---
dataset_info:
- config_name: radar
features:
- name: task_id
dtype: string
- name: query
dtype: string
- name: answer
dtype: string
- name: artifact_type
dtype: string
- name: artifact_scope
dtype: string
- name: query_cols
sequence: string
- name: artifact_reasoning_cols
sequence: string
- name: table
struct:
- name: headers
large_list: string
- name: rows
large_list:
large_list: string
- name: num_rows
dtype: int64
- name: num_cols
dtype: int64
- name: recovered_tables_transform_spec
sequence:
- name: drop_rows
large_list: int64
- name: overwrite_cells
large_list:
- name: row
dtype: int64
- name: col
dtype: string
- name: new_value
dtype: string
- name: base_data_num_tokens
dtype: int64
- name: base_data_token_bucket
dtype: int64
- name: perturbation_note
dtype: string
splits:
- name: test
num_bytes: 54326034
num_examples: 2980
download_size: 5735883
dataset_size: 54326034
- config_name: radar-sizes
features:
- name: task_id
dtype: string
- name: query
dtype: string
- name: answer
dtype: string
- name: artifact_type
dtype: string
- name: artifact_scope
dtype: string
- name: query_cols
sequence: string
- name: artifact_reasoning_cols
sequence: string
- name: table
struct:
- name: headers
large_list: string
- name: rows
large_list:
large_list: string
- name: num_rows
dtype: int64
- name: num_cols
dtype: int64
- name: recovered_tables_transform_spec
sequence:
- name: drop_rows
large_list: int64
- name: overwrite_cells
large_list:
- name: row
dtype: int64
- name: col
dtype: string
- name: new_value
dtype: string
- name: base_data_num_tokens
dtype: int64
- name: base_data_token_bucket
dtype: int64
- name: perturbation_note
dtype: string
splits:
- name: test
num_bytes: 12508093
num_examples: 720
download_size: 1292646
dataset_size: 12508093
- config_name: radar-tasks
features:
- name: task_id
dtype: string
- name: query
dtype: string
- name: answer
dtype: string
- name: artifact_type
dtype: string
- name: artifact_scope
dtype: string
- name: query_cols
sequence: string
- name: artifact_reasoning_cols
sequence: string
- name: table
struct:
- name: headers
large_list: string
- name: rows
large_list:
large_list: string
- name: num_rows
dtype: int64
- name: num_cols
dtype: int64
- name: recovered_tables_transform_spec
sequence:
- name: drop_rows
large_list: int64
- name: overwrite_cells
large_list:
- name: row
dtype: int64
- name: col
dtype: string
- name: new_value
dtype: string
- name: base_data_num_tokens
dtype: int64
- name: base_data_token_bucket
dtype: int64
- name: perturbation_note
dtype: string
splits:
- name: test
num_bytes: 6116305
num_examples: 313
download_size: 830488
dataset_size: 6116305
configs:
- config_name: radar
data_files:
- split: test
path: radar/test-*
- config_name: radar-sizes
data_files:
- split: test
path: radar-sizes/test-*
- config_name: radar-tasks
data_files:
- split: test
path: radar-tasks/test-*
license: cc-by-4.0
task_categories:
- table-question-answering
language:
- en
pretty_name: RADAR
size_categories:
- 1K
The **Robust And Data Aware Reasoning (RADAR)** benchmark is designed to evaluate the ability of language models to demonstrate **data-awareness**βthat is, to recognize, reason over, and appropriately handle complex data artifacts such as:
- Missing data
- Bad values
- Outliers
- Inconsistent formatting
- Inconsistent multi-column logic
The full dataset includes **53 tasks** grounded in real-world data tables and varies across data artifact types and table dimensions (by token count and number of columns). In total, RADAR provides **2,980 unique query-table task instances**.
We also include two subsets of the data: (1) **radar-sizes** (RADAR-S) to focus evaluation on table sizes and (2) **radar-tasks** (RADAR-T) to focus evaluation across all tasks.
## π Dataset Statistics
| **Dataset Split** | **Tasks** | **Instances** | **Tokens (K)** | **Cols** |
|-------------|-----------|---------------|----------------|----------|
| RADAR | 53 | 2,980 | [2,4,8,16] | [5,10,20] |
| RADAR-T | 53 | 313 | 8 | 10 |
| RADAR-S | 10 | 720 | [2,4,8,16] | [5,10,20] |
## π Dataset Structure
Each task instance comprises of the follwowing data:
* `task_id`: a unique id for each source table and query
* `query`: the query to ask over the data table
* `answer`: ground truth answer to the query
* `artifact_type`: the artifact type introduced to the data table for this task
* `artiact_scope`: does reasoning over the data artifacts involve only a single column, naively or independetly over multiple columns, or jointly or connected over multiple columns
* `query_cols`: the columns invovled in the query
* `artifact_reasoning_cols`: the columns invovled in reasoning over the artifacts
* `table`: the data table for this task (a dictionary with keys "headers" and "rows" to represent the table column names and rows)
* `num_rows`: number of rows in the tbale
* `num_cols`: number of columns in the table
* `recovered_tables_transform_spec`: The right answer is caluclated over the recovered data table(s). We convert the data table in `table` to the recovered data table(s) using this specification indicating which rows to drop and which cells to overwrite.
* `base_data_num_tokens`: The number of tokens in the data table (before introducing any data artifact perturbations). This may be slightly different after introducing perturbations.
* `base_data_token_bucket`: The token bucket in which this task belongs to (one of 2000, 4000, 8000, and 16000)
* `perturbation_note`: Any note about the data artifact perturbation that is introduced.
## π» Loading the Data
Using Hugging Face
```python
from datasets import load_dataset
radar_all = load_dataset("kenqgu/radar", "radar")["test"]
radar_s = load_dataset("kenqgu/radar", "radar-sizes")["test"]
radar_t = load_dataset("kenqgu/radar", "radar-tasks")["test"]
```
Using included RADAR code to load into more usable pydantic objects (need to install radar first).
```python
from radar.data import load_task_instances_hf
# load the full dataset
tasks, task_summary_df = load_task_instances_hf(split="full")
tasks_s, _ = load_task_instances_hf(split="sizes")
tasks_t, _ = load_task_instances_hf(split="tasks")
# view the table as a pandas dataframe
tasks[0].table_df.head()
```
## π Citation
If you use RADAR in your research, please cite our paper:
```bibtex
@article{gu2025radar,
title={RADAR: Benchmarking Language Models on Imperfect Tabular Data},
author={Ken Gu and Zhihan Zhang and Kate Lin and Yuwei Zhang and Akshay Paruchuri and Hong Yu and Mehran Kazemi and Kumar Ayush and A. Ali Heydari and Maxwell A. Xu and Girish Narayanswamy and Yun Liu and Ming-Zher Poh and Yuzhe Yang and Mark Malhotra and Shwetak Patel and Hamid Palangi and Xuhai Xu and Daniel McDuff and Tim Althoff and Xin Liu},
year={2025},
eprint={2506.08249},
archivePrefix={arXiv},
primaryClass={cs.DB},
url={https://arxiv.org/abs/2506.08249},
}
```