python_code
stringlengths
0
229k
## @package process # Module doxygen.process # Script to insert preamble for doxygen and regen API docs import glob, os, shutil # Module caffe2...caffe2.python.control_test def insert(originalfile,first_line,description): with open(originalfile,'r') as f: f1 = f.readline() if(f1.find(first_line)<0): docs = first_line + description + f1 with open('newfile.txt','w') as f2: f2.write(docs) f2.write(f.read()) os.rename('newfile.txt',originalfile) else: print('already inserted') # move up from /caffe2_root/doxygen os.chdir("..") os.system("git checkout caffe2/python/.") for root, dirs, files in os.walk("."): for file in files: if file.endswith(".py"): filepath = os.path.join(root, file) print("filepath: " + filepath) directory = os.path.dirname(filepath)[2:] directory = directory.replace("/",".") print "directory: " + directory name = os.path.splitext(file)[0] first_line = "## @package " + name description = "\n# Module " + directory + "." + name + "\n" print first_line,description insert(filepath,first_line,description) if os.path.exists("doxygen/doxygen-python"): print("Looks like you ran this before, so we need to cleanup those old files...") shutil.rmtree("doxygen/doxygen-python") else: os.makedirs("doxygen/doxygen-python") if os.path.exists("doxygen/doxygen-c"): print("Looks like you ran this before, so we need to cleanup those old files...") shutil.rmtree("doxygen/doxygen-c") else: os.makedirs("doxygen/doxygen-c") os.system("doxygen .Doxyfile-python") os.system("doxygen .Doxyfile-c")
## @package publish # Module doxygen.publish import os, shutil if os.path.exists("/Users/aaronmarkham/caffe2/doxygen-c"): print("Looks like you ran this before, so we need to cleanup those old files...") shutil.rmtree("/Users/aaronmarkham/caffe2/doxygen-c") if os.path.exists("/Users/aaronmarkham/caffe2/doxygen-python"): print("Looks like you ran this before, so we need to cleanup those old files...") shutil.rmtree("/Users/aaronmarkham/caffe2/doxygen-python") os.system("cp -rf doxygen-c /Users/aaronmarkham/caffe2/") os.system("cp -rf doxygen-python /Users/aaronmarkham/caffe2/")
import os import torch from torch.utils.ffi import create_extension this_file = os.path.dirname(__file__) sources = ['src/my_lib.c'] headers = ['src/my_lib.h'] defines = [] with_cuda = False if torch.cuda.is_available(): print('Including CUDA code.') sources += ['src/my_lib_cuda.c'] headers += ['src/my_lib_cuda.h'] defines += [('WITH_CUDA', None)] with_cuda = True ffi = create_extension( '_ext.my_lib', headers=headers, sources=sources, define_macros=defines, relative_to=__file__, with_cuda=with_cuda, extra_compile_args=["-std=c99"] ) if __name__ == '__main__': ffi.build()
import torch import torch.nn as nn from torch.autograd import Variable from modules.add import MyAddModule class MyNetwork(nn.Module): def __init__(self): super(MyNetwork, self).__init__() self.add = MyAddModule() def forward(self, input1, input2): return self.add(input1, input2) model = MyNetwork() x = torch.range(1, 25).view(5, 5) input1, input2 = Variable(x), Variable(x * 4) print(model(input1, input2)) print(input1 + input2) if torch.cuda.is_available(): input1, input2, = input1.cuda(), input2.cuda() print(model(input1, input2)) print(input1 + input2)
# functions/add.py import torch from torch.autograd import Function from _ext import my_lib class MyAddFunction(Function): def forward(self, input1, input2): output = input1.new() if not input1.is_cuda: my_lib.my_lib_add_forward(input1, input2, output) else: my_lib.my_lib_add_forward_cuda(input1, input2, output) return output def backward(self, grad_output): grad_input = grad_output.new() if not grad_output.is_cuda: my_lib.my_lib_add_backward(grad_output, grad_input) else: my_lib.my_lib_add_backward_cuda(grad_output, grad_input) return grad_input
from torch.nn.modules.module import Module from functions.add import MyAddFunction class MyAddModule(Module): def forward(self, input1, input2): return MyAddFunction()(input1, input2)
import os import torch from torch.utils.ffi import create_extension this_file = os.path.dirname(__file__) sources = ['my_package/src/my_lib.c'] headers = ['my_package/src/my_lib.h'] defines = [] with_cuda = False if torch.cuda.is_available(): print('Including CUDA code.') sources += ['my_package/src/my_lib_cuda.c'] headers += ['my_package/src/my_lib_cuda.h'] defines += [('WITH_CUDA', None)] with_cuda = True ffi = create_extension( 'my_package._ext.my_lib', package=True, headers=headers, sources=sources, define_macros=defines, relative_to=__file__, with_cuda=with_cuda ) if __name__ == '__main__': ffi.build()
import torch import torch.nn as nn from torch.autograd import Variable from my_package.modules.add import MyAddModule class MyNetwork(nn.Module): def __init__(self): super(MyNetwork, self).__init__() self.add = MyAddModule() def forward(self, input1, input2): return self.add(input1, input2) model = MyNetwork() x = torch.range(1, 25).view(5, 5) input1, input2 = Variable(x), Variable(x * 4) print(model(input1, input2)) print(input1 + input2) if torch.cuda.is_available(): input1, input2, = input1.cuda(), input2.cuda() print(model(input1, input2)) print(input1 + input2)
# functions/add.py import torch from torch.autograd import Function from .._ext import my_lib class MyAddFunction(Function): def forward(self, input1, input2): output = input1.new() if not input1.is_cuda: my_lib.my_lib_add_forward(input1, input2, output) else: my_lib.my_lib_add_forward_cuda(input1, input2, output) return output def backward(self, grad_output): grad_input = grad_output.new() if not grad_output.is_cuda: my_lib.my_lib_add_backward(grad_output, grad_input) else: my_lib.my_lib_add_backward_cuda(grad_output, grad_input) return grad_input
from torch.nn.modules.module import Module from ..functions.add import MyAddFunction class MyAddModule(Module): def forward(self, input1, input2): return MyAddFunction()(input1, input2)
import torch torch.ops.load_library("example_app/build/warp_perspective/libwarp_perspective.so") def compute(x, y, z): x = torch.ops.my_ops.warp_perspective(x, torch.eye(3)) return x.matmul(y) + torch.relu(z) inputs = [torch.randn(4, 8), torch.randn(8, 5), torch.randn(8, 5)] trace = torch.jit.trace(compute, inputs) print(trace.graph)
# Run `python setup.py build develop` before running this example! import torch torch.ops.load_library("warp_perspective.so") print(torch.ops.my_ops.warp_perspective)
import torch torch.ops.load_library("example_app/build/warp_perspective/libwarp_perspective.so") print(torch.ops.my_ops.warp_perspective(torch.randn(32, 32), torch.rand(3, 3)))
import torch import torch.utils.cpp_extension op_source = """ #include <opencv2/opencv.hpp> #include <torch/script.h> torch::Tensor warp_perspective(torch::Tensor image, torch::Tensor warp) { cv::Mat image_mat(/*rows=*/image.size(0), /*cols=*/image.size(1), /*type=*/CV_32FC1, /*data=*/image.data<float>()); cv::Mat warp_mat(/*rows=*/warp.size(0), /*cols=*/warp.size(1), /*type=*/CV_32FC1, /*data=*/warp.data<float>()); cv::Mat output_mat; cv::warpPerspective(image_mat, output_mat, warp_mat, /*dsize=*/{64, 64}); torch::Tensor output = torch::from_blob(output_mat.ptr<float>(), /*sizes=*/{64, 64}); return output.clone(); } static auto registry = torch::jit::RegisterOperators("my_ops::warp_perspective", &warp_perspective); """ torch.utils.cpp_extension.load_inline( name="warp_perspective", cpp_sources=op_source, extra_ldflags=["-lopencv_core", "-lopencv_imgproc"], is_python_module=False, verbose=True, ) print(torch.ops.my_ops.warp_perspective)
import torch import torch.utils.cpp_extension torch.utils.cpp_extension.load( name="warp_perspective", sources=["example_app/warp_perspective/op.cpp"], extra_ldflags=["-lopencv_core", "-lopencv_imgproc"], is_python_module=False, verbose=True ) print(torch.ops.my_ops.warp_perspective)
import torch torch.ops.load_library("example_app/build/warp_perspective/libwarp_perspective.so") @torch.jit.script def compute(x, y): if bool(x[0][0] == 42): z = 5 else: z = 10 x = torch.ops.my_ops.warp_perspective(x, torch.eye(3)) return x.matmul(y) + z print(compute.graph) print(compute(torch.randn(4, 8), torch.randn(8, 5))) compute.save("example.pt")
from __future__ import division from __future__ import print_function import argparse import math import time import torch TIME_SCALES = {'s': 1, 'ms': 1000, 'us': 1000000} parser = argparse.ArgumentParser() parser.add_argument('example', choices=['py', 'cpp', 'cuda']) parser.add_argument('-b', '--batch-size', type=int, default=16) parser.add_argument('-f', '--features', type=int, default=32) parser.add_argument('-s', '--state-size', type=int, default=128) parser.add_argument('-r', '--runs', type=int, default=100) parser.add_argument('--scale', choices=['s', 'ms', 'us'], default='us') parser.add_argument('-c', '--cuda', action='store_true') parser.add_argument('-d', '--double', action='store_true') options = parser.parse_args() if options.example == 'py': from python.lltm import LLTM elif options.example == 'cpp': from cpp.lltm import LLTM else: from cuda.lltm import LLTM options.cuda = True device = torch.device("cuda") if options.cuda else torch.device("cpu") dtype = torch.float64 if options.double else torch.float32 kwargs = {'dtype': dtype, 'device': device, 'requires_grad': True} X = torch.randn(options.batch_size, options.features, **kwargs) h = torch.randn(options.batch_size, options.state_size, **kwargs) C = torch.randn(options.batch_size, options.state_size, **kwargs) rnn = LLTM(options.features, options.state_size).to(device, dtype) # Force CUDA initialization new_h, new_C = rnn(X, (h, C)) (new_h.sum() + new_C.sum()).backward() forward_min = math.inf forward_time = 0 backward_min = math.inf backward_time = 0 for _ in range(options.runs): rnn.zero_grad() start = time.time() new_h, new_C = rnn(X, (h, C)) elapsed = time.time() - start forward_min = min(forward_min, elapsed) forward_time += elapsed start = time.time() (new_h.sum() + new_C.sum()).backward() elapsed = time.time() - start backward_min = min(backward_min, elapsed) backward_time += elapsed scale = TIME_SCALES[options.scale] forward_min *= scale backward_min *= scale forward_average = forward_time / options.runs * scale backward_average = backward_time / options.runs * scale print('Forward: {0:.3f}/{1:.3f} {4} | Backward {2:.3f}/{3:.3f} {4}'.format( forward_min, forward_average, backward_min, backward_average, options.scale))
from __future__ import division from __future__ import print_function import argparse import numpy as np import torch import python.lltm_baseline import cpp.lltm def check_equal(first, second, verbose): if verbose: print() for i, (x, y) in enumerate(zip(first, second)): x = x.cpu().detach().numpy() y = y.cpu().detach().numpy() if verbose: print("x = {}".format(x.flatten())) print("y = {}".format(y.flatten())) print('-' * 80) np.testing.assert_allclose(x, y, err_msg="Index: {}".format(i)) def zero_grad(variables): for variable in variables: variable.grad.zero_() def get_grads(variables): return [var.grad.clone() for var in variables] def check_forward(variables, with_cuda, verbose): baseline_values = python.lltm_baseline.LLTMFunction.apply(*variables) cpp_values = cpp.lltm.LLTMFunction.apply(*variables) print('Forward: Baseline (Python) vs. C++ ... ', end='') check_equal(baseline_values, cpp_values, verbose) print('Ok') if with_cuda: cuda_values = cuda.lltm.LLTMFunction.apply(*variables) print('Forward: Baseline (Python) vs. CUDA ... ', end='') check_equal(baseline_values, cuda_values, verbose) print('Ok') def check_backward(variables, with_cuda, verbose): baseline_values = python.lltm_baseline.LLTMFunction.apply(*variables) (baseline_values[0] + baseline_values[1]).sum().backward() grad_baseline = get_grads(variables) zero_grad(variables) cpp_values = cpp.lltm.LLTMFunction.apply(*variables) (cpp_values[0] + cpp_values[1]).sum().backward() grad_cpp = get_grads(variables) print('Backward: Baseline (Python) vs. C++ ... ', end='') check_equal(grad_baseline, grad_cpp, verbose) print('Ok') if with_cuda: zero_grad(variables) cuda_values = cuda.lltm.LLTMFunction.apply(*variables) (cuda_values[0] + cuda_values[1]).sum().backward() grad_cuda = get_grads(variables) print('Backward: Baseline (Python) vs. CUDA ... ', end='') check_equal(grad_baseline, grad_cuda, verbose) print('Ok') parser = argparse.ArgumentParser() parser.add_argument('direction', choices=['forward', 'backward'], nargs='+') parser.add_argument('-b', '--batch-size', type=int, default=3) parser.add_argument('-f', '--features', type=int, default=17) parser.add_argument('-s', '--state-size', type=int, default=5) parser.add_argument('-c', '--cuda', action='store_true') parser.add_argument('-v', '--verbose', action='store_true') options = parser.parse_args() if options.cuda: import cuda.lltm device = torch.device("cuda") else: device = torch.device("cpu") kwargs = {'dtype': torch.float64, 'device': device, 'requires_grad': True} X = torch.randn(options.batch_size, options.features, **kwargs) h = torch.randn(options.batch_size, options.state_size, **kwargs) C = torch.randn(options.batch_size, options.state_size, **kwargs) W = torch.randn(3 * options.state_size, options.features + options.state_size, **kwargs) b = torch.randn(1, 3 * options.state_size, **kwargs) variables = [X, W, b, h, C] if 'forward' in options.direction: check_forward(variables, options.cuda, options.verbose) if 'backward' in options.direction: check_backward(variables, options.cuda, options.verbose)
from __future__ import division from __future__ import print_function import argparse import torch from torch.autograd import gradcheck parser = argparse.ArgumentParser() parser.add_argument('example', choices=['py', 'cpp', 'cuda']) parser.add_argument('-b', '--batch-size', type=int, default=3) parser.add_argument('-f', '--features', type=int, default=17) parser.add_argument('-s', '--state-size', type=int, default=5) parser.add_argument('-c', '--cuda', action='store_true') options = parser.parse_args() if options.example == 'py': from python.lltm_baseline import LLTMFunction elif options.example == 'cpp': from cpp.lltm import LLTMFunction else: from cuda.lltm import LLTMFunction options.cuda = True device = torch.device("cuda") if options.cuda else torch.device("cpu") kwargs = {'dtype': torch.float64, 'device': device, 'requires_grad': True} X = torch.randn(options.batch_size, options.features, **kwargs) h = torch.randn(options.batch_size, options.state_size, **kwargs) C = torch.randn(options.batch_size, options.state_size, **kwargs) W = torch.randn(3 * options.state_size, options.features + options.state_size, **kwargs) b = torch.randn(1, 3 * options.state_size, **kwargs) variables = [X, W, b, h, C] if gradcheck(LLTMFunction.apply, variables): print('Ok')
import math import torch import torch.nn.functional as F torch.manual_seed(42) class LLTM(torch.nn.Module): def __init__(self, input_features, state_size): super(LLTM, self).__init__() self.input_features = input_features self.state_size = state_size # 3 * state_size for input gate, output gate and candidate cell gate. # input_features + state_size because we will multiply with [input, h]. self.weights = torch.nn.Parameter( torch.Tensor(3 * state_size, input_features + state_size)) self.bias = torch.nn.Parameter(torch.Tensor(1, 3 * state_size)) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.state_size) for weight in self.parameters(): weight.data.uniform_(-stdv, +stdv) def forward(self, input, state): old_h, old_cell = state X = torch.cat([old_h, input], dim=1) # Compute the input, output and candidate cell gates with one MM. gate_weights = F.linear(X, self.weights, self.bias) # Split the combined gate weight matrix into its components. gates = gate_weights.chunk(3, dim=1) input_gate = torch.sigmoid(gates[0]) output_gate = torch.sigmoid(gates[1]) # Here we use an ELU instead of the usual tanh. candidate_cell = F.elu(gates[2]) # Compute the new cell state. new_cell = old_cell + candidate_cell * input_gate # Compute the new hidden state and output. new_h = torch.tanh(new_cell) * output_gate return new_h, new_cell
import math from torch import nn from torch.autograd import Function import torch import torch.nn.functional as F torch.manual_seed(42) def d_sigmoid(z): s = torch.sigmoid(z) return (1 - s) * s def d_tanh(z): t = torch.tanh(z) return 1 - (t * t) def d_elu(z, alpha=1.0): e = z.exp() mask = (alpha * (e - 1)) < 0 return (z > 0).type_as(z) + mask.type_as(z) * (alpha * e) class LLTMFunction(Function): @staticmethod def forward(ctx, input, weights, bias, old_h, old_cell): X = torch.cat([old_h, input], dim=1) gate_weights = F.linear(X, weights, bias) gates = gate_weights.chunk(3, dim=1) input_gate = torch.sigmoid(gates[0]) output_gate = torch.sigmoid(gates[1]) candidate_cell = F.elu(gates[2]) new_cell = old_cell + candidate_cell * input_gate new_h = torch.tanh(new_cell) * output_gate ctx.save_for_backward(X, weights, input_gate, output_gate, old_cell, new_cell, candidate_cell, gate_weights) return new_h, new_cell @staticmethod def backward(ctx, grad_h, grad_cell): X, weights, input_gate, output_gate, old_cell = ctx.saved_variables[:5] new_cell, candidate_cell, gate_weights = ctx.saved_variables[5:] d_input = d_weights = d_bias = d_old_h = d_old_cell = None d_output_gate = torch.tanh(new_cell) * grad_h d_tanh_new_cell = output_gate * grad_h d_new_cell = d_tanh(new_cell) * d_tanh_new_cell + grad_cell d_old_cell = d_new_cell d_candidate_cell = input_gate * d_new_cell d_input_gate = candidate_cell * d_new_cell gates = gate_weights.chunk(3, dim=1) d_input_gate *= d_sigmoid(gates[0]) d_output_gate *= d_sigmoid(gates[1]) d_candidate_cell *= d_elu(gates[2]) d_gates = torch.cat( [d_input_gate, d_output_gate, d_candidate_cell], dim=1) if ctx.needs_input_grad[1]: d_weights = d_gates.t().mm(X) if ctx.needs_input_grad[2]: d_bias = d_gates.sum(dim=0, keepdim=True) if ctx.needs_input_grad[3] or ctx.needs_input_grad[4]: d_X = d_gates.mm(weights) state_size = grad_h.shape[1] d_old_h, d_input = d_X[:, :state_size], d_X[:, state_size:] return d_input, d_weights, d_bias, d_old_h, d_old_cell class LLTM(nn.Module): def __init__(self, input_features, state_size): super(LLTM, self).__init__() self.input_features = input_features self.state_size = state_size self.weights = nn.Parameter( torch.Tensor(3 * state_size, input_features + state_size)) self.bias = nn.Parameter(torch.Tensor(1, 3 * state_size)) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.state_size) for weight in self.parameters(): weight.data.uniform_(-stdv, +stdv) def forward(self, input, state): return LLTMFunction.apply(input, self.weights, self.bias, *state)
from torch.utils.cpp_extension import load lltm_cuda = load( 'lltm_cuda', ['lltm_cuda.cpp', 'lltm_cuda_kernel.cu'], verbose=True) help(lltm_cuda)
