|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The ExeBench dataset.""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
from pathlib import Path |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{10.1145/3520312.3534867, |
|
author = {Armengol-Estap\'{e}, Jordi and Woodruff, Jackson and Brauckmann, Alexander and Magalh\~{a}es, Jos\'{e} Wesley de Souza and O'Boyle, Michael F. P.}, |
|
title = {ExeBench: An ML-Scale Dataset of Executable C Functions}, |
|
year = {2022}, |
|
isbn = {9781450392730}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
url = {https://doi.org/10.1145/3520312.3534867}, |
|
doi = {10.1145/3520312.3534867}, |
|
abstract = {Machine-learning promises to transform compilation and software engineering, yet is frequently limited by the scope of available datasets. In particular, there is a lack of runnable, real-world datasets required for a range of tasks ranging from neural program synthesis to machine learning-guided program optimization. We introduce a new dataset, ExeBench, which attempts to address this. It tackles two key issues with real-world code: references to external types and functions and scalable generation of IO examples. ExeBench is the first publicly available dataset that pairs real-world C code taken from GitHub with IO examples that allow these programs to be run. We develop a toolchain that scrapes GitHub, analyzes the code, and generates runnable snippets of code. We analyze our benchmark suite using several metrics, and show it is representative of real-world code. ExeBench contains 4.5M compilable and 700k executable C functions. This scale of executable, real functions will enable the next generation of machine learning-based programming tasks.}, |
|
booktitle = {Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming}, |
|
pages = {50–59}, |
|
numpages = {10}, |
|
keywords = {Code Dataset, Program Synthesis, Mining Software Repositories, C, Machine Learning for Code, Compilers}, |
|
location = {San Diego, CA, USA}, |
|
series = {MAPS 2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
An ML-scale dataset of executable C functions |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/jordiae/exebench" |
|
|
|
_LICENSE = "Multiple: see each function license (fields 'ref' and 'path')" |
|
|
|
_URL = "" |
|
|
|
_REMOVED_FEATURES = ["doc", "angha_error", "real_error", "angha_io_error", "real_io_error", |
|
"angha_io_pairs_are_trivial", "real_io_pairs_are_trivial"] |
|
|
|
_RENAMED_FEATURES = {"angha_deps": "synth_deps", "angha_io_pairs": "synth_io_pairs", |
|
"angha_exe_wrapper": "synth_exe_wrapper", "angha_iospec": "synth_iospec"} |
|
|
|
_FEATURES = datasets.Features( |
|
{ |
|
"path": datasets.Value("string"), |
|
"func_def": datasets.Value("string"), |
|
"func_head": datasets.Value("string"), |
|
"func_head_types": datasets.Value("string"), |
|
"fname": datasets.Value("string"), |
|
"signature": datasets.Sequence(datasets.Value("string")), |
|
|
|
|
|
|
|
"asm": datasets.Sequence({'target': datasets.Value("string"), 'code': datasets.Value("string")}), |
|
"synth_deps": datasets.Value("string"), |
|
"real_deps": datasets.Value("string"), |
|
"synth_io_pairs": datasets.Sequence({ |
|
"input": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}), |
|
"output": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}), |
|
"dummy_funcs": datasets.Value("string"), |
|
"dummy_funcs_seed": datasets.Value("int64") |
|
}), |
|
"real_io_pairs": datasets.Sequence({ |
|
"input": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}), |
|
"output": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}), |
|
"dummy_funcs": datasets.Value("string"), |
|
"dummy_funcs_seed": datasets.Value("int64") |
|
}), |
|
|
|
|
|
"synth_exe_wrapper": datasets.Value("string"), |
|
"real_exe_wrapper": datasets.Value("string"), |
|
|
|
|
|
"ref": datasets.Value("string"), |
|
"synth_iospec": datasets.Value("string"), |
|
"real_iospec": datasets.Value("string") |
|
} |
|
) |
|
|
|
|
|
class ExeBenchConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ExeBench.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
