--- dataset_info: - config_name: humaneval-jl features: - name: name dtype: string - name: language dtype: string - name: prompt dtype: string - name: doctests dtype: string - name: original dtype: string - name: prompt_terminology dtype: string - name: tests dtype: string - name: stop_tokens dtype: string splits: - name: test num_bytes: 167490 num_examples: 159 download_size: 66247 dataset_size: 167490 - config_name: humaneval-lua features: - name: name dtype: string - name: language dtype: string - name: prompt dtype: string - name: doctests dtype: string - name: original dtype: string - name: prompt_terminology dtype: string - name: tests dtype: string - name: stop_tokens dtype: string splits: - name: test num_bytes: 184572 num_examples: 161 download_size: 66774 dataset_size: 184572 - config_name: humaneval-ml features: - name: name dtype: string - name: language dtype: string - name: prompt dtype: string - name: doctests dtype: string - name: original dtype: string - name: prompt_terminology dtype: string - name: tests dtype: string - name: stop_tokens dtype: string splits: - name: test num_bytes: 170283 num_examples: 155 download_size: 65815 dataset_size: 170283 - config_name: humaneval-r features: - name: name dtype: string - name: language dtype: string - name: prompt dtype: string - name: doctests dtype: string - name: original dtype: string - name: prompt_terminology dtype: string - name: tests dtype: string - name: stop_tokens dtype: string splits: - name: test num_bytes: 199744 num_examples: 161 download_size: 68771 dataset_size: 199744 - config_name: humaneval-rkt features: - name: name dtype: string - name: language dtype: string - name: prompt dtype: string - name: doctests dtype: string - name: original dtype: string - name: prompt_terminology dtype: string - name: tests dtype: string - name: stop_tokens dtype: string splits: - name: test num_bytes: 196214 num_examples: 161 download_size: 67226 dataset_size: 196214 configs: - config_name: humaneval-jl data_files: - split: test path: humaneval-jl/test-* - config_name: humaneval-lua data_files: - split: test path: humaneval-lua/test-* - config_name: humaneval-ml data_files: - split: test path: humaneval-ml/test-* - config_name: humaneval-r data_files: - split: test path: humaneval-r/test-* - config_name: humaneval-rkt data_files: - split: test path: humaneval-rkt/test-* --- # Dataset Card for MultiPL-E-fixed (OCaml, Lua, R, Racket, Julia) This dataset provides corrections for the **OCaml, Lua, R, Racket, and Julia** portions of the [nuprl/MultiPL-E](https://github.com/nuprl/MultiPL-E) benchmark. ### Original Dataset Information - **Repository:** https://github.com/nuprl/MultiPL-E - **Paper:** https://ieeexplore.ieee.org/abstract/document/10103177 - **Original Point of Contact:** carolyn.anderson@wellesley.edu, mfeldman@oberlin.edu, a.guha@northeastern.edu ### This Version - **Repository:** https://github.com/jsbyun121/MultiPL-E-fixed --- ## Dataset Summary MultiPL-E is a large-scale dataset for evaluating code generation models across 22 programming languages. However, analysis of the dataset revealed several logical errors, inconsistencies, and language-specific issues in the generated prompts and test cases. These issues can lead to inaccurate evaluation scores by unfairly penalizing models for correctly identifying flaws in the prompts. This repository provides a **corrected version** of the dataset specifically for **OCaml, Lua, R, Racket, and Julia**. The goal of this version is to provide a more reliable and accurate benchmark for evaluating Large Language Models on these languages. ## Summary of Corrections A detailed table of all corrections (logical problems, prompt ambiguities, and language-specific fixes) is available here: 🔗 [Google Sheet of Corrections](https://docs.google.com/spreadsheets/d/1lnDubSv39__ZuSFmnnXoXCUuPS85jcFScS9hlzI9ohI/edit?usp=sharing) ## Using This Dataset This corrected dataset is designed to be a **drop-in replacement** for the official MultiPL-E data for OCaml, Lua, R, Racket, and Julia. To use it, simply replace the original `humaneval-[lang]` files with the corrected versions provided in this repository. The data structure remains compatible with standard evaluation frameworks. ## Citation and Attribution If you use this corrected version of the dataset in your work, we ask that you please cite the original MultiPL-E paper and also acknowledge this repository for the corrections. **Original Paper:** ```bibtex @inproceedings{cassano2023multipl, title={MultiPL-E: A Scalable and Extensible Approach to Benchmarking Neural Code Generation}, author={Cassano, Federico and Gouwar, John and Nguyen, Daniel and Nguyen, Tuan and Phothilimthana, Phitchaya and Pinckney, David and Anderson, Carolyn and Feldman, Michael and Guha, Arjun}, booktitle={2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR)}, pages={707--719}, year={2023}, organization={IEEE} }