import math from torch import nn from torch.autograd import Function import torch import lltm_cuda torch.manual_seed(42) class LLTMFunction(Function): @staticmethod def forward(ctx, input, weights, bias, old_h, old_cell): outputs = lltm_cuda.forward(input, weights, bias, old_h, old_cell) new_h, new_cell = outputs[:2] variables = outputs[1:] + [weights] ctx.save_for_backward(*variables) return new_h, new_cell @staticmethod def backward(ctx, grad_h, grad_cell): outputs = lltm_cuda.backward( grad_h.contiguous(), grad_cell.contiguous(), *ctx.saved_variables) d_old_h, d_input, d_weights, d_bias, d_old_cell, d_gates = outputs return d_input, d_weights, d_bias, d_old_h, d_old_cell class LLTM(nn.Module): def __init__(self, input_features, state_size): super(LLTM, self).__init__() self.input_features = input_features self.state_size = state_size self.weights = nn.Parameter( torch.Tensor(3 * state_size, input_features + state_size)) self.bias = nn.Parameter(torch.Tensor(1, 3 * state_size)) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.state_size) for weight in self.parameters(): weight.data.uniform_(-stdv, +stdv) def forward(self, input, state): return LLTMFunction.apply(input, self.weights, self.bias, *state)
from torch.utils.cpp_extension import load lltm_cpp = load(name="lltm_cpp", sources=["lltm.cpp"], verbose=True) help(lltm_cpp)
import math from torch import nn from torch.autograd import Function import torch import lltm_cpp torch.manual_seed(42) class LLTMFunction(Function): @staticmethod def forward(ctx, input, weights, bias, old_h, old_cell): outputs = lltm_cpp.forward(input, weights, bias, old_h, old_cell) new_h, new_cell = outputs[:2] variables = outputs[1:] + [weights] ctx.save_for_backward(*variables) return new_h, new_cell @staticmethod def backward(ctx, grad_h, grad_cell): d_old_h, d_input, d_weights, d_bias, d_old_cell = lltm_cpp.backward( grad_h, grad_cell, *ctx.saved_variables) return d_input, d_weights, d_bias, d_old_h, d_old_cell class LLTM(nn.Module): def __init__(self, input_features, state_size): super(LLTM, self).__init__() self.input_features = input_features self.state_size = state_size self.weights = nn.Parameter( torch.Tensor(3 * state_size, input_features + state_size)) self.bias = nn.Parameter(torch.Tensor(1, 3 * state_size)) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.state_size) for weight in self.parameters(): weight.data.uniform_(-stdv, +stdv) def forward(self, input, state): return LLTMFunction.apply(input, self.weights, self.bias, *state)
from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if args.dry_run: break def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=14, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--no-mps', action='store_true', default=False, help='disables macOS GPU training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() use_mps = not args.no_mps and torch.backends.mps.is_available() torch.manual_seed(args.seed) if use_cuda: device = torch.device("cuda") elif use_mps: device = torch.device("mps") else: device = torch.device("cpu") train_kwargs = {'batch_size': args.batch_size} test_kwargs = {'batch_size': args.test_batch_size} if use_cuda: cuda_kwargs = {'num_workers': 1, 'pin_memory': True, 'shuffle': True} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) dataset1 = datasets.MNIST('../data', train=True, download=True, transform=transform) dataset2 = datasets.MNIST('../data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(model, device, test_loader) scheduler.step() if args.save_model: torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == '__main__': main()
############################################################################### # Language Modeling on Wikitext-2 # # This file generates new sentences sampled from the language model. # ############################################################################### import argparse import torch import data parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 Language Model') # Model parameters. parser.add_argument('--data', type=str, default='./data/wikitext-2', help='location of the data corpus') parser.add_argument('--checkpoint', type=str, default='./model.pt', help='model checkpoint to use') parser.add_argument('--outf', type=str, default='generated.txt', help='output file for generated text') parser.add_argument('--words', type=int, default='1000', help='number of words to generate') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--mps', action='store_true', default=False, help='enables macOS GPU training') parser.add_argument('--temperature', type=float, default=1.0, help='temperature - higher will increase diversity') parser.add_argument('--log-interval', type=int, default=100, help='reporting interval') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda.") if torch.backends.mps.is_available(): if not args.mps: print("WARNING: You have mps device, to enable macOS GPU run with --mps.") use_mps = args.mps and torch.backends.mps.is_available() if args.cuda: device = torch.device("cuda") elif use_mps: device = torch.device("mps") else: device = torch.device("cpu") if args.temperature < 1e-3: parser.error("--temperature has to be greater or equal 1e-3.") with open(args.checkpoint, 'rb') as f: model = torch.load(f, map_location=device) model.eval() corpus = data.Corpus(args.data) ntokens = len(corpus.dictionary) is_transformer_model = hasattr(model, 'model_type') and model.model_type == 'Transformer' if not is_transformer_model: hidden = model.init_hidden(1) input = torch.randint(ntokens, (1, 1), dtype=torch.long).to(device) with open(args.outf, 'w') as outf: with torch.no_grad(): # no tracking history for i in range(args.words): if is_transformer_model: output = model(input, False) word_weights = output[-1].squeeze().div(args.temperature).exp().cpu() word_idx = torch.multinomial(word_weights, 1)[0] word_tensor = torch.Tensor([[word_idx]]).long().to(device) input = torch.cat([input, word_tensor], 0) else: output, hidden = model(input, hidden) word_weights = output.squeeze().div(args.temperature).exp().cpu() word_idx = torch.multinomial(word_weights, 1)[0] input.fill_(word_idx) word = corpus.dictionary.idx2word[word_idx] outf.write(word + ('\n' if i % 20 == 19 else ' ')) if i % args.log_interval == 0: print('| Generated {}/{} words'.format(i, args.words))
import math import torch import torch.nn as nn import torch.nn.functional as F class RNNModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False): super(RNNModel, self).__init__() self.ntoken = ntoken self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) if rnn_type in ['LSTM', 'GRU']: self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout) else: try: nonlinearity = {'RNN_TANH': 'tanh', 'RNN_RELU': 'relu'}[rnn_type] except KeyError as e: raise ValueError( """An invalid option for `--model` was supplied, options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']""") from e self.rnn = nn.RNN(ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout) self.decoder = nn.Linear(nhid, ntoken) # Optionally tie weights as in: # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: if nhid != ninp: raise ValueError('When using the tied flag, nhid must be equal to emsize') self.decoder.weight = self.encoder.weight self.init_weights() self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers def init_weights(self): initrange = 0.1 nn.init.uniform_(self.encoder.weight, -initrange, initrange) nn.init.zeros_(self.decoder.bias) nn.init.uniform_(self.decoder.weight, -initrange, initrange) def forward(self, input, hidden): emb = self.drop(self.encoder(input)) output, hidden = self.rnn(emb, hidden) output = self.drop(output) decoded = self.decoder(output) decoded = decoded.view(-1, self.ntoken) return F.log_softmax(decoded, dim=1), hidden def init_hidden(self, bsz): weight = next(self.parameters()) if self.rnn_type == 'LSTM': return (weight.new_zeros(self.nlayers, bsz, self.nhid), weight.new_zeros(self.nlayers, bsz, self.nhid)) else: return weight.new_zeros(self.nlayers, bsz, self.nhid) # Temporarily leave PositionalEncoding module here. Will be moved somewhere else. class PositionalEncoding(nn.Module): r"""Inject some information about the relative or absolute position of the tokens in the sequence. The positional encodings have the same dimension as the embeddings, so that the two can be summed. Here, we use sine and cosine functions of different frequencies. .. math: \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model)) \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model)) \text{where pos is the word position and i is the embed idx) Args: d_model: the embed dim (required). dropout: the dropout value (default=0.1). max_len: the max. length of the incoming sequence (default=5000). Examples: >>> pos_encoder = PositionalEncoding(d_model) """ def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): r"""Inputs of forward function Args: x: the sequence fed to the positional encoder model (required). Shape: x: [sequence length, batch size, embed dim] output: [sequence length, batch size, embed dim] Examples: >>> output = pos_encoder(x) """ x = x + self.pe[:x.size(0), :] return self.dropout(x) class TransformerModel(nn.Transformer): """Container module with an encoder, a recurrent or transformer module, and a decoder.""" def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): super(TransformerModel, self).__init__(d_model=ninp, nhead=nhead, dim_feedforward=nhid, num_encoder_layers=nlayers) self.model_type = 'Transformer' self.src_mask = None self.pos_encoder = PositionalEncoding(ninp, dropout) self.input_emb = nn.Embedding(ntoken, ninp) self.ninp = ninp self.decoder = nn.Linear(ninp, ntoken) self.init_weights() def _generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask def init_weights(self): initrange = 0.1 nn.init.uniform_(self.input_emb.weight, -initrange, initrange) nn.init.zeros_(self.decoder.bias) nn.init.uniform_(self.decoder.weight, -initrange, initrange) def forward(self, src, has_mask=True): if has_mask: device = src.device if self.src_mask is None or self.src_mask.size(0) != len(src): mask = self._generate_square_subsequent_mask(len(src)).to(device) self.src_mask = mask else: self.src_mask = None src = self.input_emb(src) * math.sqrt(self.ninp) src = self.pos_encoder(src) output = self.encoder(src, mask=self.src_mask) output = self.decoder(output) return F.log_softmax(output, dim=-1)
# coding: utf-8 import argparse import time import math import os import torch import torch.nn as nn import torch.onnx import data import model parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 RNN/LSTM/GRU/Transformer Language Model') parser.add_argument('--data', type=str, default='./data/wikitext-2', help='location of the data corpus') parser.add_argument('--model', type=str, default='LSTM', help='type of network (RNN_TANH, RNN_RELU, LSTM, GRU, Transformer)') parser.add_argument('--emsize', type=int, default=200, help='size of word embeddings') parser.add_argument('--nhid', type=int, default=200, help='number of hidden units per layer') parser.add_argument('--nlayers', type=int, default=2, help='number of layers') parser.add_argument('--lr', type=float, default=20, help='initial learning rate') parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping') parser.add_argument('--epochs', type=int, default=40, help='upper epoch limit') parser.add_argument('--batch_size', type=int, default=20, metavar='N', help='batch size') parser.add_argument('--bptt', type=int, default=35, help='sequence length') parser.add_argument('--dropout', type=float, default=0.2, help='dropout applied to layers (0 = no dropout)') parser.add_argument('--tied', action='store_true', help='tie the word embedding and softmax weights') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--cuda', action='store_true', default=False, help='use CUDA') parser.add_argument('--mps', action='store_true', default=False, help='enables macOS GPU training') parser.add_argument('--log-interval', type=int, default=200, metavar='N', help='report interval') parser.add_argument('--save', type=str, default='model.pt', help='path to save the final model') parser.add_argument('--onnx-export', type=str, default='', help='path to export the final model in onnx format') parser.add_argument('--nhead', type=int, default=2, help='the number of heads in the encoder/decoder of the transformer model') parser.add_argument('--dry-run', action='store_true', help='verify the code and the model') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda.") if hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): if not args.mps: print("WARNING: You have mps device, to enable macOS GPU run with --mps.") use_mps = args.mps and torch.backends.mps.is_available() if args.cuda: device = torch.device("cuda") elif use_mps: device = torch.device("mps") else: device = torch.device("cpu") ############################################################################### # Load data ############################################################################### corpus = data.Corpus(args.data) # Starting from sequential data, batchify arranges the dataset into columns. # For instance, with the alphabet as the sequence and batch size 4, we'd get # β”Œ a g m s ┐ # β”‚ b h n t β”‚ # β”‚ c i o u β”‚ # β”‚ d j p v β”‚ # β”‚ e k q w β”‚ # β”” f l r x β”˜. # These columns are treated as independent by the model, which means that the # dependence of e. g. 'g' on 'f' can not be learned, but allows more efficient # batch processing. def batchify(data, bsz): # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() return data.to(device) eval_batch_size = 10 train_data = batchify(corpus.train, args.batch_size) val_data = batchify(corpus.valid, eval_batch_size) test_data = batchify(corpus.test, eval_batch_size) ############################################################################### # Build the model ############################################################################### ntokens = len(corpus.dictionary) if args.model == 'Transformer': model = model.TransformerModel(ntokens, args.emsize, args.nhead, args.nhid, args.nlayers, args.dropout).to(device) else: model = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.tied).to(device) criterion = nn.NLLLoss() ############################################################################### # Training code ############################################################################### def repackage_hidden(h): """Wraps hidden states in new Tensors, to detach them from their history.""" if isinstance(h, torch.Tensor): return h.detach() else: return tuple(repackage_hidden(v) for v in h) # get_batch subdivides the source data into chunks of length args.bptt. # If source is equal to the example output of the batchify function, with # a bptt-limit of 2, we'd get the following two Variables for i = 0: # β”Œ a g m s ┐ β”Œ b h n t ┐ # β”” b h n t β”˜ β”” c i o u β”˜ # Note that despite the name of the function, the subdivison of data is not # done along the batch dimension (i.e. dimension 1), since that was handled # by the batchify function. The chunks are along dimension 0, corresponding # to the seq_len dimension in the LSTM. def get_batch(source, i): seq_len = min(args.bptt, len(source) - 1 - i) data = source[i:i+seq_len] target = source[i+1:i+1+seq_len].view(-1) return data, target def evaluate(data_source): # Turn on evaluation mode which disables dropout. model.eval() total_loss = 0. ntokens = len(corpus.dictionary) if args.model != 'Transformer': hidden = model.init_hidden(eval_batch_size) with torch.no_grad(): for i in range(0, data_source.size(0) - 1, args.bptt): data, targets = get_batch(data_source, i) if args.model == 'Transformer': output = model(data) output = output.view(-1, ntokens) else: output, hidden = model(data, hidden) hidden = repackage_hidden(hidden) total_loss += len(data) * criterion(output, targets).item() return total_loss / (len(data_source) - 1) def train(): # Turn on training mode which enables dropout. model.train() total_loss = 0. start_time = time.time() ntokens = len(corpus.dictionary) if args.model != 'Transformer': hidden = model.init_hidden(args.batch_size) for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)): data, targets = get_batch(train_data, i) # Starting each batch, we detach the hidden state from how it was previously produced. # If we didn't, the model would try backpropagating all the way to start of the dataset. model.zero_grad() if args.model == 'Transformer': output = model(data) output = output.view(-1, ntokens) else: hidden = repackage_hidden(hidden) output, hidden = model(data, hidden) loss = criterion(output, targets) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) for p in model.parameters(): p.data.add_(p.grad, alpha=-lr) total_loss += loss.item() if batch % args.log_interval == 0 and batch > 0: cur_loss = total_loss / args.log_interval elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | ' 'loss {:5.2f} | ppl {:8.2f}'.format( epoch, batch, len(train_data) // args.bptt, lr, elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss))) total_loss = 0 start_time = time.time() if args.dry_run: break def export_onnx(path, batch_size, seq_len): print('The model is also exported in ONNX format at {}.'.format(os.path.realpath(args.onnx_export))) model.eval() dummy_input = torch.LongTensor(seq_len * batch_size).zero_().view(-1, batch_size).to(device) hidden = model.init_hidden(batch_size) torch.onnx.export(model, (dummy_input, hidden), path) # Loop over epochs. lr = args.lr best_val_loss = None # At any point you can hit Ctrl + C to break out of training early. try: for epoch in range(1, args.epochs+1): epoch_start_time = time.time() train() val_loss = evaluate(val_data) print('-' * 89) print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss))) print('-' * 89) # Save the model if the validation loss is the best we've seen so far. if not best_val_loss or val_loss < best_val_loss: with open(args.save, 'wb') as f: torch.save(model, f) best_val_loss = val_loss else: # Anneal the learning rate if no improvement has been seen in the validation dataset. lr /= 4.0 except KeyboardInterrupt: print('-' * 89) print('Exiting from training early') # Load the best saved model. with open(args.save, 'rb') as f: model = torch.load(f) # after load the rnn params are not a continuous chunk of memory # this makes them a continuous chunk, and will speed up forward pass # Currently, only rnn model supports flatten_parameters function. if args.model in ['RNN_TANH', 'RNN_RELU', 'LSTM', 'GRU']: model.rnn.flatten_parameters() # Run on test data. test_loss = evaluate(test_data) print('=' * 89) print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format( test_loss, math.exp(test_loss))) print('=' * 89) if len(args.onnx_export) > 0: # Export the model in ONNX format. export_onnx(args.onnx_export, batch_size=1, seq_len=args.bptt)
import os from io import open import torch class Dictionary(object): def __init__(self): self.word2idx = {} self.idx2word = [] def add_word(self, word): if word not in self.word2idx: self.idx2word.append(word) self.word2idx[word] = len(self.idx2word) - 1 return self.word2idx[word] def __len__(self): return len(self.idx2word) class Corpus(object): def __init__(self, path): self.dictionary = Dictionary() self.train = self.tokenize(os.path.join(path, 'train.txt')) self.valid = self.tokenize(os.path.join(path, 'valid.txt')) self.test = self.tokenize(os.path.join(path, 'test.txt')) def tokenize(self, path): """Tokenizes a text file.""" assert os.path.exists(path) # Add words to the dictionary with open(path, 'r', encoding="utf8") as f: for line in f: words = line.split() + ['<eos>'] for word in words: self.dictionary.add_word(word) # Tokenize file content with open(path, 'r', encoding="utf8") as f: idss = [] for line in f: words = line.split() + ['<eos>'] ids = [] for word in words: ids.append(self.dictionary.word2idx[word]) idss.append(torch.tensor(ids).type(torch.int64)) ids = torch.cat(idss) return ids
