loss": self.best_mean_loss,
         
     | 
| 145 | 
         
            +
                        },
         
     | 
| 146 | 
         
            +
                        osp.join(self.out, "checkpoint_latest.pth.tar"),
         
     | 
| 147 | 
         
            +
                    )
         
     | 
| 148 | 
         
            +
                    shutil.copy(
         
     | 
| 149 | 
         
            +
                        osp.join(self.out, "checkpoint_latest.pth.tar"),
         
     | 
| 150 | 
         
            +
                        osp.join(npz, "checkpoint.pth.tar"),
         
     | 
| 151 | 
         
            +
                    )
         
     | 
| 152 | 
         
            +
                    if self.mean_loss < self.best_mean_loss:
         
     | 
| 153 | 
         
            +
                        self.best_mean_loss = self.mean_loss
         
     | 
| 154 | 
         
            +
                        shutil.copy(
         
     | 
| 155 | 
         
            +
                            osp.join(self.out, "checkpoint_latest.pth.tar"),
         
     | 
| 156 | 
         
            +
                            osp.join(self.out, "checkpoint_best.pth.tar"),
         
     | 
| 157 | 
         
            +
                        )
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                    if training:
         
     | 
| 160 | 
         
            +
                        self.model.train()
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                def train_epoch(self):
         
     | 
| 163 | 
         
            +
                    self.model.train()
         
     | 
| 164 | 
         
            +
                    time = timer()
         
     | 
| 165 | 
         
            +
                    for batch_idx, (image, target) in enumerate(self.train_loader):
         
     | 
| 166 | 
         
            +
                        self.optim.zero_grad()
         
     | 
| 167 | 
         
            +
                        self.metrics[...] = 0
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                        image = image.to(self.device)
         
     | 
| 170 | 
         
            +
                        input_dict = {"image": image, "vpts": target["vpts"], "eval": False}
         
     | 
| 171 | 
         
            +
                        result = self.model(input_dict)
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                        loss = self._loss(result)
         
     | 
| 174 | 
         
            +
                        if np.isnan(loss.item()):
         
     | 
| 175 | 
         
            +
                            raise ValueError("loss is nan while training")
         
     | 
| 176 | 
         
            +
                        loss.backward()
         
     | 
| 177 | 
         
            +
                        self.optim.step()
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                        if self.avg_metrics is None:
         
     | 
| 180 | 
         
            +
                            self.avg_metrics = self.metrics
         
     | 
| 181 | 
         
            +
                        else:
         
     | 
| 182 | 
         
            +
                            self.avg_metrics = self.avg_metrics * 0.9 + self.metrics * 0.1
         
     | 
| 183 | 
         
            +
                        self.iteration += 1
         
     | 
| 184 | 
         
            +
                        self._write_metrics(1, loss.item(), "training", do_print=False)
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                        if self.iteration % 4 == 0:
         
     | 
| 187 | 
         
            +
                            tprint(
         
     | 
| 188 | 
         
            +
                                f"{self.epoch:03}/{self.iteration * self.batch_size // 1000:04}k| "
         
     | 
| 189 | 
         
            +
                                + "| ".join(map("{:.5f}".format, self.avg_metrics[0]))
         
     | 
| 190 | 
         
            +
                                + f"| {4 * self.batch_size / (timer() - time):04.1f} "
         
     | 
| 191 | 
         
            +
                            )
         
     | 
| 192 | 
         
            +
                            time = timer()
         
     | 
| 193 | 
         
            +
                        num_images = self.batch_size * self.iteration
         
     | 
| 194 | 
         
            +
                        if (
         
     | 
| 195 | 
         
            +
                            num_images % C.io.validation_interval == 0
         
     | 
| 196 | 
         
            +
                            or num_images == C.io.validation_debug
         
     | 
| 197 | 
         
            +
                        ):
         
     | 
| 198 | 
         
            +
                            self.validate()
         
     | 
| 199 | 
         
            +
                            time = timer()
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                def _write_metrics(self, size, total_loss, prefix, do_print=False):
         
     | 
| 202 | 
         
            +
                    for i, metrics in enumerate(self.metrics):
         
     | 
| 203 | 
         
            +
                        for label, metric in zip(self.loss_labels, metrics):
         
     | 
| 204 | 
         
            +
                            self.writer.add_scalar(
         
     | 
| 205 | 
         
            +
                                f"{prefix}/{i}/{label}", metric / size, self.iteration
         
     | 
| 206 | 
         
            +
                            )
         
     | 
| 207 | 
         
            +
                        if i == 0 and do_print:
         
     | 
| 208 | 
         
            +
                            csv_str = (
         
     | 
| 209 | 
         
            +
                                f"{self.epoch:03}/{self.iteration * self.batch_size:07},"
         
     | 
| 210 | 
         
            +
                                + ",".join(map("{:.11f}".format, metrics / size))
         
     | 
| 211 | 
         
            +
                            )
         
     | 
| 212 | 
         
            +
                            prt_str = (
         
     | 
| 213 | 
         
            +
                                f"{self.epoch:03}/{self.iteration * self.batch_size // 1000:04}k| "
         
     | 
| 214 | 
         
            +
                                + "| ".join(map("{:.5f}".format, metrics / size))
         
     | 
| 215 | 
         
            +
                            )
         
     | 
| 216 | 
         
            +
                            with open(f"{self.out}/loss.csv", "a") as fout:
         
     | 
| 217 | 
         
            +
                                print(csv_str, file=fout)
         
     | 
| 218 | 
         
            +
                            pprint(prt_str, " " * 7)
         
     | 
| 219 | 
         
            +
                    self.writer.add_scalar(
         
     | 
| 220 | 
         
            +
                        f"{prefix}/total_loss", total_loss / size, self.iteration
         
     | 
| 221 | 
         
            +
                    )
         
     | 
| 222 | 
         
            +
                    return total_loss
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                def plot(self, index, image, vpts, scores, ys, prefix):
         
     | 
| 225 | 
         
            +
                    for idx, (vp, score, y) in enumerate(zip(vpts, scores, ys)):
         
     | 
| 226 | 
         
            +
                        plt.imshow(image[0].cpu().numpy())
         
     | 
| 227 | 
         
            +
                        color = (random.random(), random.random(), random.random())
         
     | 
| 228 | 
         
            +
                        plt.scatter(vp[1], vp[0])
         
     | 
| 229 | 
         
            +
                        plt.text(
         
     | 
| 230 | 
         
            +
                            vp[1] - 20,
         
     | 
| 231 | 
         
            +
                            vp[0] - 10,
         
     | 
| 232 | 
         
            +
                            " ".join(map("{:.3f}".format, score))
         
     | 
| 233 | 
         
            +
                            + "\n"
         
     | 
| 234 | 
         
            +
                            + " ".join(map("{:.3f}".format, y)),
         
     | 
| 235 | 
         
            +
                            bbox=dict(facecolor=color),
         
     | 
| 236 | 
         
            +
                            fontsize=12,
         
     | 
| 237 | 
         
            +
                        )
         
     | 
| 238 | 
         
            +
                        for xy in np.linspace(0, 512, 10):
         
     | 
| 239 | 
         
            +
                            plt.plot(
         
     | 
| 240 | 
         
            +
                                [vp[1], xy, vp[1], xy, vp[1], 0, vp[1], 511],
         
     | 
| 241 | 
         
            +
                                [vp[0], 0, vp[0], 511, vp[0], xy, vp[0], xy],
         
     | 
| 242 | 
         
            +
                                color=color,
         
     | 
| 243 | 
         
            +
                            )
         
     | 
| 244 | 
         
            +
                        plt.savefig(f"{prefix}_vpts_{idx}.jpg"), plt.close()
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                def train(self):
         
     | 
| 247 | 
         
            +
                    plt.rcParams["figure.figsize"] = (24, 24)
         
     | 
| 248 | 
         
            +
                    epoch_size = len(self.train_loader)
         
     | 
| 249 | 
         
            +
                    start_epoch = self.iteration // epoch_size
         
     | 
| 250 | 
         
            +
                    for self.epoch in range(start_epoch, self.max_epoch):
         
     | 
| 251 | 
         
            +
                        if self.epoch == self.lr_decay_epoch:
         
     | 
| 252 | 
         
            +
                            self.optim.param_groups[0]["lr"] /= 10
         
     | 
| 253 | 
         
            +
                        self.train_epoch()
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                def move(self, obj):
         
     | 
| 256 | 
         
            +
                    if isinstance(obj, torch.Tensor):
         
     | 
| 257 | 
         
            +
                        return obj.to(self.device)
         
     | 
| 258 | 
         
            +
                    if isinstance(obj, dict):
         
     | 
| 259 | 
         
            +
                        for name in obj:
         
     | 
| 260 | 
         
            +
                            if isinstance(obj[name], torch.Tensor):
         
     | 
| 261 | 
         
            +
                                obj[name] = obj[name].to(self.device)
         
     | 
| 262 | 
         
            +
                        return obj
         
     | 
| 263 | 
         
            +
                    assert False
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
            cmap = plt.get_cmap("jet")
         
     | 
| 267 | 
         
            +
            norm = mpl.colors.Normalize(vmin=0.4, vmax=1.0)
         
     | 
| 268 | 
         
            +
            sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
         
     | 
| 269 | 
         
            +
            sm.set_array([])
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
            def c(x):
         
     | 
| 273 | 
         
            +
                return sm.to_rgba(x)
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
            def imshow(im):
         
     | 
| 277 | 
         
            +
                plt.close()
         
     | 
| 278 | 
         
            +
                plt.tight_layout()
         
     | 
| 279 | 
         
            +
                plt.imshow(im)
         
     | 
| 280 | 
         
            +
                plt.colorbar(sm, fraction=0.046)
         
     | 
| 281 | 
         
            +
                plt.xlim([0, im.shape[0]])
         
     | 
| 282 | 
         
            +
                plt.ylim([im.shape[0], 0])
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
            def tprint(*args):
         
     | 
| 286 | 
         
            +
                """Temporarily prints things on the screen"""
         
     | 
| 287 | 
         
            +
                print("\r", end="")
         
     | 
| 288 | 
         
            +
                print(*args, end="")
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
            def pprint(*args):
         
     | 
| 292 | 
         
            +
                """Permanently prints things on the screen"""
         
     | 
| 293 | 
         
            +
                print("\r", end="")
         
     | 
| 294 | 
         
            +
                print(*args)
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
            def _launch_tensorboard(board_out, port, out):
         
     | 
| 298 | 
         
            +
                os.environ["CUDA_VISIBLE_DEVICES"] = ""
         
     | 
| 299 | 
         
            +
                p = subprocess.Popen(["tensorboard", f"--logdir={board_out}", f"--port={port}"])
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                def kill():
         
     | 
| 302 | 
         
            +
                    os.kill(p.pid, signal.SIGTERM)
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                atexit.register(kill)
         
     | 
    	
        vanishing_point_extraction/neurvps/neurvps/utils.py
    ADDED
    
    | 
         @@ -0,0 +1,96 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import math
         
     | 
| 2 | 
         
            +
            import random
         
     | 
| 3 | 
         
            +
            import os.path as osp
         
     | 
| 4 | 
         
            +
            import multiprocessing
         
     | 
| 5 | 
         
            +
            from timeit import default_timer as timer
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            import numpy as np
         
     | 
| 8 | 
         
            +
            import numpy.linalg as LA
         
     | 
| 9 | 
         
            +
            import matplotlib.pyplot as plt
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            class benchmark(object):
         
     | 
| 13 | 
         
            +
                def __init__(self, msg, enable=True, fmt="%0.3g"):
         
     | 
| 14 | 
         
            +
                    self.msg = msg
         
     | 
| 15 | 
         
            +
                    self.fmt = fmt
         
     | 
| 16 | 
         
            +
                    self.enable = enable
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                def __enter__(self):
         
     | 
| 19 | 
         
            +
                    if self.enable:
         
     | 
| 20 | 
         
            +
                        self.start = timer()
         
     | 
| 21 | 
         
            +
                    return self
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                def __exit__(self, *args):
         
     | 
| 24 | 
         
            +
                    if self.enable:
         
     | 
| 25 | 
         
            +
                        t = timer() - self.start
         
     | 
| 26 | 
         
            +
                        print(("%s : " + self.fmt + " seconds") % (self.msg, t))
         
     | 
| 27 | 
         
            +
                        self.time = t
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            def plot_image_grid(im, title):
         
     | 
| 31 | 
         
            +
                plt.figure()
         
     | 
| 32 | 
         
            +
                for i in range(16):
         
     | 
| 33 | 
         
            +
                    plt.subplot(4, 4, i + 1)
         
     | 
| 34 | 
         
            +
                    plt.imshow(im[i])
         
     | 
| 35 | 
         
            +
                    plt.colorbar()
         
     | 
| 36 | 
         
            +
                plt.title(title)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            def quiver(x, y, ax):
         
     | 
| 40 | 
         
            +
                ax.set_xlim(0, x.shape[1])
         
     | 
| 41 | 
         
            +
                ax.set_ylim(x.shape[0], 0)
         
     | 
| 42 | 
         
            +
                ax.quiver(
         
     | 
| 43 | 
         
            +
                    x,
         
     | 
| 44 | 
         
            +
                    y,
         
     | 
| 45 | 
         
            +
                    units="xy",
         
     | 
| 46 | 
         
            +
                    angles="xy",
         
     | 
| 47 | 
         
            +
                    scale_units="xy",
         
     | 
| 48 | 
         
            +
                    scale=1,
         
     | 
| 49 | 
         
            +
                    minlength=0.01,
         
     | 
| 50 | 
         
            +
                    width=0.1,
         
     | 
| 51 | 
         
            +
                    color="b",
         
     | 
| 52 | 
         
            +
                )
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            def np_softmax(x, axis=0):
         
     | 
| 56 | 
         
            +
                """Compute softmax values for each sets of scores in x."""
         
