File size: 2,530 Bytes
2eae90c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import datetime
import numpy as np
from vaex_queries import utils
Q_NUM = 5
def q():
date1 = np.datetime64("1994-01-01")
date2 = np.datetime64("1995-01-01")
region_ds = utils.get_region_ds
nation_ds = utils.get_nation_ds
customer_ds = utils.get_customer_ds
line_item_ds = utils.get_line_item_ds
orders_ds = utils.get_orders_ds
supplier_ds = utils.get_supplier_ds
# first call one time to cache in case we don't include the IO times
region_ds()
nation_ds()
customer_ds()
line_item_ds()
orders_ds()
supplier_ds()
def query():
nonlocal region_ds
nonlocal nation_ds
nonlocal customer_ds
nonlocal line_item_ds
nonlocal orders_ds
nonlocal supplier_ds
region_ds = region_ds()
nation_ds = nation_ds()
customer_ds = customer_ds()
line_item_ds = line_item_ds()
orders_ds = orders_ds()
supplier_ds = supplier_ds()
rsel = region_ds.r_name == "ASIA"
osel = (orders_ds.o_orderdate >= date1) & (orders_ds.o_orderdate < date2)
forders = orders_ds[osel]
fregion = region_ds[rsel]
# see: https://github.com/vaexio/vaex/issues/1319
fregion = fregion.sort("r_regionkey")
jn1 = fregion.join(
nation_ds,
left_on="r_regionkey",
right_on="n_regionkey",
how="inner",
allow_duplication=True,
)
jn2 = jn1.join(
customer_ds,
left_on="n_nationkey",
right_on="c_nationkey",
how="inner",
allow_duplication=True,
)
jn3 = jn2.join(
forders,
left_on="c_custkey",
right_on="o_custkey",
how="inner",
allow_duplication=True,
)
jn4 = jn3.join(
line_item_ds,
left_on="o_orderkey",
right_on="l_orderkey",
how="inner",
allow_duplication=True,
)
jn5 = supplier_ds.join(
jn4,
left_on=["s_suppkey", "s_nationkey"],
right_on=["l_suppkey", "n_nationkey"],
how="inner",
allow_duplication=True,
)
jn5["revenue"] = jn5.l_extendedprice * (1.0 - jn5.l_discount)
gb = jn5.groupby("n_name").agg({"revenue": "sum"})
result_df = gb.sort("revenue", ascending=False)
return result_df
utils.run_query(Q_NUM, query)
if __name__ == "__main__":
q()
|