import argparse import torch import torch.nn as nn from torch.utils.data import DataLoader import torchvision from torchvision.transforms import Compose, ToTensor, Resize from torch import optim import numpy as np from torch.hub import tqdm class PatchExtractor(nn.Module): def __init__(self, patch_size=16): super().__init__() self.patch_size = patch_size def forward(self, input_data): batch_size, channels, height, width = input_data.size() assert height % self.patch_size == 0 and width % self.patch_size == 0, \ f"Input height ({height}) and width ({width}) must be divisible by patch size ({self.patch_size})" num_patches_h = height // self.patch_size num_patches_w = width // self.patch_size num_patches = num_patches_h * num_patches_w patches = input_data.unfold(2, self.patch_size, self.patch_size). \ unfold(3, self.patch_size, self.patch_size). \ permute(0, 2, 3, 1, 4, 5). \ contiguous(). \ view(batch_size, num_patches, -1) # Expected shape of a patch on default settings is (4, 196, 768) return patches class InputEmbedding(nn.Module): def __init__(self, args): super(InputEmbedding, self).__init__() self.patch_size = args.patch_size self.n_channels = args.n_channels self.latent_size = args.latent_size use_cuda = not args.no_cuda and torch.cuda.is_available() self.device = torch.device("cuda" if use_cuda else "cpu") self.batch_size = args.batch_size self.input_size = self.patch_size * self.patch_size * self.n_channels # Linear projection self.LinearProjection = nn.Linear(self.input_size, self.latent_size) # Class token self.class_token = nn.Parameter(torch.randn(self.batch_size, 1, self.latent_size)).to(self.device) # Positional embedding self.pos_embedding = nn.Parameter(torch.randn(self.batch_size, 1, self.latent_size)).to(self.device) def forward(self, input_data): input_data = input_data.to(self.device) # Patchifying the Image patchify = PatchExtractor(patch_size=self.patch_size) patches = patchify(input_data) linear_projection = self.LinearProjection(patches).to(self.device) b, n, _ = linear_projection.shape linear_projection = torch.cat((self.class_token, linear_projection), dim=1) pos_embed = self.pos_embedding[:, :n + 1, :] linear_projection += pos_embed return linear_projection class EncoderBlock(nn.Module): def __init__(self, args): super(EncoderBlock, self).__init__() self.latent_size = args.latent_size self.num_heads = args.num_heads self.dropout = args.dropout self.norm = nn.LayerNorm(self.latent_size) self.attention = nn.MultiheadAttention(self.latent_size, self.num_heads, dropout=self.dropout) self.enc_MLP = nn.Sequential( nn.Linear(self.latent_size, self.latent_size * 4), nn.GELU(), nn.Dropout(self.dropout), nn.Linear(self.latent_size * 4, self.latent_size), nn.Dropout(self.dropout) ) def forward(self, emb_patches): first_norm = self.norm(emb_patches) attention_out = self.attention(first_norm, first_norm, first_norm)[0] first_added = attention_out + emb_patches second_norm = self.norm(first_added) mlp_out = self.enc_MLP(second_norm) output = mlp_out + first_added return output class ViT(nn.Module): def __init__(self, args): super(ViT, self).__init__() self.num_encoders = args.num_encoders self.latent_size = args.latent_size self.num_classes = args.num_classes self.dropout = args.dropout self.embedding = InputEmbedding(args) # Encoder Stack self.encoders = nn.ModuleList([EncoderBlock(args) for _ in range(self.num_encoders)]) self.MLPHead = nn.Sequential( nn.LayerNorm(self.latent_size), nn.Linear(self.latent_size, self.latent_size), nn.Linear(self.latent_size, self.num_classes), ) def forward(self, test_input): enc_output = self.embedding(test_input) for enc_layer in self.encoders: enc_output = enc_layer(enc_output) class_token_embed = enc_output[:, 0] return self.MLPHead(class_token_embed) class TrainEval: def __init__(self, args, model, train_dataloader, val_dataloader, optimizer, criterion, device): self.model = model self.train_dataloader = train_dataloader self.val_dataloader = val_dataloader self.optimizer = optimizer self.criterion = criterion self.epoch = args.epochs self.device = device self.args = args def train_fn(self, current_epoch): self.model.train() total_loss = 0.0 tk = tqdm(self.train_dataloader, desc="EPOCH" + "[TRAIN]" + str(current_epoch + 1) + "/" + str(self.epoch)) for t, data in enumerate(tk): images, labels = data images, labels = images.to(self.device), labels.to(self.device) self.optimizer.zero_grad() logits = self.model(images) loss = self.criterion(logits, labels) loss.backward() self.optimizer.step() total_loss += loss.item() tk.set_postfix({"Loss": "%6f" % float(total_loss / (t + 1))}) if self.args.dry_run: break return total_loss / len(self.train_dataloader) def eval_fn(self, current_epoch): self.model.eval() total_loss = 0.0 tk = tqdm(self.val_dataloader, desc="EPOCH" + "[VALID]" + str(current_epoch + 1) + "/" + str(self.epoch)) for t, data in enumerate(tk): images, labels = data images, labels = images.to(self.device), labels.to(self.device) logits = self.model(images) loss = self.criterion(logits, labels) total_loss += loss.item() tk.set_postfix({"Loss": "%6f" % float(total_loss / (t + 1))}) if self.args.dry_run: break return total_loss / len(self.val_dataloader) def train(self): best_valid_loss = np.inf best_train_loss = np.inf for i in range(self.epoch): train_loss = self.train_fn(i) val_loss = self.eval_fn(i) if val_loss < best_valid_loss: torch.save(self.model.state_dict(), "best-weights.pt") print("Saved Best Weights") best_valid_loss = val_loss best_train_loss = train_loss print(f"Training Loss : {best_train_loss}") print(f"Valid Loss : {best_valid_loss}") ''' On default settings: Training Loss : 2.3081023390197752 Valid Loss : 2.302861615943909 However, this score is not competitive compared to the high results in the original paper, which were achieved through pre-training on JFT-300M dataset, then fine-tuning it on the target dataset. To improve the model quality without pre-training, we could try training for more epochs, using more Transformer layers, resizing images or changing patch size, ''' def main(): parser = argparse.ArgumentParser(description='Vision Transformer in PyTorch') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--patch-size', type=int, default=16, help='patch size for images (default : 16)') parser.add_argument('--latent-size', type=int, default=768, help='latent size (default : 768)') parser.add_argument('--n-channels', type=int, default=3, help='number of channels in images (default : 3 for RGB)') parser.add_argument('--num-heads', type=int, default=12, help='(default : 16)') parser.add_argument('--num-encoders', type=int, default=12, help='number of encoders (default : 12)') parser.add_argument('--dropout', type=int, default=0.1, help='dropout value (default : 0.1)') parser.add_argument('--img-size', type=int, default=224, help='image size to be reshaped to (default : 224') parser.add_argument('--num-classes', type=int, default=10, help='number of classes in dataset (default : 10 for CIFAR10)') parser.add_argument('--epochs', type=int, default=10, help='number of epochs (default : 10)') parser.add_argument('--lr', type=float, default=1e-2, help='base learning rate (default : 0.01)') parser.add_argument('--weight-decay', type=int, default=3e-2, help='weight decay value (default : 0.03)') parser.add_argument('--batch-size', type=int, default=4, help='batch size (default : 4)') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") transforms = Compose([ Resize((args.img_size, args.img_size)), ToTensor() ]) train_data = torchvision.datasets.CIFAR10(root='./dataset', train=True, download=True, transform=transforms) valid_data = torchvision.datasets.CIFAR10(root='./dataset', train=False, download=True, transform=transforms) train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True) valid_loader = DataLoader(valid_data, batch_size=args.batch_size, shuffle=True) model = ViT(args).to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) criterion = nn.CrossEntropyLoss() TrainEval(args, model, train_loader, valid_loader, optimizer, criterion, device).train() if __name__ == "__main__": main()
import os import time import requests import tarfile import numpy as np import argparse import torch from torch import nn import torch.nn.functional as F from torch.optim import Adam ################################ ### GAT LAYER DEFINITION ### ################################ class GraphAttentionLayer(nn.Module): """ Graph Attention Layer (GAT) as described in the paper `"Graph Attention Networks" <https://arxiv.org/pdf/1710.10903.pdf>`. This operation can be mathematically described as: e_ij = a(W h_i, W h_j) Ξ±_ij = softmax_j(e_ij) = exp(e_ij) / Ξ£_k(exp(e_ik)) h_i' = Οƒ(Ξ£_j(Ξ±_ij W h_j)) where h_i and h_j are the feature vectors of nodes i and j respectively, W is a learnable weight matrix, a is an attention mechanism that computes the attention coefficients e_ij, and Οƒ is an activation function. """ def __init__(self, in_features: int, out_features: int, n_heads: int, concat: bool = False, dropout: float = 0.4, leaky_relu_slope: float = 0.2): super(GraphAttentionLayer, self).__init__() self.n_heads = n_heads # Number of attention heads self.concat = concat # wether to concatenate the final attention heads self.dropout = dropout # Dropout rate if concat: # concatenating the attention heads self.out_features = out_features # Number of output features per node assert out_features % n_heads == 0 # Ensure that out_features is a multiple of n_heads self.n_hidden = out_features // n_heads else: # averaging output over the attention heads (Used in the main paper) self.n_hidden = out_features # A shared linear transformation, parametrized by a weight matrix W is applied to every node # Initialize the weight matrix W self.W = nn.Parameter(torch.empty(size=(in_features, self.n_hidden * n_heads))) # Initialize the attention weights a self.a = nn.Parameter(torch.empty(size=(n_heads, 2 * self.n_hidden, 1))) self.leakyrelu = nn.LeakyReLU(leaky_relu_slope) # LeakyReLU activation function self.softmax = nn.Softmax(dim=1) # softmax activation function to the attention coefficients self.reset_parameters() # Reset the parameters def reset_parameters(self): """ Reinitialize learnable parameters. """ nn.init.xavier_normal_(self.W) nn.init.xavier_normal_(self.a) def _get_attention_scores(self, h_transformed: torch.Tensor): """calculates the attention scores e_ij for all pairs of nodes (i, j) in the graph in vectorized parallel form. for each pair of source and target nodes (i, j), the attention score e_ij is computed as follows: e_ij = LeakyReLU(a^T [Wh_i || Wh_j]) where || denotes the concatenation operation, and a and W are the learnable parameters. Args: h_transformed (torch.Tensor): Transformed feature matrix with shape (n_nodes, n_heads, n_hidden), where n_nodes is the number of nodes and out_features is the number of output features per node. Returns: torch.Tensor: Attention score matrix with shape (n_heads, n_nodes, n_nodes), where n_nodes is the number of nodes. """ source_scores = torch.matmul(h_transformed, self.a[:, :self.n_hidden, :]) target_scores = torch.matmul(h_transformed, self.a[:, self.n_hidden:, :]) # broadcast add # (n_heads, n_nodes, 1) + (n_heads, 1, n_nodes) = (n_heads, n_nodes, n_nodes) e = source_scores + target_scores.mT return self.leakyrelu(e) def forward(self, h: torch.Tensor, adj_mat: torch.Tensor): """ Performs a graph attention layer operation. Args: h (torch.Tensor): Input tensor representing node features. adj_mat (torch.Tensor): Adjacency matrix representing graph structure. Returns: torch.Tensor: Output tensor after the graph convolution operation. """ n_nodes = h.shape[0] # Apply linear transformation to node feature -> W h # output shape (n_nodes, n_hidden * n_heads) h_transformed = torch.mm(h, self.W) h_transformed = F.dropout(h_transformed, self.dropout, training=self.training) # splitting the heads by reshaping the tensor and putting heads dim first # output shape (n_heads, n_nodes, n_hidden) h_transformed = h_transformed.view(n_nodes, self.n_heads, self.n_hidden).permute(1, 0, 2) # getting the attention scores # output shape (n_heads, n_nodes, n_nodes) e = self._get_attention_scores(h_transformed) # Set the attention score for non-existent edges to -9e15 (MASKING NON-EXISTENT EDGES) connectivity_mask = -9e16 * torch.ones_like(e) e = torch.where(adj_mat > 0, e, connectivity_mask) # masked attention scores # attention coefficients are computed as a softmax over the rows # for each column j in the attention score matrix e attention = F.softmax(e, dim=-1) attention = F.dropout(attention, self.dropout, training=self.training) # final node embeddings are computed as a weighted average of the features of its neighbors h_prime = torch.matmul(attention, h_transformed) # concatenating/averaging the attention heads # output shape (n_nodes, out_features) if self.concat: h_prime = h_prime.permute(1, 0, 2).contiguous().view(n_nodes, self.out_features) else: h_prime = h_prime.mean(dim=0) return h_prime ################################ ### MAIN GAT NETWORK MODULE ### ################################ class GAT(nn.Module): """ Graph Attention Network (GAT) as described in the paper `"Graph Attention Networks" <https://arxiv.org/pdf/1710.10903.pdf>`. Consists of a 2-layer stack of Graph Attention Layers (GATs). The fist GAT Layer is followed by an ELU activation. And the second (final) layer is a GAT layer with a single attention head and softmax activation function. """ def __init__(self, in_features, n_hidden, n_heads, num_classes, concat=False, dropout=0.4, leaky_relu_slope=0.2): """ Initializes the GAT model. Args: in_features (int): number of input features per node. n_hidden (int): output size of the first Graph Attention Layer. n_heads (int): number of attention heads in the first Graph Attention Layer. num_classes (int): number of classes to predict for each node. concat (bool, optional): Wether to concatinate attention heads or take an average over them for the output of the first Graph Attention Layer. Defaults to False. dropout (float, optional): dropout rate. Defaults to 0.4. leaky_relu_slope (float, optional): alpha (slope) of the leaky relu activation. Defaults to 0.2. """ super(GAT, self).__init__() # Define the Graph Attention layers self.gat1 = GraphAttentionLayer( in_features=in_features, out_features=n_hidden, n_heads=n_heads, concat=concat, dropout=dropout, leaky_relu_slope=leaky_relu_slope ) self.gat2 = GraphAttentionLayer( in_features=n_hidden, out_features=num_classes, n_heads=1, concat=False, dropout=dropout, leaky_relu_slope=leaky_relu_slope ) def forward(self, input_tensor: torch.Tensor , adj_mat: torch.Tensor): """ Performs a forward pass through the network. Args: input_tensor (torch.Tensor): Input tensor representing node features. adj_mat (torch.Tensor): Adjacency matrix representing graph structure. Returns: torch.Tensor: Output tensor after the forward pass. """ # Apply the first Graph Attention layer x = self.gat1(input_tensor, adj_mat) x = F.elu(x) # Apply ELU activation function to the output of the first layer # Apply the second Graph Attention layer x = self.gat2(x, adj_mat) return F.log_softmax(x, dim=1) # Apply log softmax activation function ################################ ### LOADING THE CORA DATASET ### ################################ def load_cora(path='./cora', device='cpu'): """ Loads the Cora dataset. The dataset is downloaded from https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz. """ # Set the paths to the data files content_path = os.path.join(path, 'cora.content') cites_path = os.path.join(path, 'cora.cites') # Load data from files content_tensor = np.genfromtxt(content_path, dtype=np.dtype(str)) cites_tensor = np.genfromtxt(cites_path, dtype=np.int32) # Process features features = torch.FloatTensor(content_tensor[:, 1:-1].astype(np.int32)) # Extract feature values scale_vector = torch.sum(features, dim=1) # Compute sum of features for each node scale_vector = 1 / scale_vector # Compute reciprocal of the sums scale_vector[scale_vector == float('inf')] = 0 # Handle division by zero cases scale_vector = torch.diag(scale_vector).to_sparse() # Convert the scale vector to a sparse diagonal matrix features = scale_vector @ features # Scale the features using the scale vector # Process labels classes, labels = np.unique(content_tensor[:, -1], return_inverse=True) # Extract unique classes and map labels to indices labels = torch.LongTensor(labels) # Convert labels to a tensor # Process adjacency matrix idx = content_tensor[:, 0].astype(np.int32) # Extract node indices idx_map = {id: pos for pos, id in enumerate(idx)} # Create a dictionary to map indices to positions # Map node indices to positions in the adjacency matrix edges = np.array( list(map(lambda edge: [idx_map[edge[0]], idx_map[edge[1]]], cites_tensor)), dtype=np.int32) V = len(idx) # Number of nodes E = edges.shape[0] # Number of edges adj_mat = torch.sparse_coo_tensor(edges.T, torch.ones(E), (V, V), dtype=torch.int64) # Create the initial adjacency matrix as a sparse tensor adj_mat = torch.eye(V) + adj_mat # Add self-loops to the adjacency matrix # return features.to_sparse().to(device), labels.to(device), adj_mat.to_sparse().to(device) return features.to(device), labels.to(device), adj_mat.to(device) ################################# ### TRAIN AND TEST FUNCTIONS ### ################################# def train_iter(epoch, model, optimizer, criterion, input, target, mask_train, mask_val, print_every=10): start_t = time.time() model.train() optimizer.zero_grad() # Forward pass output = model(*input) loss = criterion(output[mask_train], target[mask_train]) # Compute the loss using the training mask loss.backward() optimizer.step() # Evaluate the model performance on training and validation sets loss_train, acc_train = test(model, criterion, input, target, mask_train) loss_val, acc_val = test(model, criterion, input, target, mask_val) if epoch % print_every == 0: # Print the training progress at specified intervals print(f'Epoch: {epoch:04d} ({(time.time() - start_t):.4f}s) loss_train: {loss_train:.4f} acc_train: {acc_train:.4f} loss_val: {loss_val:.4f} acc_val: {acc_val:.4f}') def test(model, criterion, input, target, mask): model.eval() with torch.no_grad(): output = model(*input) output, target = output[mask], target[mask] loss = criterion(output, target) acc = (output.argmax(dim=1) == target).float().sum() / len(target) return loss.item(), acc.item() if __name__ == '__main__': # Training settings # All defalut values are the same as in the config used in the main paper parser = argparse.ArgumentParser(description='PyTorch Graph Attention Network') parser.add_argument('--epochs', type=int, default=300, help='number of epochs to train (default: 300)') parser.add_argument('--lr', type=float, default=0.005, help='learning rate (default: 0.005)') parser.add_argument('--l2', type=float, default=5e-4, help='weight decay (default: 6e-4)') parser.add_argument('--dropout-p', type=float, default=0.6, help='dropout probability (default: 0.6)') parser.add_argument('--hidden-dim', type=int, default=64, help='dimension of the hidden representation (default: 64)') parser.add_argument('--num-heads', type=int, default=8, help='number of the attention heads (default: 4)') parser.add_argument('--concat-heads', action='store_true', default=False, help='wether to concatinate attention heads, or average over them (default: False)') parser.add_argument('--val-every', type=int, default=20, help='epochs to wait for print training and validation evaluation (default: 20)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--no-mps', action='store_true', default=False, help='disables macOS GPU training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=13, metavar='S', help='random seed (default: 13)') args = parser.parse_args() torch.manual_seed(args.seed) use_cuda = not args.no_cuda and torch.cuda.is_available() use_mps = not args.no_mps and torch.backends.mps.is_available() # Set the device to run on if use_cuda: device = torch.device('cuda') elif use_mps: device = torch.device('mps') else: device = torch.device('cpu') print(f'Using {device} device') # Load the dataset cora_url = 'https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz' path = './cora' if os.path.isfile(os.path.join(path, 'cora.content')) and os.path.isfile(os.path.join(path, 'cora.cites')): print('Dataset already downloaded...') else: print('Downloading dataset...') with requests.get(cora_url, stream=True) as tgz_file: with tarfile.open(fileobj=tgz_file.raw, mode='r:gz') as tgz_object: tgz_object.extractall() print('Loading dataset...') # Load the dataset features, labels, adj_mat = load_cora(device=device) # Split the dataset into training, validation, and test sets idx = torch.randperm(len(labels)).to(device) idx_test, idx_val, idx_train = idx[:1200], idx[1200:1600], idx[1600:] # Create the model # The model consists of a 2-layer stack of Graph Attention Layers (GATs). gat_net = GAT( in_features=features.shape[1], # Number of input features per node n_hidden=args.hidden_dim, # Output size of the first Graph Attention Layer n_heads=args.num_heads, # Number of attention heads in the first Graph Attention Layer num_classes=labels.max().item() + 1, # Number of classes to predict for each node concat=args.concat_heads, # Wether to concatinate attention heads dropout=args.dropout_p, # Dropout rate leaky_relu_slope=0.2 # Alpha (slope) of the leaky relu activation ).to(device) # configure the optimizer and loss function optimizer = Adam(gat_net.parameters(), lr=args.lr, weight_decay=args.l2) criterion = nn.NLLLoss() # Train and evaluate the model for epoch in range(args.epochs): train_iter(epoch + 1, gat_net, optimizer, criterion, (features, adj_mat), labels, idx_train, idx_val, args.val_every) if args.dry_run: break loss_test, acc_test = test(gat_net, criterion, (features, adj_mat), labels, idx_test) print(f'Test set results: loss {loss_test:.4f} accuracy {acc_test:.4f}')