     | 
| 57 | 
         
            +
                e_x = np.exp(x - np.max(x))
         
     | 
| 58 | 
         
            +
                return e_x / e_x.sum(axis=axis, keepdims=True)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            def argsort2d(arr):
         
     | 
| 62 | 
         
            +
                return np.dstack(np.unravel_index(np.argsort(arr.ravel()), arr.shape))[0]
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            def __parallel_handle(f, q_in, q_out):
         
     | 
| 66 | 
         
            +
                while True:
         
     | 
| 67 | 
         
            +
                    i, x = q_in.get()
         
     | 
| 68 | 
         
            +
                    if i is None:
         
     | 
| 69 | 
         
            +
                        break
         
     | 
| 70 | 
         
            +
                    q_out.put((i, f(x)))
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            def parmap(f, X, nprocs=multiprocessing.cpu_count(), progress_bar=lambda x: x):
         
     | 
| 74 | 
         
            +
                if nprocs == 0:
         
     | 
| 75 | 
         
            +
                    nprocs = multiprocessing.cpu_count()
         
     | 
| 76 | 
         
            +
                q_in = multiprocessing.Queue(1)
         
     | 
| 77 | 
         
            +
                q_out = multiprocessing.Queue()
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                proc = [
         
     | 
| 80 | 
         
            +
                    multiprocessing.Process(target=__parallel_handle, args=(f, q_in, q_out))
         
     | 
| 81 | 
         
            +
                    for _ in range(nprocs)
         
     | 
| 82 | 
         
            +
                ]
         
     | 
| 83 | 
         
            +
                for p in proc:
         
     | 
| 84 | 
         
            +
                    p.daemon = True
         
     | 
| 85 | 
         
            +
                    p.start()
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                try:
         
     | 
| 88 | 
         
            +
                    sent = [q_in.put((i, x)) for i, x in enumerate(X)]
         
     | 
| 89 | 
         
            +
                    [q_in.put((None, None)) for _ in range(nprocs)]
         
     | 
| 90 | 
         
            +
                    res = [q_out.get() for _ in progress_bar(range(len(sent)))]
         
     | 
| 91 | 
         
            +
                    [p.join() for p in proc]
         
     | 
| 92 | 
         
            +
                except KeyboardInterrupt:
         
     | 
| 93 | 
         
            +
                    q_in.close()
         
     | 
| 94 | 
         
            +
                    q_out.close()
         
     | 
| 95 | 
         
            +
                    raise
         
     | 
| 96 | 
         
            +
                return [x for i, x in sorted(res)]
         
     | 
    	
        vanishing_point_extraction/neurvps/vp_estim.py
    ADDED
    
    | 
         @@ -0,0 +1,180 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #!/usr/bin/env python3
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import math
         
     | 
| 4 | 
         
            +
            import random
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            import numpy as np
         
     | 
| 7 | 
         
            +
            import torch
         
     | 
| 8 | 
         
            +
            import skimage.io
         
     | 
| 9 | 
         
            +
            import numpy.linalg as LA
         
     | 
| 10 | 
         
            +
            from tqdm import tqdm
         
     | 
| 11 | 
         
            +
            import argparse
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            import neurvps
         
     | 
| 14 | 
         
            +
            from neurvps.config import C, M
         
     | 
| 15 | 
         
            +
            from tqdm import tqdm
         
     | 
| 16 | 
         
            +
            import re
         
     | 
| 17 | 
         
            +
            import json
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            def AA(x, y, threshold):
         
     | 
| 21 | 
         
            +
                index = np.searchsorted(x, threshold)
         
     | 
| 22 | 
         
            +
                x = np.concatenate([x[:index], [threshold]])
         
     | 
| 23 | 
         
            +
                y = np.concatenate([y[:index], [threshold]])
         
     | 
| 24 | 
         
            +
                return ((x[1:] - x[:-1]) * y[:-1]).sum() / threshold
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            def sample_sphere(v, alpha, num_pts):
         
     | 
| 27 | 
         
            +
                v1 = orth(v)
         
     | 
| 28 | 
         
            +
                v2 = np.cross(v, v1)
         
     | 
| 29 | 
         
            +
                v, v1, v2 = v[:, None], v1[:, None], v2[:, None]
         
     | 
| 30 | 
         
            +
                indices = np.linspace(1, num_pts, num_pts)
         
     | 
| 31 | 
         
            +
                phi = np.arccos(1 + (math.cos(alpha) - 1) * indices / num_pts)
         
     | 
| 32 | 
         
            +
                theta = np.pi * (1 + 5 ** 0.5) * indices
         
     | 
| 33 | 
         
            +
                r = np.sin(phi)
         
     | 
| 34 | 
         
            +
                return (v * np.cos(phi) + r * (v1 * np.cos(theta) + v2 * np.sin(theta))).T
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            def orth(v):
         
     | 
| 38 | 
         
            +
                x, y, z = v
         
     | 
| 39 | 
         
            +
                o = np.array([0.0, -z, y] if abs(x) < abs(y) else [-z, 0.0, x])
         
     | 
| 40 | 
         
            +
                o /= LA.norm(o)
         
     | 
| 41 | 
         
            +
                return o
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            def main():
         
     | 
| 45 | 
         
            +
                parser = argparse.ArgumentParser()
         
     | 
| 46 | 
         
            +
                parser.add_argument('--devices', type=str, help='cuda device')
         
     | 
| 47 | 
         
            +
                parser.add_argument('--config_file', type=str, help='configuration file path')
         
     | 
| 48 | 
         
            +
                parser.add_argument('--checkpoint', type=str, help='model checkpoint path')
         
     | 
| 49 | 
         
            +
                parser.add_argument('--dataset', type=str, help='dataset (e.g. SemanticKITTI | KITTI360)')
         
     | 
| 50 | 
         
            +
                parser.add_argument('--root_path', type=str, help='dataset root path')
         
     | 
| 51 | 
         
            +
                parser.add_argument('--save_path', type=str, help='result path')
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                args = parser.parse_args()
         
     | 
| 54 | 
         
            +
                config_file = args.config_file
         
     | 
| 55 | 
         
            +
                C.update(C.from_yaml(filename=config_file))
         
     | 
| 56 | 
         
            +
                C.model.im2col_step = 32  # override im2col_step for evaluation
         
     | 
| 57 | 
         
            +
                M.update(C.model)
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                random.seed(0)
         
     | 
| 60 | 
         
            +
                np.random.seed(0)
         
     | 
| 61 | 
         
            +
                torch.manual_seed(0)
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                device_name = "cpu"
         
     | 
| 64 | 
         
            +
                os.environ["CUDA_VISIBLE_DEVICES"] = args.devices
         
     | 
| 65 | 
         
            +
                if torch.cuda.is_available():
         
     | 
| 66 | 
         
            +
                    device_name = "cuda"
         
     | 
| 67 | 
         
            +
                    torch.backends.cudnn.deterministic = True
         
     | 
| 68 | 
         
            +
                    torch.cuda.manual_seed(0)
         
     | 
| 69 | 
         
            +
                    print("Let's use", torch.cuda.device_count(), "GPU(s)!")
         
     | 
| 70 | 
         
            +
                else:
         
     | 
| 71 | 
         
            +
                    print("CUDA is not available")
         
     | 
| 72 | 
         
            +
                device = torch.device(device_name)
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                if M.backbone == "stacked_hourglass":
         
     | 
| 75 | 
         
            +
                    model = neurvps.models.hg(
         
     | 
| 76 | 
         
            +
                        planes=64, depth=M.depth, num_stacks=M.num_stacks, num_blocks=M.num_blocks
         
     | 
| 77 | 
         
            +
                    )
         
     | 
| 78 | 
         
            +
                else:
         
     | 
| 79 | 
         
            +
                    raise NotImplementedError
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                checkpoint = torch.load(args.checkpoint)
         
     | 
| 82 | 
         
            +
                model = neurvps.models.VanishingNet(
         
     | 
| 83 | 
         
            +
                    model, C.model.output_stride, C.model.upsample_scale
         
     | 
| 84 | 
         
            +
                )
         
     | 
| 85 | 
         
            +
                model = model.to(device)
         
     | 
| 86 | 
         
            +
                model = torch.nn.DataParallel(
         
     | 
| 87 | 
         
            +
                    model, device_ids=list(range(args.devices.count(",") + 1))
         
     | 
| 88 | 
         
            +
                )
         
     | 
| 89 | 
         
            +
                model.load_state_dict(checkpoint["model_state_dict"])
         
     | 
| 90 | 
         
            +
                model.eval()
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                dataset = args.dataset
         
     | 
| 93 | 
         
            +
                root_path = args.root_path
         
     | 
| 94 | 
         
            +
                save_root_path = args.save_path
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                if dataset == "SemanticKITTI":
         
     | 
| 97 | 
         
            +
                    sequences = ['00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '10']
         
     | 
| 98 | 
         
            +
                    folder_paths = [os.path.join(root_path, 'dataset/sequences', str(sequence), 'image_2') for sequence in sequences]
         
     | 
| 99 | 
         
            +
                    dataset_prefixes = ['SemanticKITTI/dataset/sequences/'+str(sequence)+'/image_2/' for sequence in sequences]
         
     | 
| 100 | 
         
            +
                    if not os.path.exists(save_root_path):
         
     | 
| 101 | 
         
            +
                        os.makedirs(save_root_path)
         
     | 
| 102 | 
         
            +
                    save_paths = [os.path.join(save_root_path, "seq_" + sequence + '.json') for sequence in sequences]
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                elif dataset == "KITTI-360":
         
     | 
| 105 | 
         
            +
                    sequences = ['2013_05_28_drive_0000_sync', '2013_05_28_drive_0002_sync', '2013_05_28_drive_0003_sync',\
         
     | 
| 106 | 
         
            +
                    '2013_05_28_drive_0004_sync', '2013_05_28_drive_0005_sync', '2013_05_28_drive_0006_sync',\
         
     | 
| 107 | 
         
            +
                    '2013_05_28_drive_0007_sync','2013_05_28_drive_0009_sync','2013_05_28_drive_0010_sync']
         
     | 
| 108 | 
         
            +
                    folder_paths = [os.path.join(root_path, 'data_2d_raw',str(sequence), 'image_00/data_rect') for sequence in sequences]
         
     | 
| 109 | 
         
            +
                    dataset_prefixes = ['KITTI-360/'+str(sequence)+'/image_00/' for sequence in sequences]
         
     | 
| 110 | 
         
            +
                    if not os.path.exists(save_root_path):
         
     | 
| 111 | 
         
            +
                        os.makedirs(save_root_path)
         
     | 
| 112 | 
         
            +
                    save_sequences = ['00', '02', '03', '04', '05', '06', '07', '09', '10']
         
     | 
| 113 | 
         
            +
                    save_paths = [os.path.join(save_root_path, "seq_" + sequence + '.json') for sequence in save_sequences]
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                for seq in range(len(sequences)):
         
     | 
| 116 | 
         
            +
                    print("sequence : ", seq)
         
     | 
| 117 | 
         
            +
                    folder_path = folder_paths[seq]
         
     | 
| 118 | 
         
            +
                    all_files = os.listdir(folder_path)
         
     | 
| 119 | 
         
            +
                    all_files = sorted(all_files, key=lambda s: int(re.search(r'\d+', s).group()))
         
     | 
| 120 | 
         
            +
                
         
     | 
| 121 | 
         
            +
                    image_extensions = ['.jpg', '.png', '.jpeg']
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                    VP = {}
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                    for file in tqdm(all_files):
         
     | 
| 126 | 
         
            +
                        if any(file.endswith(ext) for ext in image_extensions):
         
     | 
| 127 | 
         
            +
                            image_path = os.path.join(folder_path, file)
         
     | 
| 128 | 
         
            +
                            
         
     | 
| 129 | 
         
            +
                            image_origin = skimage.io.imread(image_path)
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                            original_height, original_width = image_origin.shape[:2]
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                            image = skimage.transform.resize(image_origin, (512, 512))
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                            if image.ndim == 2:
         
     | 
| 136 | 
         
            +
                                image = image[:, :, None].repeat(3, 2)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                            image = np.rollaxis(image, 2)
         
     | 
| 139 | 
         
            +
                            image_tensor = torch.tensor(image * 255).float().to(device).unsqueeze(0)
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                            input_dict = {"image": image_tensor, "test": True}
         
     | 
| 142 | 
         
            +
                            vpts = sample_sphere(np.array([0, 0, 1]), np.pi / 2, 64)
         
     | 
| 143 | 
         
            +
                            input_dict["vpts"] = vpts
         
     | 
| 144 | 
         
            +
                            with torch.no_grad():
         
     | 
| 145 | 
         
            +
                                score = model(input_dict)[:, -1].cpu().numpy()
         
     | 
| 146 | 
         
            +
                            index = np.argsort(-score)
         
     | 
| 147 | 
         
            +
                            candidate = [index[0]]
         
     | 
| 148 | 
         
            +
                            n = C.io.num_vpts
         
     | 
| 149 | 
         
            +
                            for i in index[1:]:
         
     | 
| 150 | 
         
            +
                                if len(candidate) == n:
         
     | 
| 151 | 
         
            +
                                    break
         
     | 
| 152 | 
         
            +
                                dst = np.min(np.arccos(np.abs(vpts[candidate] @ vpts[i])))
         
     | 
| 153 | 
         
            +
                                if dst < np.pi / n:
         
     | 
| 154 | 
         
            +
                                    continue
         
     | 
| 155 | 
         
            +
                                candidate.append(i)
         
     | 
| 156 | 
         
            +
                            vpts_pd = vpts[candidate]
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                            for res in range(1, len(M.multires)):
         
     | 
| 159 | 
         
            +
                                vpts = [sample_sphere(vpts_pd[vp], M.multires[-res], 64) for vp in range(n)]
         
     | 
| 160 | 
         
            +
                                input_dict["vpts"] = np.vstack(vpts)
         
     | 
| 161 | 
         
            +
                                with torch.no_grad():
         
     | 
| 162 | 
         
            +
                                    score = model(input_dict)[:, -res - 1].cpu().numpy().reshape(n, -1)
         
     | 
| 163 | 
         
            +
                                for i, s in enumerate(score):
         
     | 
| 164 | 
         
            +
                                    vpts_pd[i] = vpts[i][np.argmax(s)]
         
     | 
| 165 | 
         
            +
                            
         
     | 
| 166 | 
         
            +
                            Vanishing_point = []
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                            for vp in vpts_pd:
         
     | 
| 169 | 
         
            +
                                x = vp[0] * original_width / 2 + original_width / 2
         
     | 
| 170 | 
         
            +
                                y = original_height / 2 - vp[1] * original_height / 2
         
     | 
| 171 | 
         
            +
                                
         
     | 
| 172 | 
         
            +
                                Vanishing_point.append([x,y])
         
     | 
| 173 | 
         
            +
                            
         
     | 
| 174 | 
         
            +
                            VP[os.path.join(dataset_prefixes[seq], file)] = Vanishing_point
         
     | 
| 175 | 
         
            +
                            
         
     | 
| 176 | 
         
            +
                    with open(save_paths[seq], 'w') as f:
         
     | 
| 177 | 
         
            +
                        json.dump(VP, f)
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 180 | 
         
            +
                main()
         
     | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/TMM17/checkpoint_latest.pth.tar
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:951f12bfe2a3afdef5b95d6a1cb9bbe51e73913c70212c8e628b696bd39a74e7
         
     | 
| 3 | 
         
            +
            size 358844104
         
     | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,4 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import neurvps.models
         
     | 
| 2 | 
         
            +
            import neurvps.trainer
         
     | 
| 3 | 
         
            +
            import neurvps.datasets
         
     | 
| 4 | 
         
            +
            import neurvps.config
         
     | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/__init__.cpython-38.pyc
    ADDED
    
    | 
         Binary file (267 Bytes). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/box.cpython-38.pyc
    ADDED
    
    | 
         Binary file (33.4 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/config.cpython-38.pyc
    ADDED
    
    | 
         Binary file (231 Bytes). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/datasets.cpython-38.pyc
    ADDED
    
    | 
         Binary file (6.56 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/trainer.cpython-38.pyc
    ADDED
    
    | 
         Binary file (8.97 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/__pycache__/utils.cpython-38.pyc
    ADDED
    
    | 
         Binary file (3.72 kB). View file 
     | 
| 
         | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/box.py
    ADDED
    
    | 
         @@ -0,0 +1,1110 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #!/usr/bin/env python
         
     | 
| 2 | 
         
            +
            # -*- coding: UTF-8 -*-
         
     | 
| 3 | 
         
            +
            #
         
     | 
| 4 | 
         
            +
            # Copyright (c) 2017-2019 - Chris Griffith - MIT License
         
     | 
| 5 | 
         
            +
            """
         
     | 
| 6 | 
         
            +
            Improved dictionary access through dot notation with additional tools.
         