"""BuilderConfig for The Pile. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__( |
|
*args, |
|
**kwargs, |
|
) |
|
|
|
|
|
class ExeBench(datasets.GeneratorBasedBuilder): |
|
"""ExeBench dataset""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ExeBenchConfig( |
|
name="ExeBench", |
|
version=datasets.Version("1.0.4"), |
|
description="Executable C dataset" |
|
), |
|
] |
|
|
|
def _info(self): |
|
"""Give information and typings for the dataset.""" |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=_FEATURES, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train_not_compilable": f"{_URL}train_no_compilable.tar.gz", |
|
"train_synth_compilable": f"{_URL}train_synth_compilable.tar.gz", |
|
"train_real_compilable": f"{_URL}train_real_compilable.tar.gz", |
|
"train_synth_simple_io": f"{_URL}train_synth_simple_io.tar.gz", |
|
"train_real_simple_io": f"{_URL}train_real_simple_io.tar.gz", |
|
"train_synth_rich_io": f"{_URL}train_synth_rich_io.tar.gz", |
|
"valid_synth": f"{_URL}valid_synth.tar.gz", |
|
"valid_real": f"{_URL}valid_real.tar.gz", |
|
"test_synth": f"{_URL}test_synth.tar.gz", |
|
"test_real": f"{_URL}test_real.tar.gz", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name='train_not_compilable', |
|
gen_kwargs={"files": downloaded_files["train_not_compilable"]}), |
|
datasets.SplitGenerator(name='train_synth_compilable', |
|
gen_kwargs={"files": downloaded_files["train_synth_compilable"]}), |
|
datasets.SplitGenerator(name='train_real_compilable', |
|
gen_kwargs={"files": downloaded_files["train_real_compilable"]}), |
|
datasets.SplitGenerator(name='train_synth_simple_io', |
|
gen_kwargs={"files": downloaded_files["train_synth_simple_io"]}), |
|
datasets.SplitGenerator(name='train_real_simple_io', |
|
gen_kwargs={"files": downloaded_files["train_real_simple_io"]}), |
|
datasets.SplitGenerator(name='train_synth_rich_io', |
|
gen_kwargs={"files": downloaded_files["train_synth_rich_io"]}), |
|
datasets.SplitGenerator(name='valid_synth', |
|
gen_kwargs={"files": downloaded_files["valid_synth"]}), |
|
datasets.SplitGenerator(name='valid_real', |
|
gen_kwargs={"files": downloaded_files["valid_real"]}), |
|
datasets.SplitGenerator(name='test_synth', |
|
gen_kwargs={"files": downloaded_files["test_synth"]}), |
|
datasets.SplitGenerator(name='test_real', |
|
gen_kwargs={"files": downloaded_files["test_real"]}), |
|
] |
|
|
|
def _generate_examples(self, files): |
|
"""Yield examples as (key, example) tuples.""" |
|
key = 0 |
|
import zstandard as zstd |
|
|
|
for path in Path(files).rglob('*.jsonl.zst'): |
|
with zstd.open(open(path, "rb"), "rt", encoding="utf-8") as f: |
|
for row in f: |
|
data = json.loads(row) |
|
data = data['text'] |
|
data = self._fixes(data) |
|
for io_pairs_kind in ('synth_io_pairs', 'real_io_pairs'): |
|
if data[io_pairs_kind]: |
|
new_io_pairs = [] |
|
for e in data[io_pairs_kind]: |
|
new_e = {} |
|
new_e['input'] = [{'var': var, 'value': json.dumps(value)} for (var, value) in e['input'].items()] if e['input'] else [] |
|
new_e['output'] = [{'var': var, 'value': json.dumps(value)} for (var, value) in e['output'].items()] if e['output'] else [] |
|
new_e['dummy_funcs'] = e['dummy_funcs'] |
|
new_e['dummy_funcs_seed'] = e['dummy_funcs_seed'] |
|
new_io_pairs.append(new_e) |
|
data[io_pairs_kind] = new_io_pairs |
|
data['synth_iospec'] = json.dumps(data['synth_iospec']) |
|
data['real_iospec'] = json.dumps(data['real_iospec']) |
|
yield key, data |
|
key += 1 |
|
|
|
def _fixes(self, row): |
|
if 'angha_iospec' not in row: |
|
row['angha_iospec'] = None |
|
if 'real_iospec' not in row: |
|
row['real_iospec'] = None |
|
if 'func_head_types' not in row: |
|
row['func_head_types'] = '' |
|
row['asm'] = [{'target': target, 'code': code['func_asm'] if code else None} for (target, code) in |
|
row['asm'].items()] |
|
for removed_key in _REMOVED_FEATURES: |
|
if removed_key in row: |
|
del row[removed_key] |
|
for original_key, new_key in _RENAMED_FEATURES.items(): |
|
row[new_key] = row[original_key] |
|
del row[original_key] |
|
return row |
|
|
|
|