from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.lr_scheduler import StepLR from torchvision import datasets, transforms class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.rnn = nn.LSTM(input_size=28, hidden_size=64, batch_first=True) self.batchnorm = nn.BatchNorm1d(64) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64, 32) self.fc2 = nn.Linear(32, 10) def forward(self, input): # Shape of input is (batch_size,1, 28, 28) # converting shape of input to (batch_size, 28, 28) # as required by RNN when batch_first is set True input = input.reshape(-1, 28, 28) output, hidden = self.rnn(input) # RNN output shape is (seq_len, batch, input_size) # Get last output of RNN output = output[:, -1, :] output = self.batchnorm(output) output = self.dropout1(output) output = self.fc1(output) output = F.relu(output) output = self.dropout2(output) output = self.fc2(output) output = F.log_softmax(output, dim=1) return output def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if args.dry_run: break def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() if args.dry_run: break test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example using RNN') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=14, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=0.1, metavar='LR', help='learning rate (default: 0.1)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='for Saving the current Model') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) scheduler.step() if args.save_model: torch.save(model.state_dict(), "mnist_rnn.pt") if __name__ == '__main__': main()
import argparse import torch import torch.multiprocessing as mp from torch.distributed._tensor import DeviceMesh from torch.distributed.tensor.parallel import parallelize_module from utils import cleanup, setup, ToyModel try: from torch.distributed.tensor.parallel import ( SequenceParallel ) SP_AVAILABLE = True except BaseException as e: pass """ This is the script to test Sequence Parallel(SP) on a toy model in a Megetron-LM SPMD style. We show an E2E working flow from forward, backward and optimization. We use the example of two `nn.Linear` layers with an element-wise `nn.RELU` in between to show an example of sequence parallel, which was proposed in paper: https://arxiv.org/pdf/2205.05198.pdf. Like tensor parallel, we parallelize the first linear layer by column and also parallelize the second linear layer by row. But the input in each rank now is different so that we need one all-gather for input and one reduce-scatter in the end of the second linear layer. """ def demo_sp(rank, args): """ Main body of the demo of a basic version of sequence parallel by using PyTorch native APIs. """ print(f"Running SP example on rank {rank}.") setup(rank, args.world_size) # create a sharding plan based on the given world_size. device_mesh = DeviceMesh("cuda", torch.arange(0, args.world_size)) # create model and move it to GPU with id rank model = ToyModel().cuda(rank) # Create a optimizer for the parallelized module. LR = 0.25 optimizer = torch.optim.SGD(model.parameters(), lr=LR) # Parallelize the module based on the given Parallel Style. model = parallelize_module(model, device_mesh, SequenceParallel()) # Perform a num of iterations of forward/backward # and optimizations for the sharded module. for _ in range(args.iter_nums): # For SP, input can be different across all ranks. inp = torch.rand(20, 10).cuda(rank) output = model(inp) output.sum().backward() optimizer.step() cleanup() if __name__ == "__main__": n_gpus = torch.cuda.device_count() parser = argparse.ArgumentParser() # This is passed in via cmd parser.add_argument("--world_size", type=int, default=n_gpus) parser.add_argument("--iter_nums", type=int, default=10) args = parser.parse_args() # The main entry point is called directly without using subprocess if n_gpus < 2: print("Requires at least 2 GPUs to run.") elif not SP_AVAILABLE: print( "PyTorch doesn't have Sequence Parallelism available," " need nightly build." ) else: mp.spawn(demo_sp, args=(args,), nprocs=args.world_size, join=True)
import argparse import os import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn def setup(rank, world_size): os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "12355" # initialize the process group dist.init_process_group("nccl", rank=rank, world_size=world_size) torch.cuda.set_device(rank) def cleanup(): dist.destroy_process_group() class ToyModel(nn.Module): def __init__(self): super(ToyModel, self).__init__() self.net1 = nn.Linear(10, 32) self.relu = nn.ReLU() self.net2 = nn.Linear(32, 5) def forward(self, x): return self.net2(self.relu(self.net1(x)))
import argparse import torch import torch.multiprocessing as mp from torch.distributed._tensor import DeviceMesh from torch.distributed.tensor.parallel import PairwiseParallel, parallelize_module from utils import cleanup, setup, ToyModel """ This is the script to test Tensor Parallel(TP) on a toy model in a Megetron-LM SPMD style. We show an E2E working flow from forward, backward and optimization. More context about API designs can be found in the design: https://github.com/pytorch/pytorch/issues/89884. And it is built on top of Distributed Tensor which is proposed in: https://github.com/pytorch/pytorch/issues/88838. We use the example of two `nn.Linear` layers with an element-wise `nn.RELU` in between to show an example of Megatron-LM, which was proposed in paper: https://arxiv.org/abs/1909.08053. The basic idea is that we parallelize the first linear layer by column and also parallelize the second linear layer by row so that we only need one all reduce in the end of the second linear layer. We can speed up the model training by avoiding communications between two layers. To parallelize a nn module, we need to specify what parallel style we want to use and our `parallelize_module` API will parse and parallelize the modules based on the given `ParallelStyle`. We are using this PyTorch native Tensor Parallelism APIs in this example to show users how to use them. """ def demo_tp(rank, args): """ Main body of the demo of a basic version of tensor parallel by using PyTorch native APIs. """ print(f"Running basic Megatron style TP example on rank {rank}.") setup(rank, args.world_size) # create a sharding plan based on the given world_size. device_mesh = DeviceMesh("cuda", torch.arange(0, args.world_size)) # create model and move it to GPU with id rank model = ToyModel().cuda(rank) # Create a optimizer for the parallelized module. LR = 0.25 optimizer = torch.optim.SGD(model.parameters(), lr=LR) # Parallelize the module based on the given Parallel Style. model = parallelize_module(model, device_mesh, PairwiseParallel()) # Perform a num of iterations of forward/backward # and optimizations for the sharded module. for i in range(args.iter_nums): # For TP, input needs to be same across all TP ranks. # Setting the random seed is to mimic the behavior of dataloader. torch.manual_seed(i) inp = torch.rand(20, 10).cuda(rank) output = model(inp) output.sum().backward() optimizer.step() cleanup() if __name__ == "__main__": n_gpus = torch.cuda.device_count() parser = argparse.ArgumentParser() # This is passed in via cmd parser.add_argument("--world_size", type=int, default=n_gpus) parser.add_argument("--iter_nums", type=int, default=10) args = parser.parse_args() # The main entry point is called directly without using subprocess if n_gpus < 2: print("Requires at least 2 GPUs to run.") else: mp.spawn(demo_tp, args=(args,), nprocs=args.world_size, join=True)
import argparse import torch import torch.distributed as dist import torch.multiprocessing as mp from torch.distributed._tensor import DeviceMesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.tensor.parallel import ( PairwiseParallel, parallelize_module, ) from torch.distributed.tensor.parallel.fsdp import enable_2d_with_fsdp from utils import cleanup, setup, ToyModel try: from torch.distributed.tensor.parallel import ( SequenceParallel ) SP_AVAILABLE = True except BaseException as e: pass """ This is the script to test 2D Parallel which combines Tensor/Sequence parallel with Fully Sharded Data Parallel (TP/SP + FSDP) on a toy model in the SPMD style. We show an E2E working flow from forward, backward and optimization. We enabled Fully Sharded Data Parallel + Tensor Parallel in separate parallel dimensions: Data Parallel across hosts Tensor Parallel within each host We use a simple diagram to illustrate below: ====================================================================== ------------ ------------ ------------ ------------ | Host 1 | | Host 2 | | | | Host N | | 8 GPUs | | 8 GPUs | | | | 8 GPUs | | | | | | ... | | | | (TP) | | (TP) | | | | (TP) | |[0,1,..,7]| |[8,9..,15]| | | |[8N-8,8N-7| | | | | | | | .., 8N-1]| | | | | | | | | ------------ ------------ ------------ ------------ FSDP: [0, 8, ..., 8N-8], [1, 9, ..., 8N-7], ..., [7, 15, ..., 8N-1] ====================================================================== More details can be seen in the slide: https://docs.google.com/presentation/d/17g6WqrO00rP3MsxbRENsPpjrlSkwiA_QB4r93_eB5is/ """ def demo_2d(rank, args): """ Main body of the demo of a basic version of tensor parallel by using PyTorch native APIs. """ print(f"Running basic Megatron style TP example on rank {rank}.") setup(rank, args.world_size) assert ( args.world_size % args.tp_size == 0 ), "World size needs to be divisible by TP size" # create a sharding plan based on the given world_size. device_mesh = DeviceMesh( "cuda", torch.arange(0, args.world_size).view(-1, args.tp_size) ) # create model and move it to GPU with id rank model = ToyModel().cuda(rank) # Create a optimizer for the parallelized module. LR = 0.25 optimizer = torch.optim.SGD(model.parameters(), lr=LR) # Parallelize the module based on the given Parallel Style. parallel_style = SequenceParallel() if args.run_seq_parallel else PairwiseParallel() model = parallelize_module(model, device_mesh, parallel_style, tp_mesh_dim=1) # We need to register hooks for TP + FSDP integration. assert ( enable_2d_with_fsdp() ), "FSDP 2D hook is not registered. Please use PyTorch with version >= 2.0" dp_pg = device_mesh.get_dim_groups()[0] model = FSDP(model, process_group=dp_pg) # Perform a num of iterations of forward/backward # and optimizations for the sharded module. for i in range(args.iter_nums): # For TP, input needs to be same across all TP ranks. # while for SP, input can be different across all ranks. # Setting the random seed is to mimic the behavior of dataloader. dp_rank = ( rank if args.run_seq_parallel else dist.get_rank(dp_pg) ) torch.manual_seed(i + dp_rank) inp = torch.rand(20, 10).cuda(rank) output = model(inp) output.sum().backward() optimizer.step() cleanup() if __name__ == "__main__": n_gpus = torch.cuda.device_count() parser = argparse.ArgumentParser() # This is passed in via cmd parser.add_argument("--world_size", type=int, default=n_gpus) parser.add_argument("--iter_nums", type=int, default=10) parser.add_argument("--run_seq_parallel", type=bool, default=False) parser.add_argument("--tp_size", type=int, default=2) args = parser.parse_args() # The main entry point is called directly without using subprocess if n_gpus < 4: print("Requires at least 4 GPUs to run.") elif not SP_AVAILABLE: print( "PyTorch doesn't have Sequence Parallelism available," " need nightly build." ) else: mp.spawn(demo_2d, args=(args,), nprocs=args.world_size, join=True)
import argparse import os import sys import tempfile from urllib.parse import urlparse import torch import torch.distributed as dist import torch.nn as nn import torch.optim as optim from torch.nn.parallel import DistributedDataParallel as DDP class ToyModel(nn.Module): def __init__(self): super(ToyModel, self).__init__() self.net1 = nn.Linear(10, 10) self.relu = nn.ReLU() self.net2 = nn.Linear(10, 5) def forward(self, x): return self.net2(self.relu(self.net1(x))) def demo_basic(local_world_size, local_rank): # setup devices for this process. For local_world_size = 2, num_gpus = 8, # rank 0 uses GPUs [0, 1, 2, 3] and # rank 1 uses GPUs [4, 5, 6, 7]. n = torch.cuda.device_count() // local_world_size device_ids = list(range(local_rank * n, (local_rank + 1) * n)) print( f"[{os.getpid()}] rank = {dist.get_rank()}, " + f"world_size = {dist.get_world_size()}, n = {n}, device_ids = {device_ids} \n", end='' ) model = ToyModel().cuda(device_ids[0]) ddp_model = DDP(model, device_ids) loss_fn = nn.MSELoss() optimizer = optim.SGD(ddp_model.parameters(), lr=0.001) optimizer.zero_grad() outputs = ddp_model(torch.randn(20, 10)) labels = torch.randn(20, 5).to(device_ids[0]) loss_fn(outputs, labels).backward() optimizer.step() def spmd_main(local_world_size, local_rank): # These are the parameters used to initialize the process group env_dict = { key: os.environ[key] for key in ("MASTER_ADDR", "MASTER_PORT", "RANK", "WORLD_SIZE") } if sys.platform == "win32": # Distributed package only covers collective communications with Gloo # backend and FileStore on Windows platform. Set init_method parameter # in init_process_group to a local file. if "INIT_METHOD" in os.environ.keys(): print(f"init_method is {os.environ['INIT_METHOD']}") url_obj = urlparse(os.environ["INIT_METHOD"]) if url_obj.scheme.lower() != "file": raise ValueError("Windows only supports FileStore") else: init_method = os.environ["INIT_METHOD"] else: # It is a example application, For convience, we create a file in temp dir. temp_dir = tempfile.gettempdir() init_method = f"file:///{os.path.join(temp_dir, 'ddp_example')}" dist.init_process_group(backend="gloo", init_method=init_method, rank=int(env_dict["RANK"]), world_size=int(env_dict["WORLD_SIZE"])) else: print(f"[{os.getpid()}] Initializing process group with: {env_dict}") dist.init_process_group(backend="nccl") print( f"[{os.getpid()}]: world_size = {dist.get_world_size()}, " + f"rank = {dist.get_rank()}, backend={dist.get_backend()} \n", end='' ) demo_basic(local_world_size, local_rank) # Tear down the process group dist.destroy_process_group() if __name__ == "__main__": parser = argparse.ArgumentParser() # This is passed in via launch.py parser.add_argument("--local_rank", type=int, default=0) # This needs to be explicitly passed in parser.add_argument("--local_world_size", type=int, default=1) args = parser.parse_args() # The main entry point is called directly without using subprocess spmd_main(args.local_world_size, args.local_rank)
import os import tempfile import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn import torch.optim as optim from torch.nn.parallel import DistributedDataParallel as DDP def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=world_size) def cleanup(): dist.destroy_process_group() class ToyModel(nn.Module): def __init__(self): super(ToyModel, self).__init__() self.net1 = nn.Linear(10, 10) self.relu = nn.ReLU() self.net2 = nn.Linear(10, 5) def forward(self, x): return self.net2(self.relu(self.net1(x))) def demo_basic(rank, world_size): print(f"Running basic DDP example on rank {rank}.") setup(rank, world_size) # create model and move it to GPU with id rank model = ToyModel().to(rank) ddp_model = DDP(model, device_ids=[rank]) loss_fn = nn.MSELoss() optimizer = optim.SGD(ddp_model.parameters(), lr=0.001) optimizer.zero_grad() outputs = ddp_model(torch.randn(20, 10)) labels = torch.randn(20, 5).to(rank) loss_fn(outputs, labels).backward() optimizer.step() cleanup() def run_demo(demo_fn, world_size): mp.spawn(demo_fn, args=(world_size,), nprocs=world_size, join=True) def demo_checkpoint(rank, world_size): print(f"Running DDP checkpoint example on rank {rank}.") setup(rank, world_size) model = ToyModel().to(rank) ddp_model = DDP(model, device_ids=[rank]) loss_fn = nn.MSELoss() optimizer = optim.SGD(ddp_model.parameters(), lr=0.001) CHECKPOINT_PATH = tempfile.gettempdir() + "/model.checkpoint" if rank == 0: # All processes should see same parameters as they all start from same # random parameters and gradients are synchronized in backward passes. # Therefore, saving it in one process is sufficient. torch.save(ddp_model.state_dict(), CHECKPOINT_PATH) # Use a barrier() to make sure that process 1 loads the model after process # 0 saves it. dist.barrier() # configure map_location properly map_location = {'cuda:%d' % 0: 'cuda:%d' % rank} ddp_model.load_state_dict( torch.load(CHECKPOINT_PATH, map_location=map_location)) optimizer.zero_grad() outputs = ddp_model(torch.randn(20, 10)) labels = torch.randn(20, 5).to(rank) loss_fn = nn.MSELoss() loss_fn(outputs, labels).backward() optimizer.step() # Use a barrier() to make sure that all processes have finished reading the # checkpoint dist.barrier() if rank == 0: os.remove(CHECKPOINT_PATH) cleanup() class ToyMpModel(nn.Module): def __init__(self, dev0, dev1): super(ToyMpModel, self).__init__() self.dev0 = dev0 self.dev1 = dev1 self.net1 = torch.nn.Linear(10, 10).to(dev0) self.relu = torch.nn.ReLU() self.net2 = torch.nn.Linear(10, 5).to(dev1) def forward(self, x): x = x.to(self.dev0) x = self.relu(self.net1(x)) x = x.to(self.dev1) return self.net2(x) def demo_model_parallel(rank, world_size): print(f"Running DDP with model parallel example on rank {rank}.") setup(rank, world_size) # setup mp_model and devices for this process dev0 = rank * 2 dev1 = rank * 2 + 1 mp_model = ToyMpModel(dev0, dev1) ddp_mp_model = DDP(mp_model) loss_fn = nn.MSELoss() optimizer = optim.SGD(ddp_mp_model.parameters(), lr=0.001) optimizer.zero_grad() # outputs will be on dev1 outputs = ddp_mp_model(torch.randn(20, 10)) labels = torch.randn(20, 5).to(dev1) loss_fn(outputs, labels).backward() optimizer.step() cleanup() if __name__ == "__main__": n_gpus = torch.cuda.device_count() if n_gpus < 8: print(f"Requires at least 8 GPUs to run, but got {n_gpus}.") else: run_demo(demo_basic, 8) run_demo(demo_checkpoint, 8) run_demo(demo_model_parallel, 4)