     | 
| 7 | 
         
            +
            """
         
     | 
| 8 | 
         
            +
            import string
         
     | 
| 9 | 
         
            +
            import sys
         
     | 
| 10 | 
         
            +
            import json
         
     | 
| 11 | 
         
            +
            import re
         
     | 
| 12 | 
         
            +
            import copy
         
     | 
| 13 | 
         
            +
            from keyword import kwlist
         
     | 
| 14 | 
         
            +
            import warnings
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            try:
         
     | 
| 17 | 
         
            +
                from collections.abc import Iterable, Mapping, Callable
         
     | 
| 18 | 
         
            +
            except ImportError:
         
     | 
| 19 | 
         
            +
                from collections import Iterable, Mapping, Callable
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            yaml_support = True
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            try:
         
     | 
| 24 | 
         
            +
                import yaml
         
     | 
| 25 | 
         
            +
            except ImportError:
         
     | 
| 26 | 
         
            +
                try:
         
     | 
| 27 | 
         
            +
                    import ruamel.yaml as yaml
         
     | 
| 28 | 
         
            +
                except ImportError:
         
     | 
| 29 | 
         
            +
                    yaml = None
         
     | 
| 30 | 
         
            +
                    yaml_support = False
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            if sys.version_info >= (3, 0):
         
     | 
| 33 | 
         
            +
                basestring = str
         
     | 
| 34 | 
         
            +
            else:
         
     | 
| 35 | 
         
            +
                from io import open
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            __all__ = ['Box', 'ConfigBox', 'BoxList', 'SBox',
         
     | 
| 38 | 
         
            +
                       'BoxError', 'BoxKeyError']
         
     | 
| 39 | 
         
            +
            __author__ = 'Chris Griffith'
         
     | 
| 40 | 
         
            +
            __version__ = '3.2.4'
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            BOX_PARAMETERS = ('default_box', 'default_box_attr', 'conversion_box',
         
     | 
| 43 | 
         
            +
                              'frozen_box', 'camel_killer_box', 'box_it_up',
         
     | 
| 44 | 
         
            +
                              'box_safe_prefix', 'box_duplicates', 'ordered_box')
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            _first_cap_re = re.compile('(.)([A-Z][a-z]+)')
         
     | 
| 47 | 
         
            +
            _all_cap_re = re.compile('([a-z0-9])([A-Z])')
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            class BoxError(Exception):
         
     | 
| 51 | 
         
            +
                """Non standard dictionary exceptions"""
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            class BoxKeyError(BoxError, KeyError, AttributeError):
         
     | 
| 55 | 
         
            +
                """Key does not exist"""
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            # Abstract converter functions for use in any Box class
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            def _to_json(obj, filename=None,
         
     | 
| 62 | 
         
            +
                         encoding="utf-8", errors="strict", **json_kwargs):
         
     | 
| 63 | 
         
            +
                json_dump = json.dumps(obj,
         
     | 
| 64 | 
         
            +
                                       ensure_ascii=False, **json_kwargs)
         
     | 
| 65 | 
         
            +
                if filename:
         
     | 
| 66 | 
         
            +
                    with open(filename, 'w', encoding=encoding, errors=errors) as f:
         
     | 
| 67 | 
         
            +
                        f.write(json_dump if sys.version_info >= (3, 0) else
         
     | 
| 68 | 
         
            +
                                json_dump.decode("utf-8"))
         
     | 
| 69 | 
         
            +
                else:
         
     | 
| 70 | 
         
            +
                    return json_dump
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            def _from_json(json_string=None, filename=None,
         
     | 
| 74 | 
         
            +
                           encoding="utf-8", errors="strict", multiline=False, **kwargs):
         
     | 
| 75 | 
         
            +
                if filename:
         
     | 
| 76 | 
         
            +
                    with open(filename, 'r', encoding=encoding, errors=errors) as f:
         
     | 
| 77 | 
         
            +
                        if multiline:
         
     | 
| 78 | 
         
            +
                            data = [json.loads(line.strip(), **kwargs) for line in f
         
     | 
| 79 | 
         
            +
                                    if line.strip() and not line.strip().startswith("#")]
         
     | 
| 80 | 
         
            +
                        else:
         
     | 
| 81 | 
         
            +
                            data = json.load(f, **kwargs)
         
     | 
| 82 | 
         
            +
                elif json_string:
         
     | 
| 83 | 
         
            +
                    data = json.loads(json_string, **kwargs)
         
     | 
| 84 | 
         
            +
                else:
         
     | 
| 85 | 
         
            +
                    raise BoxError('from_json requires a string or filename')
         
     | 
| 86 | 
         
            +
                return data
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            def _to_yaml(obj, filename=None, default_flow_style=False,
         
     | 
| 90 | 
         
            +
                         encoding="utf-8", errors="strict",
         
     | 
| 91 | 
         
            +
                         **yaml_kwargs):
         
     | 
| 92 | 
         
            +
                if filename:
         
     | 
| 93 | 
         
            +
                    with open(filename, 'w',
         
     | 
| 94 | 
         
            +
                              encoding=encoding, errors=errors) as f:
         
     | 
| 95 | 
         
            +
                        yaml.dump(obj, stream=f,
         
     | 
| 96 | 
         
            +
                                  default_flow_style=default_flow_style,
         
     | 
| 97 | 
         
            +
                                  **yaml_kwargs)
         
     | 
| 98 | 
         
            +
                else:
         
     | 
| 99 | 
         
            +
                    return yaml.dump(obj,
         
     | 
| 100 | 
         
            +
                                     default_flow_style=default_flow_style,
         
     | 
| 101 | 
         
            +
                                     **yaml_kwargs)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            def _from_yaml(yaml_string=None, filename=None,
         
     | 
| 105 | 
         
            +
                           encoding="utf-8", errors="strict",
         
     | 
| 106 | 
         
            +
                           **kwargs):
         
     | 
| 107 | 
         
            +
                if filename:
         
     | 
| 108 | 
         
            +
                    with open(filename, 'r',
         
     | 
| 109 | 
         
            +
                              encoding=encoding, errors=errors) as f:
         
     | 
| 110 | 
         
            +
                        data = yaml.load(f, **kwargs)
         
     | 
| 111 | 
         
            +
                elif yaml_string:
         
     | 
| 112 | 
         
            +
                    data = yaml.load(yaml_string, **kwargs)
         
     | 
| 113 | 
         
            +
                else:
         
     | 
| 114 | 
         
            +
                    raise BoxError('from_yaml requires a string or filename')
         
     | 
| 115 | 
         
            +
                return data
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
            # Helper functions
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
            def _safe_key(key):
         
     | 
| 122 | 
         
            +
                try:
         
     | 
| 123 | 
         
            +
                    return str(key)
         
     | 
| 124 | 
         
            +
                except UnicodeEncodeError:
         
     | 
| 125 | 
         
            +
                    return key.encode("utf-8", "ignore")
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
            def _safe_attr(attr, camel_killer=False, replacement_char='x'):
         
     | 
| 129 | 
         
            +
                """Convert a key into something that is accessible as an attribute"""
         
     | 
| 130 | 
         
            +
                allowed = string.ascii_letters + string.digits + '_'
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                attr = _safe_key(attr)
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                if camel_killer:
         
     | 
| 135 | 
         
            +
                    attr = _camel_killer(attr)
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                attr = attr.replace(' ', '_')
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                out = ''
         
     | 
| 140 | 
         
            +
                for character in attr:
         
     | 
| 141 | 
         
            +
                    out += character if character in allowed else "_"
         
     | 
| 142 | 
         
            +
                out = out.strip("_")
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                try:
         
     | 
| 145 | 
         
            +
                    int(out[0])
         
     | 
| 146 | 
         
            +
                except (ValueError, IndexError):
         
     | 
| 147 | 
         
            +
                    pass
         
     | 
| 148 | 
         
            +
                else:
         
     | 
| 149 | 
         
            +
                    out = '{0}{1}'.format(replacement_char, out)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                if out in kwlist:
         
     | 
| 152 | 
         
            +
                    out = '{0}{1}'.format(replacement_char, out)
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                return re.sub('_+', '_', out)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            def _camel_killer(attr):
         
     | 
| 158 | 
         
            +
                """
         
     | 
| 159 | 
         
            +
                CamelKiller, qu'est-ce que c'est?
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                Taken from http://stackoverflow.com/a/1176023/3244542
         
     | 
| 162 | 
         
            +
                """
         
     | 
| 163 | 
         
            +
                try:
         
     | 
| 164 | 
         
            +
                    attr = str(attr)
         
     | 
| 165 | 
         
            +
                except UnicodeEncodeError:
         
     | 
| 166 | 
         
            +
                    attr = attr.encode("utf-8", "ignore")
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                s1 = _first_cap_re.sub(r'\1_\2', attr)
         
     | 
| 169 | 
         
            +
                s2 = _all_cap_re.sub(r'\1_\2', s1)
         
     | 
| 170 | 
         
            +
                return re.sub('_+', '_', s2.casefold() if hasattr(s2, 'casefold') else
         
     | 
| 171 | 
         
            +
                              s2.lower())
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
            def _recursive_tuples(iterable, box_class, recreate_tuples=False, **kwargs):
         
     | 
| 175 | 
         
            +
                out_list = []
         
     | 
| 176 | 
         
            +
                for i in iterable:
         
     | 
| 177 | 
         
            +
                    if isinstance(i, dict):
         
     | 
| 178 | 
         
            +
                        out_list.append(box_class(i, **kwargs))
         
     | 
| 179 | 
         
            +
                    elif isinstance(i, list) or (recreate_tuples and isinstance(i, tuple)):
         
     | 
| 180 | 
         
            +
                        out_list.append(_recursive_tuples(i, box_class,
         
     | 
| 181 | 
         
            +
                                                          recreate_tuples, **kwargs))
         
     | 
| 182 | 
         
            +
                    else:
         
     | 
| 183 | 
         
            +
                        out_list.append(i)
         
     | 
| 184 | 
         
            +
                return tuple(out_list)
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            def _conversion_checks(item, keys, box_config, check_only=False,
         
     | 
| 188 | 
         
            +
                                   pre_check=False):
         
     | 
| 189 | 
         
            +
                """
         
     | 
| 190 | 
         
            +
                Internal use for checking if a duplicate safe attribute already exists
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                :param item: Item to see if a dup exists
         
     | 
| 193 | 
         
            +
                :param keys: Keys to check against
         
     | 
| 194 | 
         
            +
                :param box_config: Easier to pass in than ask for specfic items
         
     | 
| 195 | 
         
            +
                :param check_only: Don't bother doing the conversion work
         
     | 
| 196 | 
         
            +
                :param pre_check: Need to add the item to the list of keys to check
         
     | 
| 197 | 
         
            +
                :return: the original unmodified key, if exists and not check_only
         
     | 
| 198 | 
         
            +
                """
         
     | 
| 199 | 
         
            +
                if box_config['box_duplicates'] != 'ignore':
         
     | 
| 200 | 
         
            +
                    if pre_check:
         
     | 
| 201 | 
         
            +
                        keys = list(keys) + [item]
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                    key_list = [(k,
         
     | 
| 204 | 
         
            +
                                 _safe_attr(k, camel_killer=box_config['camel_killer_box'],
         
     | 
| 205 | 
         
            +
                                            replacement_char=box_config['box_safe_prefix']
         
     | 
| 206 | 
         
            +
                                            )) for k in keys]
         
     | 
| 207 | 
         
            +
                    if len(key_list) > len(set(x[1] for x in key_list)):
         
     | 
| 208 | 
         
            +
                        seen = set()
         
     | 
| 209 | 
         
            +
                        dups = set()
         
     | 
| 210 | 
         
            +
                        for x in key_list:
         
     | 
| 211 | 
         
            +
                            if x[1] in seen:
         
     | 
| 212 | 
         
            +
                                dups.add("{0}({1})".format(x[0], x[1]))
         
     | 
| 213 | 
         
            +
                            seen.add(x[1])
         
     | 
| 214 | 
         
            +
                        if box_config['box_duplicates'].startswith("warn"):
         
     | 
| 215 | 
         
            +
                            warnings.warn('Duplicate conversion attributes exist: '
         
     | 
| 216 | 
         
            +
                                          '{0}'.format(dups))
         
     | 
| 217 | 
         
            +
                        else:
         
     | 
| 218 | 
         
            +
                            raise BoxError('Duplicate conversion attributes exist: '
         
     | 
| 219 | 
         
            +
                                           '{0}'.format(dups))
         
     | 
| 220 | 
         
            +
                if check_only:
         
     | 
| 221 | 
         
            +
                    return
         
     | 
| 222 | 
         
            +
                # This way will be slower for warnings, as it will have double work
         
     | 
| 223 | 
         
            +
                # But faster for the default 'ignore'
         
     | 
| 224 | 
         
            +
                for k in keys:
         
     | 
| 225 | 
         
            +
                    if item == _safe_attr(k, camel_killer=box_config['camel_killer_box'],
         
     | 
| 226 | 
         
            +
                                          replacement_char=box_config['box_safe_prefix']):
         
     | 
| 227 | 
         
            +
                        return k
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
            def _get_box_config(cls, kwargs):
         
     | 
| 231 | 
         
            +
                return {
         
     | 
| 232 | 
         
            +
                    # Internal use only
         
     | 
| 233 | 
         
            +
                    '__converted': set(),
         
     | 
| 234 | 
         
            +
                    '__box_heritage': kwargs.pop('__box_heritage', None),
         
     | 
| 235 | 
         
            +
                    '__created': False,
         
     | 
| 236 | 
         
            +
                    '__ordered_box_values': [],
         
     | 
| 237 | 
         
            +
                    # Can be changed by user after box creation
         
     | 
| 238 | 
         
            +
                    'default_box': kwargs.pop('default_box', False),
         
     | 
| 239 | 
         
            +
                    'default_box_attr': kwargs.pop('default_box_attr', cls),
         
     | 
| 240 | 
         
            +
                    'conversion_box': kwargs.pop('conversion_box', True),
         
     | 
| 241 | 
         
            +
                    'box_safe_prefix': kwargs.pop('box_safe_prefix', 'x'),
         
     | 
| 242 | 
         
            +
                    'frozen_box': kwargs.pop('frozen_box', False),
         
     | 
| 243 | 
         
            +
                    'camel_killer_box': kwargs.pop('camel_killer_box', False),
         
     | 
| 244 | 
         
            +
                    'modify_tuples_box': kwargs.pop('modify_tuples_box', False),
         
     | 
| 245 | 
         
            +
                    'box_duplicates': kwargs.pop('box_duplicates', 'ignore'),
         
     | 
| 246 | 
         
            +
                    'ordered_box': kwargs.pop('ordered_box', False)
         
     | 
| 247 | 
         
            +
                }
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
            class Box(dict):
         
     | 
| 251 | 
         
            +
                """
         
     | 
| 252 | 
         
            +
                Improved dictionary access through dot notation with additional tools.
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                :param default_box: Similar to defaultdict, return a default value
         
     | 
| 255 | 
         
            +
                :param default_box_attr: Specify the default replacement.
         
