kunishou's picture
Upload 284 files
2eae90c verified
import datetime
from datetime import datetime
import modin.pandas as pd
from modin_queries import utils
Q_NUM = 7
def q():
nation_ds = utils.get_nation_ds
customer_ds = utils.get_customer_ds
line_item_ds = utils.get_line_item_ds
orders_ds = utils.get_orders_ds
supplier_ds = utils.get_supplier_ds
# first call one time to cache in case we don't include the IO times
nation_ds()
customer_ds()
line_item_ds()
orders_ds()
supplier_ds()
def query():
nonlocal nation_ds
nonlocal customer_ds
nonlocal line_item_ds
nonlocal orders_ds
nonlocal supplier_ds
nation_ds = nation_ds()
customer_ds = customer_ds()
line_item_ds = line_item_ds()
orders_ds = orders_ds()
supplier_ds = supplier_ds()
lineitem_filtered = line_item_ds[
(line_item_ds["l_shipdate"] >= datetime.strptime("1995-01-01", "%Y-%m-%d"))
& (line_item_ds["l_shipdate"] < datetime.strptime("1997-01-01", "%Y-%m-%d"))
]
lineitem_filtered["l_year"] = lineitem_filtered["l_shipdate"].dt.year
lineitem_filtered["revenue"] = lineitem_filtered["l_extendedprice"] * (
1.0 - lineitem_filtered["l_discount"]
)
lineitem_filtered = lineitem_filtered.loc[
:, ["l_orderkey", "l_suppkey", "l_year", "revenue"]
]
supplier_filtered = supplier_ds.loc[:, ["s_suppkey", "s_nationkey"]]
orders_filtered = orders_ds.loc[:, ["o_orderkey", "o_custkey"]]
customer_filtered = customer_ds.loc[:, ["c_custkey", "c_nationkey"]]
n1 = nation_ds[(nation_ds["n_name"] == "FRANCE")].loc[
:, ["n_nationkey", "n_name"]
]
n2 = nation_ds[(nation_ds["n_name"] == "GERMANY")].loc[
:, ["n_nationkey", "n_name"]
]
# ----- do nation 1 -----
N1_C = customer_filtered.merge(
n1, left_on="c_nationkey", right_on="n_nationkey", how="inner"
)
N1_C = N1_C.drop(columns=["c_nationkey", "n_nationkey"]).rename(
columns={"n_name": "cust_nation"}
)
N1_C_O = N1_C.merge(
orders_filtered, left_on="c_custkey", right_on="o_custkey", how="inner"
)
N1_C_O = N1_C_O.drop(columns=["c_custkey", "o_custkey"])
N2_S = supplier_filtered.merge(
n2, left_on="s_nationkey", right_on="n_nationkey", how="inner"
)
N2_S = N2_S.drop(columns=["s_nationkey", "n_nationkey"]).rename(
columns={"n_name": "supp_nation"}
)
N2_S_L = N2_S.merge(
lineitem_filtered, left_on="s_suppkey", right_on="l_suppkey", how="inner"
)
N2_S_L = N2_S_L.drop(columns=["s_suppkey", "l_suppkey"])
total1 = N1_C_O.merge(
N2_S_L, left_on="o_orderkey", right_on="l_orderkey", how="inner"
)
total1 = total1.drop(columns=["o_orderkey", "l_orderkey"])
# ----- do nation 2 ----- (same as nation 1 section but with nation 2)
N2_C = customer_filtered.merge(
n2, left_on="c_nationkey", right_on="n_nationkey", how="inner"
)
N2_C = N2_C.drop(columns=["c_nationkey", "n_nationkey"]).rename(
columns={"n_name": "cust_nation"}
)
N2_C_O = N2_C.merge(
orders_filtered, left_on="c_custkey", right_on="o_custkey", how="inner"
)
N2_C_O = N2_C_O.drop(columns=["c_custkey", "o_custkey"])
N1_S = supplier_filtered.merge(
n1, left_on="s_nationkey", right_on="n_nationkey", how="inner"
)
N1_S = N1_S.drop(columns=["s_nationkey", "n_nationkey"]).rename(
columns={"n_name": "supp_nation"}
)
N1_S_L = N1_S.merge(
lineitem_filtered, left_on="s_suppkey", right_on="l_suppkey", how="inner"
)
N1_S_L = N1_S_L.drop(columns=["s_suppkey", "l_suppkey"])
total2 = N2_C_O.merge(
N1_S_L, left_on="o_orderkey", right_on="l_orderkey", how="inner"
)
total2 = total2.drop(columns=["o_orderkey", "l_orderkey"])
# concat results
total = pd.concat([total1, total2])
result_df = (
total.groupby(["supp_nation", "cust_nation", "l_year"])
.revenue.agg("sum")
.reset_index()
)
result_df.columns = ["supp_nation", "cust_nation", "l_year", "revenue"]
result_df = result_df.sort_values(
by=["supp_nation", "cust_nation", "l_year"],
ascending=[
True,
True,
True,
],
)
return result_df
utils.run_query(Q_NUM, query)
if __name__ == "__main__":
q()