import os import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from transformers import AutoTokenizer, GPT2TokenizerFast from transformers import T5Tokenizer, T5ForConditionalGeneration import functools from torch.optim.lr_scheduler import StepLR import torch.nn.functional as F import torch.distributed as dist import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data.distributed import DistributedSampler from transformers.models.t5.modeling_t5 import T5Block from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, CPUOffload, MixedPrecision, BackwardPrefetch, ShardingStrategy, FullStateDictConfig, StateDictType, ) from functools import partial from torch.utils.data import DataLoader from pathlib import Path from summarization_dataset import * import policies import model_checkpointing from configs import fsdp_config, train_config from utils import (bfloat_support, setup, cleanup, get_date_of_run, format_metrics_to_gb, train,validation,setup_model) from transformers.models.t5.modeling_t5 import T5Block from typing import Type import time import tqdm from datetime import datetime def get_policies(cfg, rank): """establish current policies for mixed precision and fsdp wrapping""" mixed_precision_policy = None wrapping_policy = None # mixed precision ----- if cfg.mixed_precision: bfloat_available = bfloat_support() if bfloat_available and not cfg.use_fp16: mixed_precision_policy = policies.bfSixteen if rank == 0: print(f"bFloat16 enabled for mixed precision - using bfSixteen policy") elif cfg.use_fp16: mixed_precision_policy = policies.fpSixteen if rank == 0: print(f"FP16 enabled. ") else: # mixed_precision_policy = policies.fpSixteen print( f"bFloat16 support not present. Will use FP32, and not mixed precision" ) wrapping_policy = policies.get_t5_wrapper() return mixed_precision_policy, wrapping_policy def fsdp_main(args): model, tokenizer = setup_model(train_config.model_name) local_rank = int(os.environ['LOCAL_RANK']) rank = int(os.environ['RANK']) world_size = int(os.environ['WORLD_SIZE']) dataset = load_dataset('wikihow', 'all', data_dir='data/') print(dataset.keys()) print("Size of train dataset: ", dataset['train'].shape) print("Size of Validation dataset: ", dataset['validation'].shape) #wikihow(tokenizer, type_path, num_samples, input_length, output_length, print_text=False) train_dataset = wikihow(tokenizer, 'train', 1500, 512, 150, False) val_dataset = wikihow(tokenizer, 'validation', 300, 512, 150, False) sampler1 = DistributedSampler(train_dataset, rank=rank, num_replicas=world_size, shuffle=True) sampler2 = DistributedSampler(val_dataset, rank=rank, num_replicas=world_size) setup() train_kwargs = {'batch_size': args.batch_size, 'sampler': sampler1} test_kwargs = {'batch_size': args.test_batch_size, 'sampler': sampler2} cuda_kwargs = {'num_workers': 2, 'pin_memory': True, 'shuffle': False} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) train_loader = torch.utils.data.DataLoader(train_dataset,**train_kwargs) val_loader = torch.utils.data.DataLoader(val_dataset, **test_kwargs) torch.cuda.set_device(local_rank) # Set up FSDP parameters mixed_precision_policy, t5_auto_wrap_policy = get_policies(train_config, rank) # Apply FSDP wrapping to the model model = FSDP(model, auto_wrap_policy=t5_auto_wrap_policy, mixed_precision=mixed_precision_policy, sharding_strategy=fsdp_config.sharding_strategy, device_id=torch.cuda.current_device(), limit_all_gathers=fsdp_config.limit_all_gathers) if fsdp_config.fsdp_activation_checkpointing: policies.apply_fsdp_checkpointing(model) # Set up optimizer and scheduler optimizer = optim.AdamW(model.parameters(), lr=train_config.lr) scheduler = StepLR(optimizer, step_size=1, gamma=train_config.gamma) best_val_loss = float("inf") curr_val_loss = float("inf") file_save_name = "T5-model-" if rank == 0: time_of_run = get_date_of_run() dur = [] train_acc_tracking = [] val_acc_tracking = [] training_start_time = time.time() if rank == 0 and args.track_memory: mem_alloc_tracker = [] mem_reserved_tracker = [] for epoch in range(1, args.epochs + 1): t0 = time.time() train_accuracy = train(args, model, rank, world_size, train_loader, optimizer, epoch, sampler=sampler1) if args.run_validation: curr_val_loss = validation(model, rank, world_size, val_loader) scheduler.step() if rank == 0: print(f"--> epoch {epoch} completed...entering save and stats zone") dur.append(time.time() - t0) train_acc_tracking.append(train_accuracy.item()) if args.run_validation: val_acc_tracking.append(curr_val_loss.item()) if args.track_memory: mem_alloc_tracker.append( format_metrics_to_gb(torch.cuda.memory_allocated()) ) mem_reserved_tracker.append( format_metrics_to_gb(torch.cuda.memory_reserved()) ) if train_config.save_model and curr_val_loss < best_val_loss: if fsdp_config.checkpoint_type == StateDictType.FULL_STATE_DICT: model_checkpointing.save_model_checkpoint( model, optimizer, rank, fsdp_config, epoch=1 ) elif fsdp_config.checkpoint_type == StateDictType.SHARDED_STATE_DICT: model_checkpointing.save_model_and_optimizer_sharded(model, rank, fsdp_config) if fsdp_config.save_optimizer: model_checkpointing.save_model_and_optimizer_sharded(model, rank, fsdp_config, optim=optimizer) if fsdp_config.save_optimizer: model_checkpointing.save_optimizer_checkpoint( model, optimizer, rank, fsdp_config, epoch=1 ) if curr_val_loss < best_val_loss: best_val_loss = curr_val_loss if rank==0: print(f"-->>>> New Val Loss Record: {best_val_loss}") dist.barrier() cleanup() if __name__ == '__main__': # Training settings parser = argparse.ArgumentParser(description='PyTorch T5 FSDP Example') parser.add_argument('--batch-size', type=int, default=4, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=4, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=2, metavar='N', help='number of epochs to train (default: 3)') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--track_memory', action='store_false', default=True, help='track the gpu memory') parser.add_argument('--run_validation', action='store_false', default=True, help='running the validation') args = parser.parse_args() torch.manual_seed(args.seed) fsdp_main(args)
import argparse import glob import os import json import time import logging import random import re from itertools import chain from string import punctuation import pandas as pd import numpy as np import torch from torch.utils.data import Dataset, DataLoader from datasets import load_dataset, load_metric from transformers import ( AdamW, T5ForConditionalGeneration, T5Tokenizer, get_linear_schedule_with_warmup ) class wikihow(Dataset): def __init__(self, tokenizer, type_path, num_samples, input_length, output_length, print_text=False): self.dataset = load_dataset('wikihow', 'all', data_dir='data/', split=type_path) if num_samples: self.dataset = self.dataset.select(list(range(0, num_samples))) self.input_length = input_length self.tokenizer = tokenizer self.output_length = output_length self.print_text = print_text def __len__(self): return self.dataset.shape[0] def clean_text(self, text): text = text.replace('Example of text:', '') text = text.replace('Example of Summary:', '') text = text.replace('\n','') text = text.replace('``', '') text = text.replace('"', '') return text def convert_to_features(self, example_batch): # Tokenize contexts and questions (as pairs of inputs) if self.print_text: print("Input Text: ", self.clean_text(example_batch['text'])) # input_ = self.clean_text(example_batch['text']) + " </s>" # target_ = self.clean_text(example_batch['headline']) + " </s>" input_ = self.clean_text(example_batch['text']) target_ = self.clean_text(example_batch['headline']) source = self.tokenizer.batch_encode_plus([input_], max_length=self.input_length, padding='max_length', truncation=True, return_tensors="pt") targets = self.tokenizer.batch_encode_plus([target_], max_length=self.output_length, padding='max_length', truncation=True, return_tensors="pt") return source, targets def __getitem__(self, index): source, targets = self.convert_to_features(self.dataset[index]) source_ids = source["input_ids"].squeeze() target_ids = targets["input_ids"].squeeze() src_mask = source["attention_mask"].squeeze() target_mask = targets["attention_mask"].squeeze() return {"source_ids": source_ids, "source_mask": src_mask, "target_ids": target_ids, "target_mask": target_mask} def get_dataset(tokenizer, type_path, num_samples, args): return wikihow(tokenizer=tokenizer, type_path=type_path, num_samples=num_samples, input_length=max_input_length, output_length=max_output_length)
import os import torch import torch.distributed as dist from datetime import datetime import tqdm from transformers import AutoTokenizer, GPT2TokenizerFast from transformers import T5Tokenizer, T5ForConditionalGeneration g_gigabyte = 1024**3 def setup(): # initialize the process group dist.init_process_group("nccl") def cleanup(): dist.destroy_process_group() def get_date_of_run(): """create date and time for file save uniqueness example: 2022-05-07-08:31:12_PM' """ date_of_run = datetime.now().strftime("%Y-%m-%d-%I:%M:%S_%p") print(f"--> current date and time of run = {date_of_run}") return date_of_run def format_metrics_to_gb(item): """quick function to format numbers to gigabyte and round to 4 digit precision""" metric_num = item / g_gigabyte metric_num = round(metric_num, ndigits=4) return metric_num def train(args, model, rank, world_size, train_loader, optimizer, epoch, sampler=None): model.train() local_rank = int(os.environ['LOCAL_RANK']) fsdp_loss = torch.zeros(2).to(local_rank) if sampler: sampler.set_epoch(epoch) if rank==0: inner_pbar = tqdm.tqdm( range(len(train_loader)), colour="blue", desc="r0 Training Epoch" ) for batch in train_loader: for key in batch.keys(): batch[key] = batch[key].to(local_rank) optimizer.zero_grad() output = model(input_ids=batch["source_ids"],attention_mask=batch["source_mask"],labels=batch["target_ids"] ) loss = output["loss"] loss.backward() optimizer.step() fsdp_loss[0] += loss.item() fsdp_loss[1] += len(batch) if rank==0: inner_pbar.update(1) dist.all_reduce(fsdp_loss, op=dist.ReduceOp.SUM) train_accuracy = fsdp_loss[0] / fsdp_loss[1] if rank == 0: inner_pbar.close() print( f"Train Epoch: \t{epoch}, Loss: \t{train_accuracy:.4f}" ) return train_accuracy def validation(model, rank, world_size, val_loader): model.eval() correct = 0 local_rank = int(os.environ['LOCAL_RANK']) fsdp_loss = torch.zeros(2).to(local_rank) if rank == 0: inner_pbar = tqdm.tqdm( range(len(val_loader)), colour="green", desc="Validation Epoch" ) with torch.no_grad(): for batch in val_loader: for key in batch.keys(): batch[key] = batch[key].to(local_rank) output = model(input_ids=batch["source_ids"],attention_mask=batch["source_mask"],labels=batch["target_ids"]) fsdp_loss[0] += output["loss"].item() # sum up batch loss fsdp_loss[1] += len(batch) if rank==0: inner_pbar.update(1) dist.all_reduce(fsdp_loss, op=dist.ReduceOp.SUM) val_loss = fsdp_loss[0] / fsdp_loss[1] if rank == 0: inner_pbar.close() print(f"Validation Loss: {val_loss:.4f}") return val_loss def setup_model(model_name): model = T5ForConditionalGeneration.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) return model, tokenizer
from .environment import bfloat_support from .train_utils import setup, cleanup, get_date_of_run, format_metrics_to_gb, train, validation,setup_model
# Copyright (c) 2022 Meta Platforms, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the Apache-style license found in the # LICENSE file in the root directory of this source tree. # This is a simple check to confirm that your current server has full bfloat support - # both GPU native support, and Network communication support. # Be warned that if you run on V100 without a check like this, you will be running without native Bfloat16 # support and will find significant performance degradation (but it will not complain via an error). # Hence the reason for a checker! from pkg_resources import packaging import torch import torch.cuda.nccl as nccl import torch.distributed as dist # global flag that confirms ampere architecture, cuda version and # nccl version to verify bfloat16 native support is ready def bfloat_support(): return ( torch.version.cuda and torch.cuda.is_bf16_supported() and packaging.version.parse(torch.version.cuda).release >= (11, 0) and dist.is_nccl_available() and nccl.version() >= (2, 10) )
import torch import os import torch.distributed as dist from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( checkpoint_wrapper, CheckpointImpl, apply_activation_checkpointing, ) from transformers.models.t5.modeling_t5 import T5Block from functools import partial non_reentrant_wrapper = partial( checkpoint_wrapper, offload_to_cpu=False, checkpoint_impl=CheckpointImpl.NO_REENTRANT, ) check_fn = lambda submodule: isinstance(submodule, T5Block) def apply_fsdp_checkpointing(model): """apply activation checkpointing to model returns None as model is updated directly """ print(f"--> applying fdsp activation checkpointing...") apply_activation_checkpointing( model, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=check_fn )
import torch from torch.distributed.fsdp import ( # FullyShardedDataParallel as FSDP, # CPUOffload, MixedPrecision, # BackwardPrefetch, # ShardingStrategy, ) # requires grad scaler in main loop fpSixteen = MixedPrecision( param_dtype=torch.float16, # Gradient communication precision. reduce_dtype=torch.float16, # Buffer precision. buffer_dtype=torch.float16, ) bfSixteen = MixedPrecision( param_dtype=torch.bfloat16, # Gradient communication precision. reduce_dtype=torch.bfloat16, # Buffer precision. buffer_dtype=torch.bfloat16, ) bfSixteen_working = MixedPrecision( param_dtype=torch.float32, reduce_dtype=torch.bfloat16, buffer_dtype=torch.bfloat16, ) fp32_policy = MixedPrecision( param_dtype=torch.float32, reduce_dtype=torch.float32, buffer_dtype=torch.float32, )
from .mixed_precision import * from .wrapping import * from .activation_checkpointing_functions import apply_fsdp_checkpointing
# holds various wrapping policies for fsdp import torch.distributed as dist import torch.nn as nn import torch from transformers.models.t5.modeling_t5 import T5Block from torch.distributed.fsdp.fully_sharded_data_parallel import ( FullyShardedDataParallel as FSDP, CPUOffload, BackwardPrefetch, MixedPrecision, ) from torch.distributed.fsdp.wrap import ( transformer_auto_wrap_policy, size_based_auto_wrap_policy, enable_wrap, wrap, ) import functools from typing import Type def get_size_policy(min_params=1e8): num_wrap_policy = functools.partial( size_based_auto_wrap_policy, min_num_params=min_params ) return num_wrap_policy def get_t5_wrapper(): """we register our main layer class and use the fsdp transformer wrapping policy ensures embedding layers are in the root fsdp unit for shared access and that fsdp units map to transformer layers """ # ==== use new transformer wrapper t5_auto_wrap_policy = functools.partial( transformer_auto_wrap_policy, transformer_layer_cls={ T5Block, }, ) return t5_auto_wrap_policy
from pathlib import Path from datetime import datetime import torch import time from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, StateDictType, FullStateDictConfig, # general model non-sharded, non-flattened params LocalStateDictConfig, # flattened params, usable only by FSDP # ShardedStateDictConfig, # un-flattened param but shards, usable by other parallel schemes. ) from torch.distributed._shard.checkpoint import ( FileSystemReader, FileSystemWriter, save_state_dict, load_state_dict, ) from torch.distributed.checkpoint.default_planner import ( DefaultSavePlanner, DefaultLoadPlanner, ) from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType import torch.distributed._shard.checkpoint as dist_cp import torch.distributed as dist def get_date_of_run(): """create date and time for file save uniqueness example: 2022-05-07-08:31:12_PM' """ date_of_run = datetime.now().strftime("%Y-%m-%d-%I:%M:%S_%p") print(f"--> current date and time of run = {date_of_run}") return date_of_run # create singleton saving policies to avoid making over and over fullstate_save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True) def load_model_sharded(model, rank, cfg, verbose=True): # torch.manual_seed(103) folder_name = ( cfg.dist_checkpoint_root_folder + "/" + cfg.dist_checkpoint_folder + "-" + cfg.model_name ) load_dir = Path.cwd() / folder_name if not load_dir.exists(): if rank == 0: print(f"No sharded_state_dict checkpoint directory found...skipping") return reader = FileSystemReader(load_dir) with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT): checkpoint = model.state_dict() if rank == 0: ck = checkpoint.keys() print(f" checkpoint key len = {len(ck)} and \n keys = {ck}") dist_cp.load_state_dict( state_dict=checkpoint, storage_reader=reader, ) if rank == 0: print(f"checkpoint after load_state_dict()") ck = checkpoint.keys() print(f" checkpoint key len = {len(ck)} and \n keys = {ck}") model.load_state_dict(checkpoint) if rank == 0: print(f"Sharded state checkpoint loaded from {load_dir}") def save_model_and_optimizer_sharded(model, rank, cfg,optim=None, verbose=True): """save model and optimizer via sharded_state_dict to save_dir""" folder_name = ( cfg.dist_checkpoint_root_folder + "/" + cfg.dist_checkpoint_folder + "-" + cfg.model_name ) save_dir = Path.cwd() / folder_name if rank == 0: print(f"Saving model to {save_dir}") distributed_writer = dist_cp.FileSystemWriter( save_dir, ) t0 = time.perf_counter() with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT): state_dict = {"model": model.state_dict()} if optim is not None: state_dict["optim"] = FSDP.optim_state_dict(model, optim) dist_cp.save_state_dict( state_dict=state_dict, storage_writer=distributed_writer, planner=DefaultSavePlanner(), ) dist.barrier() t1 = time.perf_counter() if rank == 0: print(f"Sharded state checkpoint saved to {save_dir}") print( f"Checkpoint Time = {t1-t0:.4f}\n using {cfg.save_using_num_threads=} total threads" ) def save_model_checkpoint( model, optimizer, rank, cfg, epoch=1, ): """saving model via rank0 cpu streaming and full_state_dict""" # saving with rank0 cpu if not cfg.checkpoint_type == StateDictType.FULL_STATE_DICT: print(f" unable to handle checkpoint type {cfg.checkpoint_type}, aborting") with FSDP.state_dict_type( model, StateDictType.FULL_STATE_DICT, fullstate_save_policy ): cpu_state = model.state_dict() if cfg.verbose: print(f"saving process: rank {rank} done w model state_dict\n") if rank == 0: print(f"--> saving model ...") # create save path save_dir = Path.cwd() / cfg.checkpoint_folder save_dir.mkdir(parents=True, exist_ok=True) save_name = cfg.model_save_name + "-" + str(epoch) + ".pt" save_full_path = str(save_dir) + "/" + save_name # save model torch.save(cpu_state, save_full_path) if cfg.verbose: print(f"model checkpoint saved for epoch {epoch} at {save_full_path}\n") def load_model_checkpoint(model, rank, cfg, verbose=True): """load local checkpoint to rank0 cpu must be called * before * passing to FSDP""" if rank != 0: return # where is the checkpoint at... full_state_dict_model_path = ( Path.cwd() / cfg.checkpoint_folder / cfg.checkpoint_model_filename ) # is it present... if not full_state_dict_model_path.is_file(): print( f"model checkpoint {full_state_dict_model_path} not present. Returning..." ) return model_checkpoint = torch.load(full_state_dict_model_path) # integrate into loaded model model.load_state_dict(model_checkpoint) if cfg.verbose: print(f"model checkpoint loaded to rank0 cpu") def save_optimizer_checkpoint(model, optimizer, rank, cfg, epoch=1): """save optimizer state via full state dict""" if cfg.verbose: print(f"--> optim state call on rank {rank}\n") # pull all sharded optimizer states to rank0 cpu... optim_state = FSDP.full_optim_state_dict(model, optimizer) if cfg.verbose: print(f"optim state dict ready on {rank} and len of {len(optim_state)}\n") if rank == 0: save_dir = Path.cwd() / cfg.checkpoint_folder save_dir.mkdir(parents=True, exist_ok=True) opt_save_name = ( cfg.optimizer_name + "-" + cfg.model_save_name + "-" + str(epoch) + ".pt" ) opt_save_full_path = save_dir / opt_save_name print(f"--> saving optimizer state...") torch.save(optim_state, opt_save_full_path) print(f"--> saved {opt_save_full_path} to disk") def load_optimizer_checkpoint(model, optimizer, rank, cfg): """load an fdsp optimizer full_state checkpoint using scatter method this ensures only rank 0 loads the optimizer state dict and scatters to other ranks """ opt_file_path = Path.cwd() / cfg.checkpoint_folder / cfg.optimizer_checkpoint_file if not opt_file_path.is_file(): print( f"warning - optimizer checkpoint not present {opt_file_path}. Returning. " ) return full_osd = None if rank == 0: full_osd = torch.load(opt_file_path) if cfg.verbose: print(f"loaded full osd on rank 0") # called from all ranks, though only rank0 has a valid param for full_osd sharded_osd = FSDP.scatter_full_optim_state_dict(full_osd, model) if cfg.verbose: print(f"optimizer shard loaded on rank {rank}") def load_distributed_model_checkpoint(model, rank, cfg): if cfg.checkpoint_type == StateDictType.LOCAL_STATE_DICT: print(f"loading distributed checkpoint, rank {rank}...") folder_name = ( cfg.dist_checkpoint_root_folder + "/" + cfg.dist_checkpoint_folder + "-" + cfg.model_name ) checkdir = Path.cwd() / folder_name if not checkdir.exists(): if rank == 0: print(f"No checkpoint directory found...skipping") return reader = FileSystemReader(checkdir) with FSDP.state_dict_type( model, StateDictType.LOCAL_STATE_DICT, ): state_dict = model.state_dict() load_state_dict(state_dict, reader) model.load_state_dict(state_dict) print(f"--> local state loaded on rank {rank}") return def save_distributed_model_checkpoint(model, rank, cfg, epoch=1): # distributed checkpoint saving # confirm type of checkpoint and save if cfg.checkpoint_type == StateDictType.LOCAL_STATE_DICT: # create writer to current path folder_name = ( cfg.dist_checkpoint_root_folder + "/" + cfg.dist_checkpoint_folder + "-" + cfg.model_name ) save_dir = Path.cwd() / folder_name writer = FileSystemWriter( save_dir, ) with FSDP.state_dict_type( model, StateDictType.LOCAL_STATE_DICT, ): state_dict = model.state_dict() # write out distributed checkpoint save_state_dict(state_dict, writer) return
from .checkpoint_handler import ( load_model_checkpoint, save_model_checkpoint, save_distributed_model_checkpoint, load_distributed_model_checkpoint, load_optimizer_checkpoint, save_optimizer_checkpoint, save_model_and_optimizer_sharded, load_model_sharded, )
from dataclasses import dataclass, field from typing import ClassVar from torch.distributed.fsdp import ShardingStrategy from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType @dataclass class fsdp_config: mixed_precision: bool=True use_fp16: bool=False seed: int=42 fsdp_activation_checkpointing: bool=True limit_all_gathers: bool=True sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD #HYBRID_SHARD, SHARD_GRAD_OP checkpoint_type: StateDictType = StateDictType.FULL_STATE_DICT # alternatively can use SHARDED_STATE_DICT to avoid OOMs save_optimizer: bool=False
from .fsdp import fsdp_config from .training import train_config
from dataclasses import dataclass from typing import ClassVar @dataclass class train_config: model_name: str="t5-base" run_validation: bool=True batch_size_training: int=4 num_workers_dataloader: int=2 lr: float=0.002 weight_decay: float=0.0 gamma: float= 0.85 use_fp16: bool=False mixed_precision: bool=True save_model: bool=False
import torch from torch.utils.data import Dataset import fsspec from dataclasses import dataclass """ Adapted from https://github.com/karpathy/minGPT/blob/master/projects/chargpt/chargpt.py """ @dataclass class DataConfig: path: str = None block_size: int = None train_split: float = None truncate: float = 1.0 class CharDataset(Dataset): def __init__(self, data_cfg: DataConfig): #data_path: str, block_size): data = fsspec.open(data_cfg.path).open().read().decode('utf-8') data = data[ : int(len(data) * data_cfg.truncate)] chars = sorted(list(set(data))) data_size, vocab_size = len(data), len(chars) print('Data has %d characters, %d unique.' % (data_size, vocab_size)) self.stoi = {ch: i for i, ch in enumerate(chars)} self.itos = {i: ch for i, ch in enumerate(chars)} self.block_size = data_cfg.block_size self.vocab_size = vocab_size self.data = data def __len__(self): return len(self.data) - self.block_size def __getitem__(self, idx): # grab a chunk of (block_size + 1) characters from the data chunk = self.data[idx:idx + self.block_size + 1] # encode every character to an integer dix = [self.stoi[s] for s in chunk] x = torch.tensor(dix[:-1], dtype=torch.long) y = torch.tensor(dix[1:], dtype=torch.long) return x, y
""" Full definition of a GPT Language Model, all of it in this single file. Adapted from https://github.com/karpathy/minGPT/blob/master/mingpt/model.py """ from dataclasses import dataclass import math import torch import torch.nn as nn from torch.nn import functional as F @dataclass class GPTConfig: model_type: str = 'gpt2' # model configurations n_layer: int = None n_head: int = None n_embd: int = None # openai's values for gpt2 vocab_size: int = 50257 block_size: int = 1024 # dropout hyperparameters embd_pdrop: float = 0.1 resid_pdrop: float = 0.1 attn_pdrop: float = 0.1 @dataclass class OptimizerConfig: learning_rate: float = 3e-4 weight_decay: float = 0.1 class MultiheadAttentionLayer(nn.Module): """ A multi-head masked self-attention layer with a projection at the end. """ def __init__(self, config, device="cpu", dtype=torch.float32): super().__init__() assert config.n_embd % config.n_head == 0 self.resid_drop = nn.Dropout(config.resid_pdrop) self.c_proj = nn.Linear(config.n_embd, config.n_embd, device=device, dtype=dtype) self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) self.attn = torch.nn.MultiheadAttention( embed_dim=config.n_embd, num_heads=config.n_head, dropout=config.attn_pdrop, batch_first=True, device=device, dtype=dtype ) def forward(self, x): _, seq_size, _ = x.size() y = self.attn(x, x, x, attn_mask=self.mask[0, 0, :seq_size, :seq_size])[0] y = self.resid_drop(self.c_proj(y)) return y class Block(nn.Module): """ an unassuming Transformer block """ def __init__(self, config: GPTConfig): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) self.attn = MultiheadAttentionLayer(config) self.mlp = nn.Sequential( nn.Linear(config.n_embd, 4 * config.n_embd), nn.GELU(), nn.Linear(4 * config.n_embd, config.n_embd), nn.Dropout(config.resid_pdrop), ) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x class EmbeddingStem(nn.Module): def __init__(self, config: GPTConfig, device="cpu", dtype=torch.float32): super().__init__() self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd, device=device, dtype=dtype) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd, device=device, dtype=dtype)) self.drop = nn.Dropout(config.embd_pdrop) self.block_size = config.block_size def reset_parameters(self): self.tok_emb.reset_parameters() def forward(self, idx): b, t = idx.size() assert t <= self.block_size, f"Cannot forward sequence of length {t}, block size is only {self.block_size}" token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) embedding vector position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) position vector return self.drop(token_embeddings + position_embeddings) class GPT(nn.Module): """ GPT Language Model """ def __init__(self, config: GPTConfig): super().__init__() self.block_size = config.block_size config = self._set_model_config(config) # input embedding stem self.emb_stem = EmbeddingStem(config) # transformer self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # init all weights, and apply a special scaled init to the residual projections, per GPT-2 paper self.apply(self._init_weights) for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): p.data.normal_(mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) # report number of parameters (note we don't count the decoder parameters in lm_head) n_params = sum(p.numel() for p in self.blocks.parameters()) print("number of parameters: %.2fM" % (n_params/1e6,)) def _set_model_config(self, config): type_given = config.model_type is not None params_given = all([config.n_layer is not None, config.n_head is not None, config.n_embd is not None]) # assert type_given ^ params_given # exactly one of these (XOR) if type_given and not params_given: # translate from model_type to detailed configuration config.__dict__.update({ # names follow the huggingface naming conventions # GPT-1 'openai-gpt': dict(n_layer=12, n_head=12, n_embd=768), # 117M params # GPT-2 configs 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params # Gophers 'gopher-44m': dict(n_layer=8, n_head=16, n_embd=512), # (there are a number more...) # I made these tiny models up 'gpt-mini': dict(n_layer=6, n_head=6, n_embd=192), 'gpt-micro': dict(n_layer=4, n_head=4, n_embd=128), 'gpt-nano': dict(n_layer=3, n_head=3, n_embd=48), }[config.model_type]) return config def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, idx, targets=None): x = self.emb_stem(idx) x = self.blocks(x) x = self.ln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) return logits, loss @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= self.block_size else idx[:, -self.block_size:] # forward the model to get the logits for the index in the sequence logits, _ = self(idx_cond) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, top_k) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # either sample from the distribution or take the most likely element if do_sample: idx_next = torch.multinomial(probs, num_samples=1) else: _, idx_next = torch.topk(probs, k=1, dim=-1) # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx def create_optimizer(model: torch.nn.Module, opt_config: OptimizerConfig): """ This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won't (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() whitelist_weight_modules = (torch.nn.Linear, ) blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) for mn, m in model.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name # random note: because named_modules and named_parameters are recursive # we will see the same tensors p many many times. but doing it this way # allows us to know which parent module any tensor p belongs to... if pn.endswith('bias'): # all biases will not be decayed no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif pn.endswith('in_proj_weight'): # MHA projection layer decay.add(fpn) elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) elif pn.endswith('pos_emb'): # positional embedding shouldn't be decayed no_decay.add(fpn) # validate that we considered every parameter param_dict = {pn: p for pn, p in model.named_parameters()} inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ % (str(param_dict.keys() - union_params), ) # create the pytorch optimizer object optim_groups = [ {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": opt_config.weight_decay}, {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] optimizer = torch.optim.AdamW(optim_groups, lr=opt_config.learning_rate, betas=(0.9, 0.95)) return optimizer
""" Simple training loop; Boilerplate that could apply to any arbitrary neural network, so nothing in this file really has anything to do with GPT specifically. """ from dataclasses import dataclass, asdict from collections import OrderedDict from typing import Optional, Any, Dict import os import torch from torch.utils.data import Dataset, DataLoader from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data.distributed import DistributedSampler import boto3 from urllib.parse import urlparse import fsspec import io @dataclass class TrainerConfig: max_epochs: int = None batch_size: int = None data_loader_workers: int = None grad_norm_clip: float = None snapshot_path: Optional[str] = None save_every: int = None use_amp: bool = None @dataclass class Snapshot: model_state: 'OrderedDict[str, torch.Tensor]' optimizer_state: Dict[str, Any] finished_epoch: int def upload_to_s3(obj, dst): buffer = io.BytesIO() torch.save(obj, buffer) buffer.seek(0) dst = urlparse(dst, allow_fragments=False) boto3.client('s3').upload_fileobj(buffer, dst.netloc, dst.path.lstrip('/')) class Trainer: def __init__(self, trainer_config: TrainerConfig, model, optimizer, train_dataset, test_dataset=None): self.config = trainer_config # set torchrun variables self.local_rank = int(os.environ["LOCAL_RANK"]) self.global_rank = int(os.environ["RANK"]) # data stuff self.train_dataset = train_dataset self.train_loader = self._prepare_dataloader(train_dataset) self.test_loader = self._prepare_dataloader(test_dataset) if test_dataset else None # initialize train states self.epochs_run = 0 self.model = model.to(self.local_rank) self.optimizer = optimizer self.save_every = self.config.save_every if self.config.use_amp: self.scaler = torch.cuda.amp.GradScaler() # load snapshot if available. only necessary on the first node. if self.config.snapshot_path is None: self.config.snapshot_path = "snapshot.pt" self._load_snapshot() # wrap with DDP. this step will synch model across all the processes. self.model = DDP(self.model, device_ids=[self.local_rank]) def _prepare_dataloader(self, dataset: Dataset): return DataLoader( dataset, batch_size=self.config.batch_size, pin_memory=True, shuffle=False, num_workers=self.config.data_loader_workers, sampler=DistributedSampler(dataset) ) def _load_snapshot(self): try: snapshot = fsspec.open(self.config.snapshot_path) with snapshot as f: snapshot_data = torch.load(f, map_location="cpu") except FileNotFoundError: print("Snapshot not found. Training model from scratch") return snapshot = Snapshot(**snapshot_data) self.model.load_state_dict(snapshot.model_state) self.optimizer.load_state_dict(snapshot.optimizer_state) self.epochs_run = snapshot.finished_epoch print(f"Resuming training from snapshot at Epoch {self.epochs_run}") def _run_batch(self, source, targets, train: bool = True) -> float: with torch.set_grad_enabled(train), torch.amp.autocast(device_type="cuda", dtype=torch.float16, enabled=(self.config.use_amp)): _, loss = self.model(source, targets) if train: self.optimizer.zero_grad(set_to_none=True) if self.config.use_amp: self.scaler.scale(loss).backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.grad_norm_clip) self.scaler.step(self.optimizer) self.scaler.update() else: loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.grad_norm_clip) self.optimizer.step() return loss.item() def _run_epoch(self, epoch: int, dataloader: DataLoader, train: bool = True): dataloader.sampler.set_epoch(epoch) for iter, (source, targets) in enumerate(dataloader): step_type = "Train" if train else "Eval" source = source.to(self.local_rank) targets = targets.to(self.local_rank) batch_loss = self._run_batch(source, targets, train) if iter % 100 == 0: print(f"[GPU{self.global_rank}] Epoch {epoch} | Iter {iter} | {step_type} Loss {batch_loss:.5f}") def _save_snapshot(self, epoch): # capture snapshot model = self.model raw_model = model.module if hasattr(model, "module") else model snapshot = Snapshot( model_state=raw_model.state_dict(), optimizer_state=self.optimizer.state_dict(), finished_epoch=epoch ) # save snapshot snapshot = asdict(snapshot) if self.config.snapshot_path.startswith("s3://"): upload_to_s3(snapshot, self.config.snapshot_path) else: torch.save(snapshot, self.config.snapshot_path) print(f"Snapshot saved at epoch {epoch}") def train(self): for epoch in range(self.epochs_run, self.config.max_epochs): epoch += 1 self._run_epoch(epoch, self.train_loader, train=True) if self.local_rank == 0 and epoch % self.save_every == 0: self._save_snapshot(epoch) # eval run if self.test_loader: self._run_epoch(epoch, self.test_loader, train=False)
import os import torch from torch.utils.data import random_split from torch.distributed import init_process_group, destroy_process_group from model import GPT, GPTConfig, OptimizerConfig, create_optimizer from trainer import Trainer, TrainerConfig from char_dataset import CharDataset, DataConfig from omegaconf import DictConfig import hydra def ddp_setup(): init_process_group(backend="nccl") torch.cuda.set_device(int(os.environ["LOCAL_RANK"])) def get_train_objs(gpt_cfg: GPTConfig, opt_cfg: OptimizerConfig, data_cfg: DataConfig): dataset = CharDataset(data_cfg) train_len = int(len(dataset) * data_cfg.train_split) train_set, test_set = random_split(dataset, [train_len, len(dataset) - train_len]) gpt_cfg.vocab_size = dataset.vocab_size gpt_cfg.block_size = dataset.block_size model = GPT(gpt_cfg) optimizer = create_optimizer(model, opt_cfg) return model, optimizer, train_set, test_set @hydra.main(version_base=None, config_path=".", config_name="gpt2_train_cfg") def main(cfg: DictConfig): ddp_setup() gpt_cfg = GPTConfig(**cfg['gpt_config']) opt_cfg = OptimizerConfig(**cfg['optimizer_config']) data_cfg = DataConfig(**cfg['data_config']) trainer_cfg = TrainerConfig(**cfg['trainer_config']) model, optimizer, train_data, test_data = get_train_objs(gpt_cfg, opt_cfg, data_cfg) trainer = Trainer(trainer_cfg, model, optimizer, train_data, test_data) trainer.train() destroy_process_group() if __name__ == "__main__": main()