     | 
| 256 | 
         
            +
                    WARNING: If this is not the default 'Box', it will not be recursive
         
     | 
| 257 | 
         
            +
                :param frozen_box: After creation, the box cannot be modified
         
     | 
| 258 | 
         
            +
                :param camel_killer_box: Convert CamelCase to snake_case
         
     | 
| 259 | 
         
            +
                :param conversion_box: Check for near matching keys as attributes
         
     | 
| 260 | 
         
            +
                :param modify_tuples_box: Recreate incoming tuples with dicts into Boxes
         
     | 
| 261 | 
         
            +
                :param box_it_up: Recursively create all Boxes from the start
         
     | 
| 262 | 
         
            +
                :param box_safe_prefix: Conversion box prefix for unsafe attributes
         
     | 
| 263 | 
         
            +
                :param box_duplicates: "ignore", "error" or "warn" when duplicates exists
         
     | 
| 264 | 
         
            +
                    in a conversion_box
         
     | 
| 265 | 
         
            +
                :param ordered_box: Preserve the order of keys entered into the box
         
     | 
| 266 | 
         
            +
                """
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
                _protected_keys = dir({}) + ['to_dict', 'tree_view', 'to_json', 'to_yaml',
         
     | 
| 269 | 
         
            +
                                             'from_yaml', 'from_json']
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                def __new__(cls, *args, **kwargs):
         
     | 
| 272 | 
         
            +
                    """
         
     | 
| 273 | 
         
            +
                    Due to the way pickling works in python 3, we need to make sure
         
     | 
| 274 | 
         
            +
                    the box config is created as early as possible.
         
     | 
| 275 | 
         
            +
                    """
         
     | 
| 276 | 
         
            +
                    obj = super(Box, cls).__new__(cls, *args, **kwargs)
         
     | 
| 277 | 
         
            +
                    obj._box_config = _get_box_config(cls, kwargs)
         
     | 
| 278 | 
         
            +
                    return obj
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                def __init__(self, *args, **kwargs):
         
     | 
| 281 | 
         
            +
                    self._box_config = _get_box_config(self.__class__, kwargs)
         
     | 
| 282 | 
         
            +
                    if self._box_config['ordered_box']:
         
     | 
| 283 | 
         
            +
                        self._box_config['__ordered_box_values'] = []
         
     | 
| 284 | 
         
            +
                    if (not self._box_config['conversion_box'] and
         
     | 
| 285 | 
         
            +
                            self._box_config['box_duplicates'] != "ignore"):
         
     | 
| 286 | 
         
            +
                        raise BoxError('box_duplicates are only for conversion_boxes')
         
     | 
| 287 | 
         
            +
                    if len(args) == 1:
         
     | 
| 288 | 
         
            +
                        if isinstance(args[0], basestring):
         
     | 
| 289 | 
         
            +
                            raise ValueError('Cannot extrapolate Box from string')
         
     | 
| 290 | 
         
            +
                        if isinstance(args[0], Mapping):
         
     | 
| 291 | 
         
            +
                            for k, v in args[0].items():
         
     | 
| 292 | 
         
            +
                                if v is args[0]:
         
     | 
| 293 | 
         
            +
                                    v = self
         
     | 
| 294 | 
         
            +
                                self[k] = v
         
     | 
| 295 | 
         
            +
                                self.__add_ordered(k)
         
     | 
| 296 | 
         
            +
                        elif isinstance(args[0], Iterable):
         
     | 
| 297 | 
         
            +
                            for k, v in args[0]:
         
     | 
| 298 | 
         
            +
                                self[k] = v
         
     | 
| 299 | 
         
            +
                                self.__add_ordered(k)
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                        else:
         
     | 
| 302 | 
         
            +
                            raise ValueError('First argument must be mapping or iterable')
         
     | 
| 303 | 
         
            +
                    elif args:
         
     | 
| 304 | 
         
            +
                        raise TypeError('Box expected at most 1 argument, '
         
     | 
| 305 | 
         
            +
                                        'got {0}'.format(len(args)))
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                    box_it = kwargs.pop('box_it_up', False)
         
     | 
| 308 | 
         
            +
                    for k, v in kwargs.items():
         
     | 
| 309 | 
         
            +
                        if args and isinstance(args[0], Mapping) and v is args[0]:
         
     | 
| 310 | 
         
            +
                            v = self
         
     | 
| 311 | 
         
            +
                        self[k] = v
         
     | 
| 312 | 
         
            +
                        self.__add_ordered(k)
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
                    if (self._box_config['frozen_box'] or box_it or
         
     | 
| 315 | 
         
            +
                            self._box_config['box_duplicates'] != 'ignore'):
         
     | 
| 316 | 
         
            +
                        self.box_it_up()
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                    self._box_config['__created'] = True
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
                def __add_ordered(self, key):
         
     | 
| 321 | 
         
            +
                    if (self._box_config['ordered_box'] and
         
     | 
| 322 | 
         
            +
                            key not in self._box_config['__ordered_box_values']):
         
     | 
| 323 | 
         
            +
                        self._box_config['__ordered_box_values'].append(key)
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                def box_it_up(self):
         
     | 
| 326 | 
         
            +
                    """
         
     | 
| 327 | 
         
            +
                    Perform value lookup for all items in current dictionary,
         
     | 
| 328 | 
         
            +
                    generating all sub Box objects, while also running `box_it_up` on
         
     | 
| 329 | 
         
            +
                    any of those sub box objects.
         
     | 
| 330 | 
         
            +
                    """
         
     | 
| 331 | 
         
            +
                    for k in self:
         
     | 
| 332 | 
         
            +
                        _conversion_checks(k, self.keys(), self._box_config,
         
     | 
| 333 | 
         
            +
                                           check_only=True)
         
     | 
| 334 | 
         
            +
                        if self[k] is not self and hasattr(self[k], 'box_it_up'):
         
     | 
| 335 | 
         
            +
                            self[k].box_it_up()
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                def __hash__(self):
         
     | 
| 338 | 
         
            +
                    if self._box_config['frozen_box']:
         
     | 
| 339 | 
         
            +
                        hashing = 54321
         
     | 
| 340 | 
         
            +
                        for item in self.items():
         
     | 
| 341 | 
         
            +
                            hashing ^= hash(item)
         
     | 
| 342 | 
         
            +
                        return hashing
         
     | 
| 343 | 
         
            +
                    raise TypeError("unhashable type: 'Box'")
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
                def __dir__(self):
         
     | 
| 346 | 
         
            +
                    allowed = string.ascii_letters + string.digits + '_'
         
     | 
| 347 | 
         
            +
                    kill_camel = self._box_config['camel_killer_box']
         
     | 
| 348 | 
         
            +
                    items = set(dir(dict) + ['to_dict', 'to_json',
         
     | 
| 349 | 
         
            +
                                             'from_json', 'box_it_up'])
         
     | 
| 350 | 
         
            +
                    # Only show items accessible by dot notation
         
     | 
| 351 | 
         
            +
                    for key in self.keys():
         
     | 
| 352 | 
         
            +
                        key = _safe_key(key)
         
     | 
| 353 | 
         
            +
                        if (' ' not in key and key[0] not in string.digits and
         
     | 
| 354 | 
         
            +
                                key not in kwlist):
         
     | 
| 355 | 
         
            +
                            for letter in key:
         
     | 
| 356 | 
         
            +
                                if letter not in allowed:
         
     | 
| 357 | 
         
            +
                                    break
         
     | 
| 358 | 
         
            +
                            else:
         
     | 
| 359 | 
         
            +
                                items.add(key)
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    for key in self.keys():
         
     | 
| 362 | 
         
            +
                        key = _safe_key(key)
         
     | 
| 363 | 
         
            +
                        if key not in items:
         
     | 
| 364 | 
         
            +
                            if self._box_config['conversion_box']:
         
     | 
| 365 | 
         
            +
                                key = _safe_attr(key, camel_killer=kill_camel,
         
     | 
| 366 | 
         
            +
                                                 replacement_char=self._box_config[
         
     | 
| 367 | 
         
            +
                                                     'box_safe_prefix'])
         
     | 
| 368 | 
         
            +
                                if key:
         
     | 
| 369 | 
         
            +
                                    items.add(key)
         
     | 
| 370 | 
         
            +
                        if kill_camel:
         
     | 
| 371 | 
         
            +
                            snake_key = _camel_killer(key)
         
     | 
| 372 | 
         
            +
                            if snake_key:
         
     | 
| 373 | 
         
            +
                                items.remove(key)
         
     | 
| 374 | 
         
            +
                                items.add(snake_key)
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                    if yaml_support:
         
     | 
| 377 | 
         
            +
                        items.add('to_yaml')
         
     | 
| 378 | 
         
            +
                        items.add('from_yaml')
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                    return list(items)
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                def get(self, key, default=None):
         
     | 
| 383 | 
         
            +
                    try:
         
     | 
| 384 | 
         
            +
                        return self[key]
         
     | 
| 385 | 
         
            +
                    except KeyError:
         
     | 
| 386 | 
         
            +
                        if isinstance(default, dict) and not isinstance(default, Box):
         
     | 
| 387 | 
         
            +
                            return Box(default)
         
     | 
| 388 | 
         
            +
                        if isinstance(default, list) and not isinstance(default, BoxList):
         
     | 
| 389 | 
         
            +
                            return BoxList(default)
         
     | 
| 390 | 
         
            +
                        return default
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                def copy(self):
         
     | 
| 393 | 
         
            +
                    return self.__class__(super(self.__class__, self).copy())
         
     | 
| 394 | 
         
            +
             
     | 
| 395 | 
         
            +
                def __copy__(self):
         
     | 
| 396 | 
         
            +
                    return self.__class__(super(self.__class__, self).copy())
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                def __deepcopy__(self, memodict=None):
         
     | 
| 399 | 
         
            +
                    out = self.__class__()
         
     | 
| 400 | 
         
            +
                    memodict = memodict or {}
         
     | 
| 401 | 
         
            +
                    memodict[id(self)] = out
         
     | 
| 402 | 
         
            +
                    for k, v in self.items():
         
     | 
| 403 | 
         
            +
                        out[copy.deepcopy(k, memodict)] = copy.deepcopy(v, memodict)
         
     | 
| 404 | 
         
            +
                    return out
         
     | 
| 405 | 
         
            +
             
     | 
| 406 | 
         
            +
                def __setstate__(self, state):
         
     | 
| 407 | 
         
            +
                    self._box_config = state['_box_config']
         
     | 
| 408 | 
         
            +
                    self.__dict__.update(state)
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
                def __getitem__(self, item, _ignore_default=False):
         
     | 
| 411 | 
         
            +
                    try:
         
     | 
| 412 | 
         
            +
                        value = super(Box, self).__getitem__(item)
         
     | 
| 413 | 
         
            +
                    except KeyError as err:
         
     | 
| 414 | 
         
            +
                        if item == '_box_config':
         
     | 
| 415 | 
         
            +
                            raise BoxKeyError('_box_config should only exist as an '
         
     | 
| 416 | 
         
            +
                                              'attribute and is never defaulted')
         
     | 
| 417 | 
         
            +
                        if self._box_config['default_box'] and not _ignore_default:
         
     | 
| 418 | 
         
            +
                            return self.__get_default(item)
         
     | 
| 419 | 
         
            +
                        raise BoxKeyError(str(err))
         
     | 
| 420 | 
         
            +
                    else:
         
     | 
| 421 | 
         
            +
                        return self.__convert_and_store(item, value)
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                def keys(self):
         
     | 
| 424 | 
         
            +
                    if self._box_config['ordered_box']:
         
     | 
| 425 | 
         
            +
                        return self._box_config['__ordered_box_values']
         
     | 
| 426 | 
         
            +
                    return super(Box, self).keys()
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                def values(self):
         
     | 
| 429 | 
         
            +
                    return [self[x] for x in self.keys()]
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                def items(self):
         
     | 
| 432 | 
         
            +
                    return [(x, self[x]) for x in self.keys()]
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
                def __get_default(self, item):
         
     | 
| 435 | 
         
            +
                    default_value = self._box_config['default_box_attr']
         
     | 
| 436 | 
         
            +
                    if default_value is self.__class__:
         
     | 
| 437 | 
         
            +
                        return self.__class__(__box_heritage=(self, item),
         
     | 
| 438 | 
         
            +
                                              **self.__box_config())
         
     | 
| 439 | 
         
            +
                    elif isinstance(default_value, Callable):
         
     | 
| 440 | 
         
            +
                        return default_value()
         
     | 
| 441 | 
         
            +
                    elif hasattr(default_value, 'copy'):
         
     | 
| 442 | 
         
            +
                        return default_value.copy()
         
     | 
| 443 | 
         
            +
                    return default_value
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                def __box_config(self):
         
     | 
| 446 | 
         
            +
                    out = {}
         
     | 
| 447 | 
         
            +
                    for k, v in self._box_config.copy().items():
         
     | 
| 448 | 
         
            +
                        if not k.startswith("__"):
         
     | 
| 449 | 
         
            +
                            out[k] = v
         
     | 
| 450 | 
         
            +
                    return out
         
     | 
| 451 | 
         
            +
             
     | 
| 452 | 
         
            +
                def __convert_and_store(self, item, value):
         
     | 
| 453 | 
         
            +
                    if item in self._box_config['__converted']:
         
     | 
| 454 | 
         
            +
                        return value
         
     | 
| 455 | 
         
            +
                    if isinstance(value, dict) and not isinstance(value, Box):
         
     | 
| 456 | 
         
            +
                        value = self.__class__(value, __box_heritage=(self, item),
         
     | 
| 457 | 
         
            +
                                               **self.__box_config())
         
     | 
| 458 | 
         
            +
                        self[item] = value
         
     | 
| 459 | 
         
            +
                    elif isinstance(value, list) and not isinstance(value, BoxList):
         
     | 
| 460 | 
         
            +
                        if self._box_config['frozen_box']:
         
     | 
| 461 | 
         
            +
                            value = _recursive_tuples(value, self.__class__,
         
     | 
| 462 | 
         
            +
                                                      recreate_tuples=self._box_config[
         
     | 
| 463 | 
         
            +
                                                          'modify_tuples_box'],
         
     | 
| 464 | 
         
            +
                                                      __box_heritage=(self, item),
         
     | 
| 465 | 
         
            +
                                                      **self.__box_config())
         
     | 
| 466 | 
         
            +
                        else:
         
     | 
| 467 | 
         
            +
                            value = BoxList(value, __box_heritage=(self, item),
         
     | 
| 468 | 
         
            +
                                            box_class=self.__class__,
         
     | 
| 469 | 
         
            +
                                            **self.__box_config())
         
     | 
| 470 | 
         
            +
                        self[item] = value
         
     | 
| 471 | 
         
            +
                    elif (self._box_config['modify_tuples_box'] and
         
     | 
| 472 | 
         
            +
                          isinstance(value, tuple)):
         
     | 
| 473 | 
         
            +
                        value = _recursive_tuples(value, self.__class__,
         
     | 
| 474 | 
         
            +
                                                  recreate_tuples=True,
         
     | 
| 475 | 
         
            +
                                                  __box_heritage=(self, item),
         
     | 
| 476 | 
         
            +
                                                  **self.__box_config())
         
     | 
| 477 | 
         
            +
                        self[item] = value
         
     | 
| 478 | 
         
            +
                    self._box_config['__converted'].add(item)
         
     | 
| 479 | 
         
            +
                    return value
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
                def __create_lineage(self):
         
     | 
| 482 | 
         
            +
                    if (self._box_config['__box_heritage'] and
         
     | 
| 483 | 
         
            +
                            self._box_config['__created']):
         
     | 
| 484 | 
         
            +
                        past, item = self._box_config['__box_heritage']
         
     | 
| 485 | 
         
            +
                        if not past[item]:
         
     | 
| 486 | 
         
            +
                            past[item] = self
         
     | 
| 487 | 
         
            +
                        self._box_config['__box_heritage'] = None
         
     | 
| 488 | 
         
            +
             
     | 
| 489 | 
         
            +
                def __getattr__(self, item):
         
     | 
| 490 | 
         
            +
                    try:
         
     | 
| 491 | 
         
            +
                        try:
         
     | 
| 492 | 
         
            +
                            value = self.__getitem__(item, _ignore_default=True)
         
     | 
| 493 | 
         
            +
                        except KeyError:
         
     | 
| 494 | 
         
            +
                            value = object.__getattribute__(self, item)
         
     | 
| 495 | 
         
            +
                    except AttributeError as err:
         
     | 
| 496 | 
         
            +
                        if item == "__getstate__":
         
     | 
| 497 | 
         
            +
                            raise AttributeError(item)
         
     | 
| 498 | 
         
            +
                        if item == '_box_config':
         
     | 
| 499 | 
         
            +
                            raise BoxError('_box_config key must exist')
         
     | 
| 500 | 
         
            +
                        kill_camel = self._box_config['camel_killer_box']
         
     | 
| 501 | 
         
            +
                        if self._box_config['conversion_box'] and item:
         
     | 
| 502 | 
         
            +
                            k = _conversion_checks(item, self.keys(), self._box_config)
         
     | 
| 503 | 
         
            +
                            if k:
         
     | 
| 504 | 
         
            +
                                return self.__getitem__(k)
         
     | 
| 505 | 
         
            +
                        if kill_camel:
         
     | 
| 506 | 
         
            +
                            for k in self.keys():
         
     | 
| 507 | 
         
            +
                                if item == _camel_killer(k):
         
     | 
| 508 | 
         
            +
                                    return self.__getitem__(k)
         
     | 
| 509 | 
         
            +
                        if self._box_config['default_box']:
         
     | 
| 510 | 
         
            +
                            return self.__get_default(item)
         
     | 
| 511 | 
         
            +
                        raise BoxKeyError(str(err))
         
     | 
| 512 | 
         
            +
                    else:
         
     | 
| 513 | 
         
            +
                        if item == '_box_config':
         
     | 
| 514 | 
         
            +
                            return value
         
     | 
| 515 | 
         
            +
                        return self.__convert_and_store(item, value)
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                def __setitem__(self, key, value):
         
     | 
| 518 | 
         
            +
                    if (key != '_box_config' and self._box_config['__created'] and
         
     | 
| 519 | 
         
            +
                            self._box_config['frozen_box']):
         
     | 
| 520 | 
         
            +
                        raise BoxError('Box is frozen')
         
     | 
| 521 | 
         
            +
                    if self._box_config['conversion_box']:
         
     | 
| 522 | 
         
            +
                        _conversion_checks(key, self.keys(), self._box_config,
         
     | 
| 523 | 
         
            +
                                           check_only=True, pre_check=True)
         
     | 
| 524 | 
         
            +
                    super(Box, self).__setitem__(key, value)
         
     | 
| 525 | 
         
            +
                    self.__add_ordered(key)
         
     | 
| 526 | 
         
            +
                    self.__create_lineage()
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                def __setattr__(self, key, value):
         
     | 
| 529 | 
         
            +
                    if (key != '_box_config' and self._box_config['frozen_box'] and
         
     | 
| 530 | 
         
            +
                            self._box_config['__created']):
         
     | 
| 531 | 
         
            +
                        raise BoxError('Box is frozen')
         
     | 
| 532 | 
         
            +
                    if key in self._protected_keys:
         
     | 
| 533 | 
         
            +
                        raise AttributeError("Key name '{0}' is protected".format(key))
         
     | 
| 534 | 
         
            +
                    if key == '_box_config':
         
     | 
| 535 | 
         
            +
                        return object.__setattr__(self, key, value)
         
     | 
| 536 | 
         
            +
                    try:
         
     | 
| 537 | 
         
            +
                        object.__getattribute__(self, key)
         
     | 
| 538 | 
         
            +
                    except (AttributeError, UnicodeEncodeError):
         
     | 
| 539 | 
         
            +
                        if (key not in self.keys() and
         
     | 
| 540 | 
         
            +
                                (self._box_config['conversion_box'] or
         
     | 
| 541 | 
         
            +
                                 self._box_config['camel_killer_box'])):
         
     | 
| 542 | 
         
            +
                            if self._box_config['conversion_box']:
         
     | 
| 543 | 
         
            +
                                k = _conversion_checks(key, self.keys(),
         
     | 
| 544 | 
         
            +
                                                       self._box_config)
         
     | 
| 545 | 
         
            +
                                self[key if not k else k] = value
         
     | 
| 546 | 
         
            +
                            elif self._box_config['camel_killer_box']:
         
     | 
| 547 | 
         
            +
                                for each_key in self:
         
     | 
| 548 | 
         
            +
                                    if key == _camel_killer(each_key):
         
     | 
| 549 | 
         
            +
                                        self[each_key] = value
         
     | 
| 550 | 
         
            +
                                        break
         
     | 
| 551 | 
         
            +
                        else:
         
     | 
| 552 | 
         
            +
                            self[key] = value
         
     | 
| 553 | 
         
            +
                    else:
         
     | 
| 554 | 
         
            +
                        object.__setattr__(self, key, value)
         
     | 
| 555 | 
         
            +
                    self.__add_ordered(key)
         
     | 
| 556 | 
         
            +
                    self.__create_lineage()
         
     | 
| 557 | 
         
            +
             
     | 
| 558 | 
         
            +
                def __delitem__(self, key):
         
     | 
| 559 | 
         
            +
                    if self._box_config['frozen_box']:
         
     | 
| 560 | 
         
            +
                        raise BoxError('Box is frozen')
         
     | 
| 561 | 
         
            +
                    super(Box, self).__delitem__(key)
         
     | 
| 562 | 
         
            +
                    if (self._box_config['ordered_box'] and
         
     | 
| 563 | 
         
            +
                            key in self._box_config['__ordered_box_values']):
         
     | 
| 564 | 
         
            +
                        self._box_config['__ordered_box_values'].remove(key)
         
     | 
| 565 | 
         
            +
             
     | 
| 566 | 
         
            +
                def __delattr__(self, item):
         
     | 
| 567 | 
         
            +
                    if self._box_config['frozen_box']:
         
     | 
| 568 | 
         
            +
                        raise BoxError('Box is frozen')
         
     | 
| 569 | 
         
            +
                    if item == '_box_config':
         
     | 
| 570 | 
         
            +
                        raise BoxError('"_box_config" is protected')
         
     | 
| 571 | 
         
            +
                    if item in self._protected_keys:
         
     | 
| 572 | 
         
            +
                        raise AttributeError("Key name '{0}' is protected".format(item))
         
     | 
| 573 | 
         
            +
                    try:
         
     | 
| 574 | 
         
            +
                        object.__getattribute__(self, item)
         
     | 
| 575 | 
         
            +
                    except AttributeError:
         
     | 
| 576 | 
         
            +
                        del self[item]
         
     | 
| 577 | 
         
            +
                    else:
         
     | 
| 578 | 
         
            +
                        object.__delattr__(self, item)
         
     | 
| 579 | 
         
            +
                    if (self._box_config['ordered_box'] and
         
     | 
| 580 | 
         
            +
                            item in self._box_config['__ordered_box_values']):
         
     | 
| 581 | 
         
            +
                        self._box_config['__ordered_box_values'].remove(item)
         
     | 
| 582 | 
         
            +
             
     | 
| 583 | 
         
            +
                def pop(self, key, *args):
         
     | 
| 584 | 
         
            +
                    if args:
         
     | 
| 585 | 
         
            +
                        if len(args) != 1:
         
     | 
| 586 | 
         
            +
                            raise BoxError('pop() takes only one optional'
         
     | 
| 587 | 
         
            +
                                           ' argument "default"')
         
     | 
| 588 | 
         
            +
                        try:
         
     | 
| 589 | 
         
            +
                            item = self[key]
         
     | 
| 590 | 
         
            +
                        except KeyError:
         
     | 
| 591 | 
         
            +
                            return args[0]
         
     | 
| 592 | 
         
            +
                        else:
         
     | 
| 593 | 
         
            +
                            del self[key]
         
     | 
| 594 | 
         
            +
                            return item
         
     | 
| 595 | 
         
            +
                    try:
         
     | 
| 596 | 
         
            +
                        item = self[key]
         
     | 
| 597 | 
         
            +
                    except KeyError:
         
     | 
| 598 | 
         
            +
                        raise BoxKeyError('{0}'.format(key))
         
     | 
| 599 | 
         
            +
                    else:
         
     | 
| 600 | 
         
            +
                        del self[key]
         
     | 
| 601 | 
         
            +
                        return item
         
     | 
| 602 | 
         
            +
             
     | 
| 603 | 
         
            +
                def clear(self):
         
     | 
| 604 | 
         
            +
                    self._box_config['__ordered_box_values'] = []
         
     | 
| 605 | 
         
            +
                    super(Box, self).clear()
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                def popitem(self):
         
     | 
| 608 | 
         
            +
                    try:
         
     | 
| 609 | 
         
            +
                        key = next(self.__iter__())
         
     | 
| 610 | 
         
            +
                    except StopIteration:
         
     | 
| 611 | 
         
            +
                        raise BoxKeyError('Empty box')
         
     | 
| 612 | 
         
            +
                    return key, self.pop(key)
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
                def __repr__(self):
         
     | 
| 615 | 
         
            +
                    return '<Box: {0}>'.format(str(self.to_dict()))
         
     | 
| 616 | 
         
            +
             
     | 
| 617 | 
         
            +
                def __str__(self):
         
     | 
| 618 | 
         
            +
                    return str(self.to_dict())
         
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
                def __iter__(self):
         
     | 
| 621 | 
         
            +
                    for key in self.keys():
         
     | 
| 622 | 
         
            +
                        yield key
         
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
                def __reversed__(self):
         
     | 
| 625 | 
         
            +
                    for key in reversed(list(self.keys())):
         
     | 
| 626 | 
         
            +
                        yield key
         
     | 
| 627 | 
         
            +
             
     | 
| 628 | 
         
            +
                def to_dict(self):
         
     | 
| 629 | 
         
            +
                    """
         
     | 
| 630 | 
         
            +
                    Turn the Box and sub Boxes back into a native
         
     | 
| 631 | 
         
            +
                    python dictionary.
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
                    :return: python dictionary of this Box
         
     | 
| 634 | 
         
            +
                    """
         
     | 
| 635 | 
         
            +
                    out_dict = dict(self)
         
     | 
| 636 | 
         
            +
                    for k, v in out_dict.items():
         
     | 
| 637 | 
         
            +
                        if v is self:
         
     | 
| 638 | 
         
            +
                            out_dict[k] = out_dict
         
     | 
| 639 | 
         
            +
                        elif hasattr(v, 'to_dict'):
         
     | 
| 640 | 
         
            +
                            out_dict[k] = v.to_dict()
         
     | 
| 641 | 
         
            +
                        elif hasattr(v, 'to_list'):
         
     | 
| 642 | 
         
            +
                            out_dict[k] = v.to_list()
         
     | 
| 643 | 
         
            +
                    return out_dict
         
     | 
| 644 | 
         
            +
             
     | 
| 645 | 
         
            +
                def update(self, item=None, **kwargs):
         
     | 
| 646 | 
         
            +
                    if not item:
         
     | 
| 647 | 
         
            +
                        item = kwargs
         
     | 
| 648 | 
         
            +
                    iter_over = item.items() if hasattr(item, 'items') else item
         
     | 
| 649 | 
         
            +
                    for k, v in iter_over:
         
     | 
| 650 | 
         
            +
                        if isinstance(v, dict):
         
     | 
| 651 | 
         
            +
                            # Box objects must be created in case they are already
         
     | 
| 652 | 
         
            +
                            # in the `converted` box_config set
         
     | 
| 653 | 
         
            +
                            v = self.__class__(v)
         
     | 
| 654 | 
         
            +
                            if k in self and isinstance(self[k], dict):
         
     | 
| 655 | 
         
            +
                                self[k].update(v)
         
     | 
| 656 | 
         
            +
                                continue
         
     | 
| 657 | 
         
            +
                        if isinstance(v, list):
         
     | 
| 658 | 
         
            +
                            v = BoxList(v)
         
     | 
| 659 | 
         
            +
                        try:
         
     | 
| 660 | 
         
            +
                            self.__setattr__(k, v)
         
     | 
| 661 | 
         
            +
                        except (AttributeError, TypeError):
         
     | 
| 662 | 
         
            +
                            self.__setitem__(k, v)
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
                def setdefault(self, item, default=None):
         
     | 
| 665 | 
         
            +
                    if item in self:
         
     | 
| 666 | 
         
            +
                        return self[item]
         
     | 
| 667 | 
         
            +
             
     | 
| 668 | 
         
            +
                    if isinstance(default, dict):
         
     | 
| 669 | 
         
            +
                        default = self.__class__(default)
         
     | 
| 670 | 
         
            +
                    if isinstance(default, list):
         
     | 
| 671 | 
         
            +
                        default = BoxList(default)
         
     | 
| 672 | 
         
            +
                    self[item] = default
         
     | 
| 673 | 
         
            +
                    return default
         
     | 
| 674 | 
         
            +
             
     | 
| 675 | 
         
            +
                def to_json(self, filename=None,
         
     | 
| 676 | 
         
            +
                            encoding="utf-8", errors="strict", **json_kwargs):
         
     | 
| 677 | 
         
            +
                    """
         
     | 
| 678 | 
         
            +
                    Transform the Box object into a JSON string.
         
     | 
| 679 | 
         
            +
             
     | 
| 680 | 
         
            +
                    :param filename: If provided will save to file
         
     | 
| 681 | 
         
            +
                    :param encoding: File encoding
         
     | 
| 682 | 
         
            +
                    :param errors: How to handle encoding errors
         
     | 
| 683 | 
         
            +
                    :param json_kwargs: additional arguments to pass to json.dump(s)
         
     | 
| 684 | 
         
            +
                    :return: string of JSON or return of `json.dump`
         
     | 
| 685 | 
         
            +
                    """
         
     | 
| 686 | 
         
            +
                    return _to_json(self.to_dict(), filename=filename,
         
     | 
| 687 | 
         
            +
                                    encoding=encoding, errors=errors, **json_kwargs)
         
     | 
| 688 | 
         
            +
             
     | 
| 689 | 
         
            +
                @classmethod
         
     | 
| 690 | 
         
            +
                def from_json(cls, json_string=None, filename=None,
         
     | 
| 691 | 
         
            +
                              encoding="utf-8", errors="strict", **kwargs):
         
     | 
| 692 | 
         
            +
                    """
         
     | 
| 693 | 
         
            +
                    Transform a json object string into a Box object. If the incoming
         
     | 
| 694 | 
         
            +
                    json is a list, you must use BoxList.from_json.
         