import torch import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from datautils import MyTrainDataset import torch.multiprocessing as mp from torch.utils.data.distributed import DistributedSampler from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed import init_process_group, destroy_process_group import os def ddp_setup(): init_process_group(backend="nccl") torch.cuda.set_device(int(os.environ["LOCAL_RANK"])) class Trainer: def __init__( self, model: torch.nn.Module, train_data: DataLoader, optimizer: torch.optim.Optimizer, save_every: int, snapshot_path: str, ) -> None: self.local_rank = int(os.environ["LOCAL_RANK"]) self.global_rank = int(os.environ["RANK"]) self.model = model.to(self.local_rank) self.train_data = train_data self.optimizer = optimizer self.save_every = save_every self.epochs_run = 0 self.snapshot_path = snapshot_path if os.path.exists(snapshot_path): print("Loading snapshot") self._load_snapshot(snapshot_path) self.model = DDP(self.model, device_ids=[self.local_rank]) def _load_snapshot(self, snapshot_path): loc = f"cuda:{self.local_rank}" snapshot = torch.load(snapshot_path, map_location=loc) self.model.load_state_dict(snapshot["MODEL_STATE"]) self.epochs_run = snapshot["EPOCHS_RUN"] print(f"Resuming training from snapshot at Epoch {self.epochs_run}") def _run_batch(self, source, targets): self.optimizer.zero_grad() output = self.model(source) loss = F.cross_entropy(output, targets) loss.backward() self.optimizer.step() def _run_epoch(self, epoch): b_sz = len(next(iter(self.train_data))[0]) print(f"[GPU{self.global_rank}] Epoch {epoch} | Batchsize: {b_sz} | Steps: {len(self.train_data)}") self.train_data.sampler.set_epoch(epoch) for source, targets in self.train_data: source = source.to(self.local_rank) targets = targets.to(self.local_rank) self._run_batch(source, targets) def _save_snapshot(self, epoch): snapshot = { "MODEL_STATE": self.model.module.state_dict(), "EPOCHS_RUN": epoch, } torch.save(snapshot, self.snapshot_path) print(f"Epoch {epoch} | Training snapshot saved at {self.snapshot_path}") def train(self, max_epochs: int): for epoch in range(self.epochs_run, max_epochs): self._run_epoch(epoch) if self.local_rank == 0 and epoch % self.save_every == 0: self._save_snapshot(epoch) def load_train_objs(): train_set = MyTrainDataset(2048) # load your dataset model = torch.nn.Linear(20, 1) # load your model optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) return train_set, model, optimizer def prepare_dataloader(dataset: Dataset, batch_size: int): return DataLoader( dataset, batch_size=batch_size, pin_memory=True, shuffle=False, sampler=DistributedSampler(dataset) ) def main(save_every: int, total_epochs: int, batch_size: int, snapshot_path: str = "snapshot.pt"): ddp_setup() dataset, model, optimizer = load_train_objs() train_data = prepare_dataloader(dataset, batch_size) trainer = Trainer(model, train_data, optimizer, save_every, snapshot_path) trainer.train(total_epochs) destroy_process_group() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='simple distributed training job') parser.add_argument('total_epochs', type=int, help='Total epochs to train the model') parser.add_argument('save_every', type=int, help='How often to save a snapshot') parser.add_argument('--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)') args = parser.parse_args() main(args.save_every, args.total_epochs, args.batch_size)
import torch from torch.utils.data import Dataset class MyTrainDataset(Dataset): def __init__(self, size): self.size = size self.data = [(torch.rand(20), torch.rand(1)) for _ in range(size)] def __len__(self): return self.size def __getitem__(self, index): return self.data[index]
import torch import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from datautils import MyTrainDataset class Trainer: def __init__( self, model: torch.nn.Module, train_data: DataLoader, optimizer: torch.optim.Optimizer, gpu_id: int, save_every: int, ) -> None: self.gpu_id = gpu_id self.model = model.to(gpu_id) self.train_data = train_data self.optimizer = optimizer self.save_every = save_every def _run_batch(self, source, targets): self.optimizer.zero_grad() output = self.model(source) loss = F.cross_entropy(output, targets) loss.backward() self.optimizer.step() def _run_epoch(self, epoch): b_sz = len(next(iter(self.train_data))[0]) print(f"[GPU{self.gpu_id}] Epoch {epoch} | Batchsize: {b_sz} | Steps: {len(self.train_data)}") for source, targets in self.train_data: source = source.to(self.gpu_id) targets = targets.to(self.gpu_id) self._run_batch(source, targets) def _save_checkpoint(self, epoch): ckp = self.model.state_dict() PATH = "checkpoint.pt" torch.save(ckp, PATH) print(f"Epoch {epoch} | Training checkpoint saved at {PATH}") def train(self, max_epochs: int): for epoch in range(max_epochs): self._run_epoch(epoch) if epoch % self.save_every == 0: self._save_checkpoint(epoch) def load_train_objs(): train_set = MyTrainDataset(2048) # load your dataset model = torch.nn.Linear(20, 1) # load your model optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) return train_set, model, optimizer def prepare_dataloader(dataset: Dataset, batch_size: int): return DataLoader( dataset, batch_size=batch_size, pin_memory=True, shuffle=True ) def main(device, total_epochs, save_every, batch_size): dataset, model, optimizer = load_train_objs() train_data = prepare_dataloader(dataset, batch_size) trainer = Trainer(model, train_data, optimizer, device, save_every) trainer.train(total_epochs) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='simple distributed training job') parser.add_argument('total_epochs', type=int, help='Total epochs to train the model') parser.add_argument('save_every', type=int, help='How often to save a snapshot') parser.add_argument('--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)') args = parser.parse_args() device = 0 # shorthand for cuda:0 main(device, args.total_epochs, args.save_every, args.batch_size)
import torch import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from datautils import MyTrainDataset import torch.multiprocessing as mp from torch.utils.data.distributed import DistributedSampler from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed import init_process_group, destroy_process_group import os def ddp_setup(rank, world_size): """ Args: rank: Unique identifier of each process world_size: Total number of processes """ os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "12355" init_process_group(backend="nccl", rank=rank, world_size=world_size) torch.cuda.set_device(rank) class Trainer: def __init__( self, model: torch.nn.Module, train_data: DataLoader, optimizer: torch.optim.Optimizer, gpu_id: int, save_every: int, ) -> None: self.gpu_id = gpu_id self.model = model.to(gpu_id) self.train_data = train_data self.optimizer = optimizer self.save_every = save_every self.model = DDP(model, device_ids=[gpu_id]) def _run_batch(self, source, targets): self.optimizer.zero_grad() output = self.model(source) loss = F.cross_entropy(output, targets) loss.backward() self.optimizer.step() def _run_epoch(self, epoch): b_sz = len(next(iter(self.train_data))[0]) print(f"[GPU{self.gpu_id}] Epoch {epoch} | Batchsize: {b_sz} | Steps: {len(self.train_data)}") self.train_data.sampler.set_epoch(epoch) for source, targets in self.train_data: source = source.to(self.gpu_id) targets = targets.to(self.gpu_id) self._run_batch(source, targets) def _save_checkpoint(self, epoch): ckp = self.model.module.state_dict() PATH = "checkpoint.pt" torch.save(ckp, PATH) print(f"Epoch {epoch} | Training checkpoint saved at {PATH}") def train(self, max_epochs: int): for epoch in range(max_epochs): self._run_epoch(epoch) if self.gpu_id == 0 and epoch % self.save_every == 0: self._save_checkpoint(epoch) def load_train_objs(): train_set = MyTrainDataset(2048) # load your dataset model = torch.nn.Linear(20, 1) # load your model optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) return train_set, model, optimizer def prepare_dataloader(dataset: Dataset, batch_size: int): return DataLoader( dataset, batch_size=batch_size, pin_memory=True, shuffle=False, sampler=DistributedSampler(dataset) ) def main(rank: int, world_size: int, save_every: int, total_epochs: int, batch_size: int): ddp_setup(rank, world_size) dataset, model, optimizer = load_train_objs() train_data = prepare_dataloader(dataset, batch_size) trainer = Trainer(model, train_data, optimizer, rank, save_every) trainer.train(total_epochs) destroy_process_group() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='simple distributed training job') parser.add_argument('total_epochs', type=int, help='Total epochs to train the model') parser.add_argument('save_every', type=int, help='How often to save a snapshot') parser.add_argument('--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)') args = parser.parse_args() world_size = torch.cuda.device_count() mp.spawn(main, args=(world_size, args.save_every, args.total_epochs, args.batch_size), nprocs=world_size)
import torch import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from datautils import MyTrainDataset import torch.multiprocessing as mp from torch.utils.data.distributed import DistributedSampler from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed import init_process_group, destroy_process_group import os def ddp_setup(): init_process_group(backend="nccl") torch.cuda.set_device(int(os.environ["LOCAL_RANK"])) class Trainer: def __init__( self, model: torch.nn.Module, train_data: DataLoader, optimizer: torch.optim.Optimizer, save_every: int, snapshot_path: str, ) -> None: self.gpu_id = int(os.environ["LOCAL_RANK"]) self.model = model.to(self.gpu_id) self.train_data = train_data self.optimizer = optimizer self.save_every = save_every self.epochs_run = 0 self.snapshot_path = snapshot_path if os.path.exists(snapshot_path): print("Loading snapshot") self._load_snapshot(snapshot_path) self.model = DDP(self.model, device_ids=[self.gpu_id]) def _load_snapshot(self, snapshot_path): loc = f"cuda:{self.gpu_id}" snapshot = torch.load(snapshot_path, map_location=loc) self.model.load_state_dict(snapshot["MODEL_STATE"]) self.epochs_run = snapshot["EPOCHS_RUN"] print(f"Resuming training from snapshot at Epoch {self.epochs_run}") def _run_batch(self, source, targets): self.optimizer.zero_grad() output = self.model(source) loss = F.cross_entropy(output, targets) loss.backward() self.optimizer.step() def _run_epoch(self, epoch): b_sz = len(next(iter(self.train_data))[0]) print(f"[GPU{self.gpu_id}] Epoch {epoch} | Batchsize: {b_sz} | Steps: {len(self.train_data)}") self.train_data.sampler.set_epoch(epoch) for source, targets in self.train_data: source = source.to(self.gpu_id) targets = targets.to(self.gpu_id) self._run_batch(source, targets) def _save_snapshot(self, epoch): snapshot = { "MODEL_STATE": self.model.module.state_dict(), "EPOCHS_RUN": epoch, } torch.save(snapshot, self.snapshot_path) print(f"Epoch {epoch} | Training snapshot saved at {self.snapshot_path}") def train(self, max_epochs: int): for epoch in range(self.epochs_run, max_epochs): self._run_epoch(epoch) if self.gpu_id == 0 and epoch % self.save_every == 0: self._save_snapshot(epoch) def load_train_objs(): train_set = MyTrainDataset(2048) # load your dataset model = torch.nn.Linear(20, 1) # load your model optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) return train_set, model, optimizer def prepare_dataloader(dataset: Dataset, batch_size: int): return DataLoader( dataset, batch_size=batch_size, pin_memory=True, shuffle=False, sampler=DistributedSampler(dataset) ) def main(save_every: int, total_epochs: int, batch_size: int, snapshot_path: str = "snapshot.pt"): ddp_setup() dataset, model, optimizer = load_train_objs() train_data = prepare_dataloader(dataset, batch_size) trainer = Trainer(model, train_data, optimizer, save_every, snapshot_path) trainer.train(total_epochs) destroy_process_group() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='simple distributed training job') parser.add_argument('total_epochs', type=int, help='Total epochs to train the model') parser.add_argument('save_every', type=int, help='How often to save a snapshot') parser.add_argument('--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)') args = parser.parse_args() main(args.save_every, args.total_epochs, args.batch_size)
import os import threading import time from functools import wraps import torch import torch.nn as nn import torch.distributed.autograd as dist_autograd import torch.distributed.rpc as rpc import torch.multiprocessing as mp import torch.optim as optim from torch.distributed.optim import DistributedOptimizer from torch.distributed.rpc import RRef from torchvision.models.resnet import Bottleneck ######################################################### # Define Model Parallel ResNet50 # ######################################################### # In order to split the ResNet50 and place it on two different workers, we # implement it in two model shards. The ResNetBase class defines common # attributes and methods shared by two shards. ResNetShard1 and ResNetShard2 # contain two partitions of the model layers respectively. num_classes = 1000 def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class ResNetBase(nn.Module): def __init__(self, block, inplanes, num_classes=1000, groups=1, width_per_group=64, norm_layer=None): super(ResNetBase, self).__init__() self._lock = threading.Lock() self._block = block self._norm_layer = nn.BatchNorm2d self.inplanes = inplanes self.dilation = 1 self.groups = groups self.base_width = width_per_group def _make_layer(self, planes, blocks, stride=1): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if stride != 1 or self.inplanes != planes * self._block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * self._block.expansion, stride), norm_layer(planes * self._block.expansion), ) layers = [] layers.append(self._block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * self._block.expansion for _ in range(1, blocks): layers.append(self._block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def parameter_rrefs(self): r""" Create one RRef for each parameter in the given local module, and return a list of RRefs. """ return [RRef(p) for p in self.parameters()] class ResNetShard1(ResNetBase): """ The first part of ResNet. """ def __init__(self, device, *args, **kwargs): super(ResNetShard1, self).__init__( Bottleneck, 64, num_classes=num_classes, *args, **kwargs) self.device = device self.seq = nn.Sequential( nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False), self._norm_layer(self.inplanes), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), self._make_layer(64, 3), self._make_layer(128, 4, stride=2) ).to(self.device) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def forward(self, x_rref): x = x_rref.to_here().to(self.device) with self._lock: out = self.seq(x) return out.cpu() class ResNetShard2(ResNetBase): """ The second part of ResNet. """ def __init__(self, device, *args, **kwargs): super(ResNetShard2, self).__init__( Bottleneck, 512, num_classes=num_classes, *args, **kwargs) self.device = device self.seq = nn.Sequential( self._make_layer(256, 6, stride=2), self._make_layer(512, 3, stride=2), nn.AdaptiveAvgPool2d((1, 1)), ).to(self.device) self.fc = nn.Linear(512 * self._block.expansion, num_classes).to(self.device) def forward(self, x_rref): x = x_rref.to_here().to(self.device) with self._lock: out = self.fc(torch.flatten(self.seq(x), 1)) return out.cpu() class DistResNet50(nn.Module): """ Assemble two parts as an nn.Module and define pipelining logic """ def __init__(self, split_size, workers, *args, **kwargs): super(DistResNet50, self).__init__() self.split_size = split_size # Put the first part of the ResNet50 on workers[0] self.p1_rref = rpc.remote( workers[0], ResNetShard1, args = ("cuda:0",) + args, kwargs = kwargs ) # Put the second part of the ResNet50 on workers[1] self.p2_rref = rpc.remote( workers[1], ResNetShard2, args = ("cuda:1",) + args, kwargs = kwargs ) def forward(self, xs): # Split the input batch xs into micro-batches, and collect async RPC # futures into a list out_futures = [] for x in iter(xs.split(self.split_size, dim=0)): x_rref = RRef(x) y_rref = self.p1_rref.remote().forward(x_rref) z_fut = self.p2_rref.rpc_async().forward(y_rref) out_futures.append(z_fut) # collect and cat all output tensors into one tensor. return torch.cat(torch.futures.wait_all(out_futures)) def parameter_rrefs(self): remote_params = [] remote_params.extend(self.p1_rref.remote().parameter_rrefs().to_here()) remote_params.extend(self.p2_rref.remote().parameter_rrefs().to_here()) return remote_params ######################################################### # Run RPC Processes # ######################################################### num_batches = 3 batch_size = 120 image_w = 128 image_h = 128 def run_master(split_size): # put the two model parts on worker1 and worker2 respectively model = DistResNet50(split_size, ["worker1", "worker2"]) loss_fn = nn.MSELoss() opt = DistributedOptimizer( optim.SGD, model.parameter_rrefs(), lr=0.05, ) one_hot_indices = torch.LongTensor(batch_size) \ .random_(0, num_classes) \ .view(batch_size, 1) for i in range(num_batches): print(f"Processing batch {i}") # generate random inputs and labels inputs = torch.randn(batch_size, 3, image_w, image_h) labels = torch.zeros(batch_size, num_classes) \ .scatter_(1, one_hot_indices, 1) # The distributed autograd context is the dedicated scope for the # distributed backward pass to store gradients, which can later be # retrieved using the context_id by the distributed optimizer. with dist_autograd.context() as context_id: outputs = model(inputs) dist_autograd.backward(context_id, [loss_fn(outputs, labels)]) opt.step(context_id) def run_worker(rank, world_size, num_split): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '29500' # Higher timeout is added to accommodate for kernel compilation time in case of ROCm. options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=256, rpc_timeout=300) if rank == 0: rpc.init_rpc( "master", rank=rank, world_size=world_size, rpc_backend_options=options ) run_master(num_split) else: rpc.init_rpc( f"worker{rank}", rank=rank, world_size=world_size, rpc_backend_options=options ) pass # block until all rpcs finish rpc.shutdown() if __name__=="__main__": world_size = 3 for num_split in [1, 2, 4, 8]: tik = time.time() mp.spawn(run_worker, args=(world_size, num_split), nprocs=world_size, join=True) tok = time.time() print(f"number of splits = {num_split}, execution time = {tok - tik}")