     | 
| 695 | 
         
            +
             
     | 
| 696 | 
         
            +
                    :param json_string: string to pass to `json.loads`
         
     | 
| 697 | 
         
            +
                    :param filename: filename to open and pass to `json.load`
         
     | 
| 698 | 
         
            +
                    :param encoding: File encoding
         
     | 
| 699 | 
         
            +
                    :param errors: How to handle encoding errors
         
     | 
| 700 | 
         
            +
                    :param kwargs: parameters to pass to `Box()` or `json.loads`
         
     | 
| 701 | 
         
            +
                    :return: Box object from json data
         
     | 
| 702 | 
         
            +
                    """
         
     | 
| 703 | 
         
            +
                    bx_args = {}
         
     | 
| 704 | 
         
            +
                    for arg in kwargs.copy():
         
     | 
| 705 | 
         
            +
                        if arg in BOX_PARAMETERS:
         
     | 
| 706 | 
         
            +
                            bx_args[arg] = kwargs.pop(arg)
         
     | 
| 707 | 
         
            +
             
     | 
| 708 | 
         
            +
                    data = _from_json(json_string, filename=filename,
         
     | 
| 709 | 
         
            +
                                      encoding=encoding, errors=errors, **kwargs)
         
     | 
| 710 | 
         
            +
             
     | 
| 711 | 
         
            +
                    if not isinstance(data, dict):
         
     | 
| 712 | 
         
            +
                        raise BoxError('json data not returned as a dictionary, '
         
     | 
| 713 | 
         
            +
                                       'but rather a {0}'.format(type(data).__name__))
         
     | 
| 714 | 
         
            +
                    return cls(data, **bx_args)
         
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
                if yaml_support:
         
     | 
| 717 | 
         
            +
                    def to_yaml(self, filename=None, default_flow_style=False,
         
     | 
| 718 | 
         
            +
                                encoding="utf-8", errors="strict",
         
     | 
| 719 | 
         
            +
                                **yaml_kwargs):
         
     | 
| 720 | 
         
            +
                        """
         
     | 
| 721 | 
         
            +
                        Transform the Box object into a YAML string.
         
     | 
| 722 | 
         
            +
             
     | 
| 723 | 
         
            +
                        :param filename:  If provided will save to file
         
     | 
| 724 | 
         
            +
                        :param default_flow_style: False will recursively dump dicts
         
     | 
| 725 | 
         
            +
                        :param encoding: File encoding
         
     | 
| 726 | 
         
            +
                        :param errors: How to handle encoding errors
         
     | 
| 727 | 
         
            +
                        :param yaml_kwargs: additional arguments to pass to yaml.dump
         
     | 
| 728 | 
         
            +
                        :return: string of YAML or return of `yaml.dump`
         
     | 
| 729 | 
         
            +
                        """
         
     | 
| 730 | 
         
            +
                        return _to_yaml(self.to_dict(), filename=filename,
         
     | 
| 731 | 
         
            +
                                        default_flow_style=default_flow_style,
         
     | 
| 732 | 
         
            +
                                        encoding=encoding, errors=errors, **yaml_kwargs)
         
     | 
| 733 | 
         
            +
             
     | 
| 734 | 
         
            +
                    @classmethod
         
     | 
| 735 | 
         
            +
                    def from_yaml(cls, yaml_string=None, filename=None,
         
     | 
| 736 | 
         
            +
                                  encoding="utf-8", errors="strict",
         
     | 
| 737 | 
         
            +
                                  loader=yaml.SafeLoader, **kwargs):
         
     | 
| 738 | 
         
            +
                        """
         
     | 
| 739 | 
         
            +
                        Transform a yaml object string into a Box object.
         
     | 
| 740 | 
         
            +
             
     | 
| 741 | 
         
            +
                        :param yaml_string: string to pass to `yaml.load`
         
     | 
| 742 | 
         
            +
                        :param filename: filename to open and pass to `yaml.load`
         
     | 
| 743 | 
         
            +
                        :param encoding: File encoding
         
     | 
| 744 | 
         
            +
                        :param errors: How to handle encoding errors
         
     | 
| 745 | 
         
            +
                        :param loader: YAML Loader, defaults to SafeLoader
         
     | 
| 746 | 
         
            +
                        :param kwargs: parameters to pass to `Box()` or `yaml.load`
         
     | 
| 747 | 
         
            +
                        :return: Box object from yaml data
         
     | 
| 748 | 
         
            +
                        """
         
     | 
| 749 | 
         
            +
                        bx_args = {}
         
     | 
| 750 | 
         
            +
                        for arg in kwargs.copy():
         
     | 
| 751 | 
         
            +
                            if arg in BOX_PARAMETERS:
         
     | 
| 752 | 
         
            +
                                bx_args[arg] = kwargs.pop(arg)
         
     | 
| 753 | 
         
            +
             
     | 
| 754 | 
         
            +
                        data = _from_yaml(yaml_string=yaml_string, filename=filename,
         
     | 
| 755 | 
         
            +
                                          encoding=encoding, errors=errors,
         
     | 
| 756 | 
         
            +
                                          Loader=loader, **kwargs)
         
     | 
| 757 | 
         
            +
                        if not isinstance(data, dict):
         
     | 
| 758 | 
         
            +
                            raise BoxError('yaml data not returned as a dictionary'
         
     | 
| 759 | 
         
            +
                                           'but rather a {0}'.format(type(data).__name__))
         
     | 
| 760 | 
         
            +
                        return cls(data, **bx_args)
         
     | 
| 761 | 
         
            +
             
     | 
| 762 | 
         
            +
             
     | 
| 763 | 
         
            +
            class BoxList(list):
         
     | 
| 764 | 
         
            +
                """
         
     | 
| 765 | 
         
            +
                Drop in replacement of list, that converts added objects to Box or BoxList
         
     | 
| 766 | 
         
            +
                objects as necessary.
         
     | 
| 767 | 
         
            +
                """
         
     | 
| 768 | 
         
            +
             
     | 
| 769 | 
         
            +
                def __init__(self, iterable=None, box_class=Box, **box_options):
         
     | 
| 770 | 
         
            +
                    self.box_class = box_class
         
     | 
| 771 | 
         
            +
                    self.box_options = box_options
         
     | 
| 772 | 
         
            +
                    self.box_org_ref = self.box_org_ref = id(iterable) if iterable else 0
         
     | 
| 773 | 
         
            +
                    if iterable:
         
     | 
| 774 | 
         
            +
                        for x in iterable:
         
     | 
| 775 | 
         
            +
                            self.append(x)
         
     | 
| 776 | 
         
            +
                    if box_options.get('frozen_box'):
         
     | 
| 777 | 
         
            +
                        def frozen(*args, **kwargs):
         
     | 
| 778 | 
         
            +
                            raise BoxError('BoxList is frozen')
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
                        for method in ['append', 'extend', 'insert', 'pop',
         
     | 
| 781 | 
         
            +
                                       'remove', 'reverse', 'sort']:
         
     | 
| 782 | 
         
            +
                            self.__setattr__(method, frozen)
         
     | 
| 783 | 
         
            +
             
     | 
| 784 | 
         
            +
                def __delitem__(self, key):
         
     | 
| 785 | 
         
            +
                    if self.box_options.get('frozen_box'):
         
     | 
| 786 | 
         
            +
                        raise BoxError('BoxList is frozen')
         
     | 
| 787 | 
         
            +
                    super(BoxList, self).__delitem__(key)
         
     | 
| 788 | 
         
            +
             
     | 
| 789 | 
         
            +
                def __setitem__(self, key, value):
         
     | 
| 790 | 
         
            +
                    if self.box_options.get('frozen_box'):
         
     | 
| 791 | 
         
            +
                        raise BoxError('BoxList is frozen')
         
     | 
| 792 | 
         
            +
                    super(BoxList, self).__setitem__(key, value)
         
     | 
| 793 | 
         
            +
             
     | 
| 794 | 
         
            +
                def append(self, p_object):
         
     | 
| 795 | 
         
            +
                    if isinstance(p_object, dict):
         
     | 
| 796 | 
         
            +
                        try:
         
     | 
| 797 | 
         
            +
                            p_object = self.box_class(p_object, **self.box_options)
         
     | 
| 798 | 
         
            +
                        except AttributeError as err:
         
     | 
| 799 | 
         
            +
                            if 'box_class' in self.__dict__:
         
     | 
| 800 | 
         
            +
                                raise err
         
     | 
| 801 | 
         
            +
                    elif isinstance(p_object, list):
         
     | 
| 802 | 
         
            +
                        try:
         
     | 
| 803 | 
         
            +
                            p_object = (self if id(p_object) == self.box_org_ref else
         
     | 
| 804 | 
         
            +
                                        BoxList(p_object))
         
     | 
| 805 | 
         
            +
                        except AttributeError as err:
         
     | 
| 806 | 
         
            +
                            if 'box_org_ref' in self.__dict__:
         
     | 
| 807 | 
         
            +
                                raise err
         
     | 
| 808 | 
         
            +
                    super(BoxList, self).append(p_object)
         
     | 
| 809 | 
         
            +
             
     | 
| 810 | 
         
            +
                def extend(self, iterable):
         
     | 
| 811 | 
         
            +
                    for item in iterable:
         
     | 
| 812 | 
         
            +
                        self.append(item)
         
     | 
| 813 | 
         
            +
             
     | 
| 814 | 
         
            +
                def insert(self, index, p_object):
         
     | 
| 815 | 
         
            +
                    if isinstance(p_object, dict):
         
     | 
| 816 | 
         
            +
                        p_object = self.box_class(p_object, **self.box_options)
         
     | 
| 817 | 
         
            +
                    elif isinstance(p_object, list):
         
     | 
| 818 | 
         
            +
                        p_object = (self if id(p_object) == self.box_org_ref else
         
     | 
| 819 | 
         
            +
                                    BoxList(p_object))
         
     | 
| 820 | 
         
            +
                    super(BoxList, self).insert(index, p_object)
         
     | 
| 821 | 
         
            +
             
     | 
| 822 | 
         
            +
                def __repr__(self):
         
     | 
| 823 | 
         
            +
                    return "<BoxList: {0}>".format(self.to_list())
         
     | 
| 824 | 
         
            +
             
     | 
| 825 | 
         
            +
                def __str__(self):
         
     | 
| 826 | 
         
            +
                    return str(self.to_list())
         
     | 
| 827 | 
         
            +
             
     | 
| 828 | 
         
            +
                def __copy__(self):
         
     | 
| 829 | 
         
            +
                    return BoxList((x for x in self),
         
     | 
| 830 | 
         
            +
                                   self.box_class,
         
     | 
| 831 | 
         
            +
                                   **self.box_options)
         
     | 
| 832 | 
         
            +
             
     | 
| 833 | 
         
            +
                def __deepcopy__(self, memodict=None):
         
     | 
| 834 | 
         
            +
                    out = self.__class__()
         
     | 
| 835 | 
         
            +
                    memodict = memodict or {}
         
     | 
| 836 | 
         
            +
                    memodict[id(self)] = out
         
     | 
| 837 | 
         
            +
                    for k in self:
         
     | 
| 838 | 
         
            +
                        out.append(copy.deepcopy(k))
         
     | 
| 839 | 
         
            +
                    return out
         
     | 
| 840 | 
         
            +
             
     | 
| 841 | 
         
            +
                def __hash__(self):
         
     | 
| 842 | 
         
            +
                    if self.box_options.get('frozen_box'):
         
     | 
| 843 | 
         
            +
                        hashing = 98765
         
     | 
| 844 | 
         
            +
                        hashing ^= hash(tuple(self))
         
     | 
| 845 | 
         
            +
                        return hashing
         
     | 
| 846 | 
         
            +
                    raise TypeError("unhashable type: 'BoxList'")
         
     | 
| 847 | 
         
            +
             
     | 
| 848 | 
         
            +
                def to_list(self):
         
     | 
| 849 | 
         
            +
                    new_list = []
         
     | 
| 850 | 
         
            +
                    for x in self:
         
     | 
| 851 | 
         
            +
                        if x is self:
         
     | 
| 852 | 
         
            +
                            new_list.append(new_list)
         
     | 
| 853 | 
         
            +
                        elif isinstance(x, Box):
         
     | 
| 854 | 
         
            +
                            new_list.append(x.to_dict())
         
     | 
| 855 | 
         
            +
                        elif isinstance(x, BoxList):
         
     | 
| 856 | 
         
            +
                            new_list.append(x.to_list())
         
     | 
| 857 | 
         
            +
                        else:
         
     | 
| 858 | 
         
            +
                            new_list.append(x)
         
     | 
| 859 | 
         
            +
                    return new_list
         
     | 
| 860 | 
         
            +
             
     | 
| 861 | 
         
            +
                def to_json(self, filename=None,
         
     | 
| 862 | 
         
            +
                            encoding="utf-8", errors="strict",
         
     | 
| 863 | 
         
            +
                            multiline=False, **json_kwargs):
         
     | 
| 864 | 
         
            +
                    """
         
     | 
| 865 | 
         
            +
                    Transform the BoxList object into a JSON string.
         
     | 
| 866 | 
         
            +
             
     | 
| 867 | 
         
            +
                    :param filename: If provided will save to file
         
     | 
| 868 | 
         
            +
                    :param encoding: File encoding
         
     | 
| 869 | 
         
            +
                    :param errors: How to handle encoding errors
         
     | 
| 870 | 
         
            +
                    :param multiline: Put each item in list onto it's own line
         
     | 
| 871 | 
         
            +
                    :param json_kwargs: additional arguments to pass to json.dump(s)
         
     | 
| 872 | 
         
            +
                    :return: string of JSON or return of `json.dump`
         
     | 
| 873 | 
         
            +
                    """
         
     | 
| 874 | 
         
            +
                    if filename and multiline:
         
     | 
| 875 | 
         
            +
                        lines = [_to_json(item, filename=False, encoding=encoding,
         
     | 
| 876 | 
         
            +
                                          errors=errors, **json_kwargs) for item in self]
         
     | 
| 877 | 
         
            +
                        with open(filename, 'w', encoding=encoding, errors=errors) as f:
         
     | 
| 878 | 
         
            +
                            f.write("\n".join(lines).decode('utf-8') if
         
     | 
| 879 | 
         
            +
                                    sys.version_info < (3, 0) else "\n".join(lines))
         
     | 
| 880 | 
         
            +
                    else:
         
     | 
| 881 | 
         
            +
                        return _to_json(self.to_list(), filename=filename,
         
     | 
| 882 | 
         
            +
                                        encoding=encoding, errors=errors, **json_kwargs)
         
     | 
| 883 | 
         
            +
             
     | 
| 884 | 
         
            +
                @classmethod
         
     | 
| 885 | 
         
            +
                def from_json(cls, json_string=None, filename=None, encoding="utf-8",
         
     | 
| 886 | 
         
            +
                              errors="strict", multiline=False, **kwargs):
         
     | 
| 887 | 
         
            +
                    """
         
     | 
| 888 | 
         
            +
                    Transform a json object string into a BoxList object. If the incoming
         
     | 
| 889 | 
         
            +
                    json is a dict, you must use Box.from_json.
         
     | 
| 890 | 
         
            +
             
     | 
| 891 | 
         
            +
                    :param json_string: string to pass to `json.loads`
         
     | 
| 892 | 
         
            +
                    :param filename: filename to open and pass to `json.load`
         
     | 
| 893 | 
         
            +
                    :param encoding: File encoding
         
     | 
| 894 | 
         
            +
                    :param errors: How to handle encoding errors
         
     | 
| 895 | 
         
            +
                    :param multiline: One object per line
         
     | 
| 896 | 
         
            +
                    :param kwargs: parameters to pass to `Box()` or `json.loads`
         
     | 
| 897 | 
         
            +
                    :return: BoxList object from json data
         
     | 
| 898 | 
         
            +
                    """
         
     | 
| 899 | 
         
            +
                    bx_args = {}
         
     | 
| 900 | 
         
            +
                    for arg in kwargs.copy():
         
     | 
| 901 | 
         
            +
                        if arg in BOX_PARAMETERS:
         
     | 
| 902 | 
         
            +
                            bx_args[arg] = kwargs.pop(arg)
         
     | 
| 903 | 
         
            +
             
     | 
| 904 | 
         
            +
                    data = _from_json(json_string, filename=filename, encoding=encoding,
         
     | 
| 905 | 
         
            +
                                      errors=errors, multiline=multiline, **kwargs)
         
     | 
| 906 | 
         
            +
             
     | 
| 907 | 
         
            +
                    if not isinstance(data, list):
         
     | 
| 908 | 
         
            +
                        raise BoxError('json data not returned as a list, '
         
     | 
| 909 | 
         
            +
                                       'but rather a {0}'.format(type(data).__name__))
         
     | 
| 910 | 
         
            +
                    return cls(data, **bx_args)
         
     | 
| 911 | 
         
            +
             
     | 
| 912 | 
         
            +
                if yaml_support:
         
     | 
| 913 | 
         
            +
                    def to_yaml(self, filename=None, default_flow_style=False,
         
     | 
| 914 | 
         
            +
                                encoding="utf-8", errors="strict",
         
     | 
| 915 | 
         
            +
                                **yaml_kwargs):
         
     | 
| 916 | 
         
            +
                        """
         
     | 
| 917 | 
         
            +
                        Transform the BoxList object into a YAML string.
         
     | 
| 918 | 
         
            +
             
     | 
| 919 | 
         
            +
                        :param filename:  If provided will save to file
         
     | 
| 920 | 
         
            +
                        :param default_flow_style: False will recursively dump dicts
         
     | 
| 921 | 
         
            +
                        :param encoding: File encoding
         
     | 
| 922 | 
         
            +
                        :param errors: How to handle encoding errors
         
     | 
| 923 | 
         
            +
                        :param yaml_kwargs: additional arguments to pass to yaml.dump
         
     | 
| 924 | 
         
            +
                        :return: string of YAML or return of `yaml.dump`
         
     | 
| 925 | 
         
            +
                        """
         
     | 
| 926 | 
         
            +
                        return _to_yaml(self.to_list(), filename=filename,
         
     | 
| 927 | 
         
            +
                                        default_flow_style=default_flow_style,
         
     | 
| 928 | 
         
            +
                                        encoding=encoding, errors=errors, **yaml_kwargs)
         
     | 
| 929 | 
         
            +
             
     | 
| 930 | 
         
            +
                    @classmethod
         
     | 
| 931 | 
         
            +
                    def from_yaml(cls, yaml_string=None, filename=None,
         
     | 
| 932 | 
         
            +
                                  encoding="utf-8", errors="strict",
         
     | 
| 933 | 
         
            +
                                  loader=yaml.SafeLoader,
         
     | 
| 934 | 
         
            +
                                  **kwargs):
         
     | 
| 935 | 
         
            +
                        """
         
     | 
| 936 | 
         
            +
                        Transform a yaml object string into a BoxList object.
         
     | 
| 937 | 
         
            +
             
     | 
| 938 | 
         
            +
                        :param yaml_string: string to pass to `yaml.load`
         
     | 
| 939 | 
         
            +
                        :param filename: filename to open and pass to `yaml.load`
         
     | 
| 940 | 
         
            +
                        :param encoding: File encoding
         
     | 
| 941 | 
         
            +
                        :param errors: How to handle encoding errors
         
     | 
| 942 | 
         
            +
                        :param loader: YAML Loader, defaults to SafeLoader
         
     | 
| 943 | 
         
            +
                        :param kwargs: parameters to pass to `BoxList()` or `yaml.load`
         
     | 
| 944 | 
         
            +
                        :return: BoxList object from yaml data
         
     | 
| 945 | 
         
            +
                        """
         
     | 
| 946 | 
         
            +
                        bx_args = {}
         
     | 
| 947 | 
         
            +
                        for arg in kwargs.copy():
         
     | 
| 948 | 
         
            +
                            if arg in BOX_PARAMETERS:
         
     | 
| 949 | 
         
            +
                                bx_args[arg] = kwargs.pop(arg)
         
     | 
| 950 | 
         
            +
             
     | 
| 951 | 
         
            +
                        data = _from_yaml(yaml_string=yaml_string, filename=filename,
         
     | 
| 952 | 
         
            +
                                          encoding=encoding, errors=errors,
         
     | 
| 953 | 
         
            +
                                          Loader=loader, **kwargs)
         
     | 
| 954 | 
         
            +
                        if not isinstance(data, list):
         
     | 
| 955 | 
         
            +
                            raise BoxError('yaml data not returned as a list'
         
     | 
| 956 | 
         
            +
                                           'but rather a {0}'.format(type(data).__name__))
         
     | 
| 957 | 
         
            +
                        return cls(data, **bx_args)
         
     | 
| 958 | 
         
            +
             
     | 
| 959 | 
         
            +
                def box_it_up(self):
         
     | 
| 960 | 
         
            +
                    for v in self:
         
     | 
| 961 | 
         
            +
                        if hasattr(v, 'box_it_up') and v is not self:
         
     | 
| 962 | 
         
            +
                            v.box_it_up()
         
     | 
| 963 | 
         
            +
             
     | 
| 964 | 
         
            +
             
     | 
| 965 | 
         
            +
            class ConfigBox(Box):
         
     | 
| 966 | 
         
            +
                """
         
     | 
| 967 | 
         
            +
                Modified box object to add object transforms.
         
     | 
| 968 | 
         
            +
             
     | 
| 969 | 
         
            +
                Allows for build in transforms like:
         
     | 
| 970 | 
         
            +
             
     | 
| 971 | 
         
            +
                cns = ConfigBox(my_bool='yes', my_int='5', my_list='5,4,3,3,2')
         
     | 
| 972 | 
         
            +
             
     | 
| 973 | 
         
            +
                cns.bool('my_bool') # True
         
     | 
| 974 | 
         
            +
                cns.int('my_int') # 5
         
     | 
| 975 | 
         
            +
                cns.list('my_list', mod=lambda x: int(x)) # [5, 4, 3, 3, 2]
         
     | 
| 976 | 
         
            +
                """
         
     | 
| 977 | 
         
            +
             
     | 
| 978 | 
         
            +
                _protected_keys = dir({}) + ['to_dict', 'bool', 'int', 'float',
         
     | 
| 979 | 
         
            +
                                             'list', 'getboolean', 'to_json', 'to_yaml',
         
     | 
| 980 | 
         
            +
                                             'getfloat', 'getint',
         
     | 
| 981 | 
         
            +
                                             'from_json', 'from_yaml']
         
     | 
| 982 | 
         
            +
             
     | 
| 983 | 
         
            +
                def __getattr__(self, item):
         
     | 
| 984 | 
         
            +
                    """Config file keys are stored in lower case, be a little more
         
     | 
| 985 | 
         
            +
                    loosey goosey"""
         
     | 
| 986 | 
         
            +
                    try:
         
     | 
| 987 | 
         
            +
                        return super(ConfigBox, self).__getattr__(item)
         
     | 
| 988 | 
         
            +
                    except AttributeError:
         
     | 
| 989 | 
         
            +
                        return super(ConfigBox, self).__getattr__(item.lower())
         
     | 
| 990 | 
         
            +
             
     | 
| 991 | 
         
            +
                def __dir__(self):
         
     | 
| 992 | 
         
            +
                    return super(ConfigBox, self).__dir__() + ['bool', 'int', 'float',
         
     | 
| 993 | 
         
            +
                                                               'list', 'getboolean',
         
     | 
| 994 | 
         
            +
                                                               'getfloat', 'getint']
         
     | 
| 995 | 
         
            +
             
     | 
| 996 | 
         
            +
                def bool(self, item, default=None):
         
     | 
| 997 | 
         
            +
                    """ Return value of key as a boolean
         
     | 
| 998 | 
         
            +
             
     | 
| 999 | 
         
            +
                    :param item: key of value to transform
         
     | 
| 1000 | 
         
            +
                    :param default: value to return if item does not exist
         
     | 
| 1001 | 
         
            +
                    :return: approximated bool of value
         
     | 
| 1002 | 
         
            +
                    """
         
     | 
| 1003 | 
         
            +
                    try:
         
     | 
| 1004 | 
         
            +
                        item = self.__getattr__(item)
         
     | 
| 1005 | 
         
            +
                    except AttributeError as err:
         
     | 
| 1006 | 
         
            +
                        if default is not None:
         
     | 
| 1007 | 
         
            +
                            return default
         
     | 
| 1008 | 
         
            +
                        raise err
         
     | 
| 1009 | 
         
            +
             
     | 
| 1010 | 
         
            +
                    if isinstance(item, (bool, int)):
         
     | 
| 1011 | 
         
            +
                        return bool(item)
         
     | 
| 1012 | 
         
            +
             
     | 
| 1013 | 
         
            +
                    if (isinstance(item, str) and
         
     | 
| 1014 | 
         
            +
                            item.lower() in ('n', 'no', 'false', 'f', '0')):
         
     | 
| 1015 | 
         
            +
                        return False
         
     | 
| 1016 | 
         
            +
             
     | 
| 1017 | 
         
            +
                    return True if item else False
         
     | 
| 1018 | 
         
            +
             
     | 
| 1019 | 
         
            +
                def int(self, item, default=None):
         
     | 
| 1020 | 
         
            +
                    """ Return value of key as an int
         
     | 
| 1021 | 
         
            +
             
     | 
| 1022 | 
         
            +
                    :param item: key of value to transform
         
     | 
| 1023 | 
         
            +
                    :param default: value to return if item does not exist
         
     | 
| 1024 | 
         
            +
                    :return: int of value
         
     | 
| 1025 | 
         
            +
                    """
         
     | 
| 1026 | 
         
            +
                    try:
         
     | 
| 1027 | 
         
            +
                        item = self.__getattr__(item)
         
     | 
| 1028 | 
         
            +
                    except AttributeError as err:
         
     | 
| 1029 | 
         
            +
                        if default is not None:
         
     | 
| 1030 | 
         
            +
                            return default
         
     | 
| 1031 | 
         
            +
                        raise err
         
     | 
| 1032 | 
         
            +
                    return int(item)
         
     | 
| 1033 | 
         
            +
             
     | 
| 1034 | 
         
            +
                def float(self, item, default=None):
         
     | 
| 1035 | 
         
            +
                    """ Return value of key as a float
         
     | 
| 1036 | 
         
            +
             
     | 
| 1037 | 
         
            +
                    :param item: key of value to transform
         
     | 
| 1038 | 
         
            +
                    :param default: value to return if item does not exist
         
     | 
| 1039 | 
         
            +
                    :return: float of value
         
     | 
| 1040 | 
         
            +
                    """
         
     | 
| 1041 | 
         
            +
                    try:
         
     | 
| 1042 | 
         
            +
                        item = self.__getattr__(item)
         
     | 
| 1043 | 
         
            +
                    except AttributeError as err:
         
     | 
| 1044 | 
         
            +
                        if default is not None:
         
     | 
| 1045 | 
         
            +
                            return default
         
     | 
| 1046 | 
         
            +
                        raise err
         
     | 
| 1047 | 
         
            +
                    return float(item)
         
     | 
| 1048 | 
         
            +
             
     | 
| 1049 | 
         
            +
                def list(self, item, default=None, spliter=",", strip=True, mod=None):
         
     | 
| 1050 | 
         
            +
                    """ Return value of key as a list
         
     | 
| 1051 | 
         
            +
             
     | 
| 1052 | 
         
            +
                    :param item: key of value to transform
         
     | 
| 1053 | 
         
            +
                    :param mod: function to map against list
         
     | 
| 1054 | 
         
            +
                    :param default: value to return if item does not exist
         
     | 
| 1055 | 
         
            +
                    :param spliter: character to split str on
         
     | 
| 1056 | 
         
            +
                    :param strip: clean the list with the `strip`
         
     | 
| 1057 | 
         
            +
                    :return: list of items
         
     | 
| 1058 | 
         
            +
                    """
         
     | 
| 1059 | 
         
            +
                    try:
         
     | 
| 1060 | 
         
            +
                        item = self.__getattr__(item)
         
     | 
| 1061 | 
         
            +
                    except AttributeError as err:
         
     | 
| 1062 | 
         
            +
                        if default is not None:
         
     | 
| 1063 | 
         
            +
                            return default
         
     | 
| 1064 | 
         
            +
                        raise err
         
     | 
| 1065 | 
         
            +
                    if strip:
         
     | 
| 1066 | 
         
            +
                        item = item.lstrip('[').rstrip(']')
         
     | 
| 1067 | 
         
            +
                    out = [x.strip() if strip else x for x in item.split(spliter)]
         
     | 
| 1068 | 
         
            +
                    if mod:
         
     | 
| 1069 | 
         
            +
                        return list(map(mod, out))
         
     | 
| 1070 | 
         
            +
                    return out
         
     | 
| 1071 | 
         
            +
             
     | 
| 1072 | 
         
            +
                # loose configparser compatibility
         
     | 
| 1073 | 
         
            +
             
     | 
| 1074 | 
         
            +
                def getboolean(self, item, default=None):
         
     | 
| 1075 | 
         
            +
                    return self.bool(item, default)
         
     | 
| 1076 | 
         
            +
             
     | 
| 1077 | 
         
            +
                def getint(self, item, default=None):
         
     | 
| 1078 | 
         
            +
                    return self.int(item, default)
         
     | 
| 1079 | 
         
            +
             
     | 
| 1080 | 
         
            +
                def getfloat(self, item, default=None):
         
     | 
| 1081 | 
         
            +
                    return self.float(item, default)
         
     | 
| 1082 | 
         
            +
             
     | 
| 1083 | 
         
            +
                def __repr__(self):
         
     | 
| 1084 | 
         
            +
                    return '<ConfigBox: {0}>'.format(str(self.to_dict()))
         
     | 
| 1085 | 
         
            +
             
     | 
| 1086 | 
         
            +
             
     | 
| 1087 | 
         
            +
            class SBox(Box):
         
     | 
| 1088 | 
         
            +
                """
         
     | 
| 1089 | 
         
            +
                ShorthandBox (SBox) allows for
         
     | 
| 1090 | 
         
            +
                property access of `dict` `json` and `yaml`
         
     | 
| 1091 | 
         
            +
                """
         
     | 
| 1092 | 
         
            +
                _protected_keys = dir({}) + ['to_dict', 'tree_view', 'to_json', 'to_yaml',
         
     | 
| 1093 | 
         
            +
                                             'json', 'yaml', 'from_yaml', 'from_json',
         
     | 
| 1094 | 
         
            +
                                             'dict']
         
     | 
| 1095 | 
         
            +
             
     | 
| 1096 | 
         
            +
                @property
         
     | 
| 1097 | 
         
            +
                def dict(self):
         
     | 
| 1098 | 
         
            +
                    return self.to_dict()
         
     | 
| 1099 | 
         
            +
             
     | 
| 1100 | 
         
            +
                @property
         
     | 
| 1101 | 
         
            +
                def json(self):
         
     | 
| 1102 | 
         
            +
                    return self.to_json()
         
     | 
| 1103 | 
         
            +
             
     | 
| 1104 | 
         
            +
                if yaml_support:
         
     | 
| 1105 | 
         
            +
                    @property
         
     | 
| 1106 | 
         
            +
                    def yaml(self):
         
     | 
| 1107 | 
         
            +
                        return self.to_yaml()
         
     | 
| 1108 | 
         
            +
             
     | 
| 1109 | 
         
            +
                def __repr__(self):
         
     | 
| 1110 | 
         
            +
                    return '<ShorthandBox: {0}>'.format(str(self.to_dict()))
         
     | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/config.py
    ADDED
    
    | 
         @@ -0,0 +1,9 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            from neurvps.box import Box
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            # C is a dict storing all the configuration
         
     | 
| 6 | 
         
            +
            C = Box()
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            # shortcut for C.model
         
     | 
| 9 | 
         
            +
            M = Box()
         
     | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/datasets.py
    ADDED
    
    | 
         @@ -0,0 +1,184 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import json
         
     | 
| 3 | 
         
            +
            import math
         
     | 
| 4 | 
         
            +
            import random
         
     | 
| 5 | 
         
            +
            import os.path as osp
         
     | 
| 6 | 
         
            +
            from glob import glob
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import numpy as np
         
     | 
| 9 | 
         
            +
            import torch
         
     | 
| 10 | 
         
            +
            import skimage.io
         
     | 
| 11 | 
         
            +
            import numpy.linalg as LA
         
     | 
| 12 | 
         
            +
            import matplotlib.pyplot as plt
         
     | 
| 13 | 
         
            +
            import skimage.transform
         
     | 
| 14 | 
         
            +
            from torch.utils.data import Dataset
         
     | 
| 15 | 
         
            +
            from torch.utils.data.dataloader import default_collate
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            from neurvps.config import C
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class WireframeDataset(Dataset):
         
     | 
| 21 | 
         
            +
                def __init__(self, rootdir, split):
         
     | 
| 22 | 
         
            +
                    self.rootdir = rootdir
         
     | 
| 23 | 
         
            +
                    filelist = sorted(glob(f"{rootdir}/*/*.png"))
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                    self.split = split
         
     | 
| 26 | 
         
            +
                    if split == "train":
         
     | 
| 27 | 
         
            +
                        self.filelist = filelist[500:]
         
     | 
| 28 | 
         
            +
                        self.size = len(self.filelist) * C.io.augmentation_level
         
     | 
| 29 | 
         
            +
                    elif split == "valid":
         
     | 
| 30 | 
         
            +
                        self.filelist = [f for f in filelist[:500] if "a1" not in f]
         
     | 
| 31 | 
         
            +
                        self.size = len(self.filelist)
         
     | 
| 32 | 
         
            +
                    print(f"n{split}:", self.size)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                def __len__(self):
         
     | 
| 35 | 
         
            +
                    return self.size
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                def __getitem__(self, idx):
         
     | 
| 38 | 
         
            +
                    iname = self.filelist[idx % len(self.filelist)]
         
     | 
| 39 | 
         
            +
                    image = skimage.io.imread(iname).astype(float)[:, :, :3]
         
     | 
| 40 | 
         
            +
                    image = np.rollaxis(image, 2).copy()
         
     | 
| 41 | 
         
            +
                    with np.load(iname.replace(".png", "_label.npz")) as npz:
         
     | 
| 42 | 
         
            +
                        vpts = npz["vpts"]
         
     | 
| 43 | 
         
            +
                    return (torch.tensor(image).float(), {"vpts": torch.tensor(vpts).float()})
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            class ScanNetDataset(Dataset):
         
     | 
| 47 | 
         
            +
                def __init__(self, rootdir, split):
         
     | 
| 48 | 
         
            +
                    self.rootdir = rootdir
         
     | 
| 49 | 
         
            +
                    self.split = split
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                    dirs = np.genfromtxt(f"{rootdir}/scannetv2_{split}.txt", dtype=str)
         
     | 
| 52 | 
         
            +
                    self.filelist = sum([glob(f"{rootdir}/{d}/*.png") for d in dirs], [])
         
     | 
| 53 | 
         
            +
                    if split == "train":
         
     | 
| 54 | 
         
            +
                        self.size = len(self.filelist) * C.io.augmentation_level
         
     | 
| 55 | 
         
            +
                    elif split == "valid":
         
     | 
| 56 | 
         
            +
                        random.seed(0)
         
     | 
| 57 | 
         
            +
                        random.shuffle(self.filelist)
         
     | 
| 58 | 
         
            +
                        self.filelist = self.filelist[:500]
         
     | 
| 59 | 
         
            +
                        self.size = len(self.filelist)
         
     | 
| 60 | 
         
            +
                    print(f"n{split}:", self.size)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def __len__(self):
         
     | 
| 63 | 
         
            +
                    return self.size
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                def __getitem__(self, idx):
         
     | 
| 66 | 
         
            +
                    iname = self.filelist[idx % len(self.filelist)]
         
     | 
| 67 | 
         
            +
                    image = skimage.io.imread(iname)[:, :, :3]
         
     | 
| 68 | 
         
            +
                    with np.load(iname.replace("color.png", "vanish.npz")) as npz:
         
     | 
| 69 | 
         
            +
                        vpts = np.array([npz[d] for d in ["x", "y", "z"]])
         
     | 
| 70 | 
         
            +
                    vpts[:, 1] *= -1
         
     | 
| 71 | 
         
            +
                    # plt.imshow(image)
         
     | 
| 72 | 
         
            +
                    # cc = ["blue", "cyan", "orange"]
         
     | 
| 73 | 
         
            +
                    # for c, w in zip(cc, vpts):
         
     | 
| 74 | 
         
            +
                    #     x = w[0] / w[2] * C.io.focal_length * 256 + 256
         
     | 
| 75 | 
         
            +
                    #     y = -w[1] / w[2] * C.io.focal_length * 256 + 256
         
     | 
| 76 | 
         
            +
                    #     plt.scatter(x, y, color=c)
         
     | 
| 77 | 
         
            +
                    #     for xy in np.linspace(0, 512, 10):
         
     | 
| 78 | 
         
            +
                    #         plt.plot(
         
     | 
| 79 | 
         
            +
                    #             [x, xy, x, xy, x, 0, x, 511],
         
     | 
| 80 | 
         
            +
                    #             [y, 0, y, 511, y, xy, y, xy],
         
     | 
| 81 | 
         
            +
                    #             color=c,
         
     | 
| 82 | 
         
            +
                    #         )
         
     | 
| 83 | 
         
            +
                    # plt.show()
         
     | 
| 84 | 
         
            +
                    image = np.rollaxis(image.astype(np.float), 2).copy()
         
     | 
| 85 | 
         
            +
                    return (torch.tensor(image).float(), {"vpts": torch.tensor(vpts).float()})
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            class Tmm17Dataset(Dataset):
         
     | 
| 89 | 
         
            +
                def __init__(self, rootdir, split):
         
     | 
| 90 | 
         
            +
                    self.rootdir = rootdir
         
     | 
| 91 | 
         
            +
                    self.split = split
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                    filelist = np.genfromtxt(f"{rootdir}/{split}.txt", dtype=str)
         
     | 
| 94 | 
         
            +
                    self.filelist = [osp.join(rootdir, f) for f in filelist]
         
     | 
| 95 | 
         
            +
                    if split == "train":
         
     | 
| 96 | 
         
            +
                        self.size = len(self.filelist) * C.io.augmentation_level
         
     | 
| 97 | 
         
            +
                    elif split == "valid":
         
     | 
| 98 | 
         
            +
                        self.size = len(self.filelist)
         
     | 
| 99 | 
         
            +
                    print(f"n{split}:", self.size)
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                def __len__(self):
         
     | 
| 102 | 
         
            +
                    return self.size
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                def __getitem__(self, idx):
         
     | 
| 105 | 
         
            +
                    iname = self.filelist[idx % len(self.filelist)]
         
     | 
| 106 | 
         
            +
                    image = skimage.io.imread(iname)
         
     | 
| 107 | 
         
            +
                    tname = iname.replace(".jpg", ".txt")
         
     | 
| 108 | 
         
            +
                    axy, bxy = np.genfromtxt(tname, skip_header=1)
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    a0, a1 = np.array(axy[:2]), np.array(axy[2:])
         
     | 
| 111 | 
         
            +
                    b0, b1 = np.array(bxy[:2]), np.array(bxy[2:])
         
     | 
| 112 | 
         
            +
                    xy = intersect(a0, a1, b0, b1) - 0.5
         
     | 
| 113 | 
         
            +
                    xy[0] *= 512 / image.shape[1]
         
     | 
| 114 | 
         
            +
                    xy[1] *= 512 / image.shape[0]
         
     | 
| 115 | 
         
            +
                    image = skimage.transform.resize(image, (512, 512))
         
     | 
| 116 | 
         
            +
                    if image.ndim == 2:
         
     | 
| 117 | 
         
            +
                        image = image[:, :, None].repeat(3, 2)
         
     | 
| 118 | 
         
            +
                    if self.split == "train":
         
     | 
| 119 | 
         
            +
                        i, j, h, w = crop(image.shape)
         
     | 
| 120 | 
         
            +
                    else:
         
     | 
| 121 | 
         
            +
                        i, j, h, w = 0, 0, image.shape[0], image.shape[1]
         
     | 
| 122 | 
         
            +
                    image = skimage.transform.resize(image[j : j + h, i : i + w], (512, 512))
         
     | 
| 123 | 
         
            +
                    xy[1] = (xy[1] - j) / h * 512
         
     | 
| 124 | 
         
            +
                    xy[0] = (xy[0] - i) / w * 512
         
     | 
| 125 | 
         
            +
                    # plt.imshow(image)
         
     | 
| 126 | 
         
            +
                    # plt.scatter(xy[0], xy[1])
         
     | 
| 127 | 
         
            +
                    # plt.show()
         
     | 
| 128 | 
         
            +
                    vpts = np.array([[xy[0] / 256 - 1, 1 - xy[1] / 256, C.io.focal_length]])
         
     | 
| 129 | 
         
            +
                    vpts[0] /= LA.norm(vpts[0])
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                    image, vpts = augment(image, vpts, idx // len(self.filelist))
         
     | 
| 132 | 
         
            +
                    image = np.rollaxis(image, 2)
         
     | 
| 133 | 
         
            +
                    return (torch.tensor(image * 255).float(), {"vpts": torch.tensor(vpts).float()})
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
            def augment(image, vpts, division):
         
     | 
| 137 | 
         
            +
                if division == 1:  # left-right flip
         
     | 
| 138 | 
         
            +
                    return image[:, ::-1].copy(), (vpts * [-1, 1, 1]).copy()
         
     | 
| 139 | 
         
            +
                elif division == 2:  # up-down flip
         
     | 
| 140 | 
         
            +
                    return image[::-1, :].copy(), (vpts * [1, -1, 1]).copy()
         
     | 
| 141 | 
         
            +
                elif division == 3:  # all flip
         
     | 
| 142 | 
         
            +
                    return image[::-1, ::-1].copy(), (vpts * [-1, -1, 1]).copy()
         
     | 
| 143 | 
         
            +
                return image, vpts
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
            def intersect(a0, a1, b0, b1):
         
     | 
| 147 | 
         
            +
                c0 = ccw(a0, a1, b0)
         
     | 
| 148 | 
         
            +
                c1 = ccw(a0, a1, b1)
         
     | 
| 149 | 
         
            +
                d0 = ccw(b0, b1, a0)
         
     | 
| 150 | 
         
            +
                d1 = ccw(b0, b1, a1)
         
     | 
| 151 | 
         
            +
                if abs(d1 - d0) > abs(c1 - c0):
         
     | 
| 152 | 
         
            +
                    return (a0 * d1 - a1 * d0) / (d1 - d0)
         
     | 
| 153 | 
         
            +
                else:
         
     | 
| 154 | 
         
            +
                    return (b0 * c1 - b1 * c0) / (c1 - c0)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            def ccw(c, a, b):
         
     | 
| 158 | 
         
            +
                a0 = a - c
         
     | 
| 159 | 
         
            +
                b0 = b - c
         
     | 
| 160 | 
         
            +
                return a0[0] * b0[1] - b0[0] * a0[1]
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
            def crop(shape, scale=(0.35, 1.0), ratio=(9 / 16, 16 / 9)):
         
     | 
| 164 | 
         
            +
                for attempt in range(20):
         
     | 
| 165 | 
         
            +
                    area = shape[0] * shape[1]
         
     | 
| 166 | 
         
            +
                    target_area = random.uniform(*scale) * area
         
     | 
| 167 | 
         
            +
                    aspect_ratio = random.uniform(*ratio)
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                    w = int(round(math.sqrt(target_area * aspect_ratio)))
         
     | 
| 170 | 
         
            +
                    h = int(round(math.sqrt(target_area / aspect_ratio)))
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                    if random.random() < 0.5:
         
     | 
| 173 | 
         
            +
                        w, h = h, w
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    if h <= shape[0] and w <= shape[1]:
         
     | 
| 176 | 
         
            +
                        j = random.randint(0, shape[0] - h)
         
     | 
| 177 | 
         
            +
                        i = random.randint(0, shape[1] - w)
         
     | 
| 178 | 
         
            +
                        return i, j, h, w
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                # Fallback
         
     | 
| 181 | 
         
            +
                w = min(shape[0], shape[1])
         
     | 
| 182 | 
         
            +
                i = (shape[1] - w) // 2
         
     | 
| 183 | 
         
            +
                j = (shape[0] - w) // 2
         
     | 
| 184 | 
         
            +
                return i, j, w, w
         
     | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/models/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,2 @@ 
     | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from .hourglass_pose import hg
         
     | 
| 2 | 
         
            +
            from .vanishing_net import VanishingNet
         
     | 
    	
        vanishing_point_extraction/vanishing_point/neurvps/neurvps/models/__pycache__/__init__.cpython-38.pyc
    ADDED
    
    | 
         Binary file (249 Bytes). View file 
     | 
| 
         |