import random import torch import torch.distributed as dist import torch.distributed.autograd as dist_autograd import torch.distributed.rpc as rpc import torch.multiprocessing as mp import torch.optim as optim from torch.distributed.nn import RemoteModule from torch.distributed.optim import DistributedOptimizer from torch.distributed.rpc import RRef from torch.distributed.rpc import TensorPipeRpcBackendOptions from torch.nn.parallel import DistributedDataParallel as DDP NUM_EMBEDDINGS = 100 EMBEDDING_DIM = 16 class HybridModel(torch.nn.Module): r""" The model consists of a sparse part and a dense part. 1) The dense part is an nn.Linear module that is replicated across all trainers using DistributedDataParallel. 2) The sparse part is a Remote Module that holds an nn.EmbeddingBag on the parameter server. This remote model can get a Remote Reference to the embedding table on the parameter server. """ def __init__(self, remote_emb_module, device): super(HybridModel, self).__init__() self.remote_emb_module = remote_emb_module self.fc = DDP(torch.nn.Linear(16, 8).cuda(device), device_ids=[device]) self.device = device def forward(self, indices, offsets): emb_lookup = self.remote_emb_module.forward(indices, offsets) return self.fc(emb_lookup.cuda(self.device)) def _run_trainer(remote_emb_module, rank): r""" Each trainer runs a forward pass which involves an embedding lookup on the parameter server and running nn.Linear locally. During the backward pass, DDP is responsible for aggregating the gradients for the dense part (nn.Linear) and distributed autograd ensures gradients updates are propagated to the parameter server. """ # Setup the model. model = HybridModel(remote_emb_module, rank) # Retrieve all model parameters as rrefs for DistributedOptimizer. # Retrieve parameters for embedding table. model_parameter_rrefs = model.remote_emb_module.remote_parameters() # model.fc.parameters() only includes local parameters. # NOTE: Cannot call model.parameters() here, # because this will call remote_emb_module.parameters(), # which supports remote_parameters() but not parameters(). for param in model.fc.parameters(): model_parameter_rrefs.append(RRef(param)) # Setup distributed optimizer opt = DistributedOptimizer( optim.SGD, model_parameter_rrefs, lr=0.05, ) criterion = torch.nn.CrossEntropyLoss() def get_next_batch(rank): for _ in range(10): num_indices = random.randint(20, 50) indices = torch.LongTensor(num_indices).random_(0, NUM_EMBEDDINGS) # Generate offsets. offsets = [] start = 0 batch_size = 0 while start < num_indices: offsets.append(start) start += random.randint(1, 10) batch_size += 1 offsets_tensor = torch.LongTensor(offsets) target = torch.LongTensor(batch_size).random_(8).cuda(rank) yield indices, offsets_tensor, target # Train for 100 epochs for epoch in range(100): # create distributed autograd context for indices, offsets, target in get_next_batch(rank): with dist_autograd.context() as context_id: output = model(indices, offsets) loss = criterion(output, target) # Run distributed backward pass dist_autograd.backward(context_id, [loss]) # Tun distributed optimizer opt.step(context_id) # Not necessary to zero grads as each iteration creates a different # distributed autograd context which hosts different grads print("Training done for epoch {}".format(epoch)) def run_worker(rank, world_size): r""" A wrapper function that initializes RPC, calls the function, and shuts down RPC. """ # We need to use different port numbers in TCP init_method for init_rpc and # init_process_group to avoid port conflicts. rpc_backend_options = TensorPipeRpcBackendOptions() rpc_backend_options.init_method = "tcp://localhost:29501" # Rank 2 is master, 3 is ps and 0 and 1 are trainers. if rank == 2: rpc.init_rpc( "master", rank=rank, world_size=world_size, rpc_backend_options=rpc_backend_options, ) remote_emb_module = RemoteModule( "ps", torch.nn.EmbeddingBag, args=(NUM_EMBEDDINGS, EMBEDDING_DIM), kwargs={"mode": "sum"}, ) # Run the training loop on trainers. futs = [] for trainer_rank in [0, 1]: trainer_name = "trainer{}".format(trainer_rank) fut = rpc.rpc_async( trainer_name, _run_trainer, args=(remote_emb_module, trainer_rank) ) futs.append(fut) # Wait for all training to finish. for fut in futs: fut.wait() elif rank <= 1: # Initialize process group for Distributed DataParallel on trainers. dist.init_process_group( backend="gloo", rank=rank, world_size=2, init_method="tcp://localhost:29500" ) # Initialize RPC. trainer_name = "trainer{}".format(rank) rpc.init_rpc( trainer_name, rank=rank, world_size=world_size, rpc_backend_options=rpc_backend_options, ) # Trainer just waits for RPCs from master. else: rpc.init_rpc( "ps", rank=rank, world_size=world_size, rpc_backend_options=rpc_backend_options, ) # parameter server do nothing pass # block until all rpcs finish rpc.shutdown() if __name__ == "__main__": # 2 trainers, 1 parameter server, 1 master. world_size = 4 mp.spawn(run_worker, args=(world_size,), nprocs=world_size, join=True)
import argparse import gym import os import threading import time import torch import torch.distributed.rpc as rpc import torch.multiprocessing as mp import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributed.rpc import RRef, rpc_sync, rpc_async, remote from torch.distributions import Categorical # demonstrating using rpc.functions.async_execution to speed up training NUM_STEPS = 500 AGENT_NAME = "agent" OBSERVER_NAME = "observer{}" parser = argparse.ArgumentParser(description='PyTorch RPC Batch RL example') parser.add_argument('--gamma', type=float, default=1.0, metavar='G', help='discount factor (default: 1.0)') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument('--num-episode', type=int, default=10, metavar='E', help='number of episodes (default: 10)') args = parser.parse_args() torch.manual_seed(args.seed) class Policy(nn.Module): r""" Borrowing the ``Policy`` class from the Reinforcement Learning example. Copying the code to make these two examples independent. See https://github.com/pytorch/examples/tree/main/reinforcement_learning """ def __init__(self, batch=True): super(Policy, self).__init__() self.affine1 = nn.Linear(4, 128) self.dropout = nn.Dropout(p=0.6) self.affine2 = nn.Linear(128, 2) self.dim = 2 if batch else 1 def forward(self, x): x = self.affine1(x) x = self.dropout(x) x = F.relu(x) action_scores = self.affine2(x) return F.softmax(action_scores, dim=self.dim) class Observer: r""" An observer has exclusive access to its own environment. Each observer captures the state from its environment, and send the state to the agent to select an action. Then, the observer applies the action to its environment and reports the reward to the agent. It is true that CartPole-v1 is a relatively inexpensive environment, and it might be an overkill to use RPC to connect observers and trainers in this specific use case. However, the main goal of this tutorial to how to build an application using the RPC API. Developers can extend the similar idea to other applications with much more expensive environment. """ def __init__(self, batch=True): self.id = rpc.get_worker_info().id - 1 self.env = gym.make('CartPole-v1') self.env.seed(args.seed) self.select_action = Agent.select_action_batch if batch else Agent.select_action def run_episode(self, agent_rref, n_steps): r""" Run one episode of n_steps. Args: agent_rref (RRef): an RRef referencing the agent object. n_steps (int): number of steps in this episode """ state, ep_reward = self.env.reset(), NUM_STEPS rewards = torch.zeros(n_steps) start_step = 0 for step in range(n_steps): state = torch.from_numpy(state).float().unsqueeze(0) # send the state to the agent to get an action action = rpc.rpc_sync( agent_rref.owner(), self.select_action, args=(agent_rref, self.id, state) ) # apply the action to the environment, and get the reward state, reward, done, _ = self.env.step(action) rewards[step] = reward if done or step + 1 >= n_steps: curr_rewards = rewards[start_step:(step + 1)] R = 0 for i in range(curr_rewards.numel() -1, -1, -1): R = curr_rewards[i] + args.gamma * R curr_rewards[i] = R state = self.env.reset() if start_step == 0: ep_reward = min(ep_reward, step - start_step + 1) start_step = step + 1 return [rewards, ep_reward] class Agent: def __init__(self, world_size, batch=True): self.ob_rrefs = [] self.agent_rref = RRef(self) self.rewards = {} self.policy = Policy(batch).cuda() self.optimizer = optim.Adam(self.policy.parameters(), lr=1e-2) self.running_reward = 0 for ob_rank in range(1, world_size): ob_info = rpc.get_worker_info(OBSERVER_NAME.format(ob_rank)) self.ob_rrefs.append(remote(ob_info, Observer, args=(batch,))) self.rewards[ob_info.id] = [] self.states = torch.zeros(len(self.ob_rrefs), 1, 4) self.batch = batch # With batching, saved_log_probs contains a list of tensors, where each # tensor contains probs from all observers in one step. # Without batching, saved_log_probs is a dictionary where the key is the # observer id and the value is a list of probs for that observer. self.saved_log_probs = [] if self.batch else {k:[] for k in range(len(self.ob_rrefs))} self.future_actions = torch.futures.Future() self.lock = threading.Lock() self.pending_states = len(self.ob_rrefs) @staticmethod @rpc.functions.async_execution def select_action_batch(agent_rref, ob_id, state): r""" Batching select_action: In each step, the agent waits for states from all observers, and process them together. This helps to reduce the number of CUDA kernels launched and hence speed up amortized inference speed. """ self = agent_rref.local_value() self.states[ob_id].copy_(state) future_action = self.future_actions.then( lambda future_actions: future_actions.wait()[ob_id].item() ) with self.lock: self.pending_states -= 1 if self.pending_states == 0: self.pending_states = len(self.ob_rrefs) probs = self.policy(self.states.cuda()) m = Categorical(probs) actions = m.sample() self.saved_log_probs.append(m.log_prob(actions).t()[0]) future_actions = self.future_actions self.future_actions = torch.futures.Future() future_actions.set_result(actions.cpu()) return future_action @staticmethod def select_action(agent_rref, ob_id, state): r""" Non-batching select_action, return the action right away. """ self = agent_rref.local_value() probs = self.policy(state.cuda()) m = Categorical(probs) action = m.sample() self.saved_log_probs[ob_id].append(m.log_prob(action)) return action.item() def run_episode(self, n_steps=0): r""" Run one episode. The agent will tell each oberser to run one episode with n_steps. Then it collects all actions and rewards, and use those to train the policy. """ futs = [] for ob_rref in self.ob_rrefs: # make async RPC to kick off an episode on all observers futs.append(ob_rref.rpc_async().run_episode(self.agent_rref, n_steps)) # wait until all obervers have finished this episode rets = torch.futures.wait_all(futs) rewards = torch.stack([ret[0] for ret in rets]).cuda().t() ep_rewards = sum([ret[1] for ret in rets]) / len(rets) if self.batch: probs = torch.stack(self.saved_log_probs) else: probs = [torch.stack(self.saved_log_probs[i]) for i in range(len(rets))] probs = torch.stack(probs) policy_loss = -probs * rewards / len(rets) policy_loss.sum().backward() self.optimizer.step() self.optimizer.zero_grad() # reset variables self.saved_log_probs = [] if self.batch else {k:[] for k in range(len(self.ob_rrefs))} self.states = torch.zeros(len(self.ob_rrefs), 1, 4) # calculate running rewards self.running_reward = 0.5 * ep_rewards + 0.5 * self.running_reward return ep_rewards, self.running_reward def run_worker(rank, world_size, n_episode, batch, print_log=True): r""" This is the entry point for all processes. The rank 0 is the agent. All other ranks are observers. """ os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '29500' if rank == 0: # rank0 is the agent rpc.init_rpc(AGENT_NAME, rank=rank, world_size=world_size) agent = Agent(world_size, batch) for i_episode in range(n_episode): last_reward, running_reward = agent.run_episode(n_steps=NUM_STEPS) if print_log: print('Episode {}\tLast reward: {:.2f}\tAverage reward: {:.2f}'.format( i_episode, last_reward, running_reward)) else: # other ranks are the observer rpc.init_rpc(OBSERVER_NAME.format(rank), rank=rank, world_size=world_size) # observers passively waiting for instructions from agents rpc.shutdown() def main(): for world_size in range(2, 12): delays = [] for batch in [True, False]: tik = time.time() mp.spawn( run_worker, args=(world_size, args.num_episode, batch), nprocs=world_size, join=True ) tok = time.time() delays.append(tok - tik) print(f"{world_size}, {delays[0]}, {delays[1]}") if __name__ == '__main__': main()
import os import threading from datetime import datetime import torch import torch.distributed.rpc as rpc import torch.multiprocessing as mp import torch.nn as nn from torch import optim import torchvision batch_size = 20 image_w = 64 image_h = 64 num_classes = 30 batch_update_size = 5 num_batches = 6 def timed_log(text): print(f"{datetime.now().strftime('%H:%M:%S')} {text}") class BatchUpdateParameterServer(object): def __init__(self, batch_update_size=batch_update_size): self.model = torchvision.models.resnet50(num_classes=num_classes) self.lock = threading.Lock() self.future_model = torch.futures.Future() self.batch_update_size = batch_update_size self.curr_update_size = 0 self.optimizer = optim.SGD(self.model.parameters(), lr=0.001, momentum=0.9) for p in self.model.parameters(): p.grad = torch.zeros_like(p) def get_model(self): return self.model @staticmethod @rpc.functions.async_execution def update_and_fetch_model(ps_rref, grads): self = ps_rref.local_value() timed_log(f"PS got {self.curr_update_size}/{batch_update_size} updates") for p, g in zip(self.model.parameters(), grads): p.grad += g with self.lock: self.curr_update_size += 1 fut = self.future_model if self.curr_update_size >= self.batch_update_size: for p in self.model.parameters(): p.grad /= self.batch_update_size self.curr_update_size = 0 self.optimizer.step() self.optimizer.zero_grad(set_to_none=False) fut.set_result(self.model) timed_log("PS updated model") self.future_model = torch.futures.Future() return fut class Trainer(object): def __init__(self, ps_rref): self.ps_rref = ps_rref self.loss_fn = nn.MSELoss() self.one_hot_indices = torch.LongTensor(batch_size) \ .random_(0, num_classes) \ .view(batch_size, 1) def get_next_batch(self): for _ in range(num_batches): inputs = torch.randn(batch_size, 3, image_w, image_h) labels = torch.zeros(batch_size, num_classes) \ .scatter_(1, self.one_hot_indices, 1) yield inputs.cuda(), labels.cuda() def train(self): name = rpc.get_worker_info().name m = self.ps_rref.rpc_sync().get_model().cuda() for inputs, labels in self.get_next_batch(): timed_log(f"{name} processing one batch") self.loss_fn(m(inputs), labels).backward() timed_log(f"{name} reporting grads") m = rpc.rpc_sync( self.ps_rref.owner(), BatchUpdateParameterServer.update_and_fetch_model, args=(self.ps_rref, [p.grad for p in m.cpu().parameters()]), ).cuda() timed_log(f"{name} got updated model") def run_trainer(ps_rref): trainer = Trainer(ps_rref) trainer.train() def run_ps(trainers): timed_log("Start training") ps_rref = rpc.RRef(BatchUpdateParameterServer()) futs = [] for trainer in trainers: futs.append( rpc.rpc_async(trainer, run_trainer, args=(ps_rref,)) ) torch.futures.wait_all(futs) timed_log("Finish training") def run(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '29500' options=rpc.TensorPipeRpcBackendOptions( num_worker_threads=16, rpc_timeout=0 # infinite timeout ) if rank != 0: rpc.init_rpc( f"trainer{rank}", rank=rank, world_size=world_size, rpc_backend_options=options ) # trainer passively waiting for ps to kick off training iterations else: rpc.init_rpc( "ps", rank=rank, world_size=world_size, rpc_backend_options=options ) run_ps([f"trainer{r}" for r in range(1, world_size)]) # block until all rpcs finish rpc.shutdown() if __name__=="__main__": world_size = batch_update_size + 1 mp.spawn(run, args=(world_size, ), nprocs=world_size, join=True)
import argparse import os from threading import Lock import torch import torch.distributed.autograd as dist_autograd import torch.distributed.rpc as rpc import torch.multiprocessing as mp import torch.nn as nn import torch.nn.functional as F from torch import optim from torch.distributed.optim import DistributedOptimizer from torchvision import datasets, transforms # --------- MNIST Network to train, from pytorch/examples ----- class Net(nn.Module): def __init__(self, num_gpus=0): super(Net, self).__init__() print(f"Using {num_gpus} GPUs to train") self.num_gpus = num_gpus device = torch.device( "cuda:0" if torch.cuda.is_available() and self.num_gpus > 0 else "cpu") print(f"Putting first 2 convs on {str(device)}") # Put conv layers on the first cuda device self.conv1 = nn.Conv2d(1, 32, 3, 1).to(device) self.conv2 = nn.Conv2d(32, 64, 3, 1).to(device) # Put rest of the network on the 2nd cuda device, if there is one if "cuda" in str(device) and num_gpus > 1: device = torch.device("cuda:1") print(f"Putting rest of layers on {str(device)}") self.dropout1 = nn.Dropout2d(0.25).to(device) self.dropout2 = nn.Dropout2d(0.5).to(device) self.fc1 = nn.Linear(9216, 128).to(device) self.fc2 = nn.Linear(128, 10).to(device) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) # Move tensor to next device if necessary next_device = next(self.fc1.parameters()).device x = x.to(next_device) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output # --------- Helper Methods -------------------- # On the local node, call a method with first arg as the value held by the # RRef. Other args are passed in as arguments to the function called. # Useful for calling instance methods. def call_method(method, rref, *args, **kwargs): return method(rref.local_value(), *args, **kwargs) # Given an RRef, return the result of calling the passed in method on the value # held by the RRef. This call is done on the remote node that owns # the RRef. args and kwargs are passed into the method. # Example: If the value held by the RRef is of type Foo, then # remote_method(Foo.bar, rref, arg1, arg2) is equivalent to calling # <foo_instance>.bar(arg1, arg2) on the remote node and getting the result # back. def remote_method(method, rref, *args, **kwargs): args = [method, rref] + list(args) return rpc.rpc_sync(rref.owner(), call_method, args=args, kwargs=kwargs) # --------- Parameter Server -------------------- class ParameterServer(nn.Module): def __init__(self, num_gpus=0): super().__init__() model = Net(num_gpus=num_gpus) self.model = model self.input_device = torch.device( "cuda:0" if torch.cuda.is_available() and num_gpus > 0 else "cpu") def forward(self, inp): inp = inp.to(self.input_device) out = self.model(inp) # This output is forwarded over RPC, which as of 1.5.0 only accepts CPU tensors. # Tensors must be moved in and out of GPU memory due to this. out = out.to("cpu") return out # Use dist autograd to retrieve gradients accumulated for this model. # Primarily used for verification. def get_dist_gradients(self, cid): grads = dist_autograd.get_gradients(cid) # This output is forwarded over RPC, which as of 1.5.0 only accepts CPU tensors. # Tensors must be moved in and out of GPU memory due to this. cpu_grads = {} for k, v in grads.items(): k_cpu, v_cpu = k.to("cpu"), v.to("cpu") cpu_grads[k_cpu] = v_cpu return cpu_grads # Wrap local parameters in a RRef. Needed for building the # DistributedOptimizer which optimizes parameters remotely. def get_param_rrefs(self): param_rrefs = [rpc.RRef(param) for param in self.model.parameters()] return param_rrefs param_server = None global_lock = Lock() def get_parameter_server(num_gpus=0): global param_server # Ensure that we get only one handle to the ParameterServer. with global_lock: if not param_server: # construct it once param_server = ParameterServer(num_gpus=num_gpus) return param_server def run_parameter_server(rank, world_size): # The parameter server just acts as a host for the model and responds to # requests from trainers, hence it does not need to run a loop. # rpc.shutdown() will wait for all workers to complete by default, which # in this case means that the parameter server will wait for all trainers # to complete, and then exit. print("PS master initializing RPC") rpc.init_rpc(name="parameter_server", rank=rank, world_size=world_size) print("RPC initialized! Running parameter server...") rpc.shutdown() print("RPC shutdown on parameter server.") # --------- Trainers -------------------- # nn.Module corresponding to the network trained by this trainer. The # forward() method simply invokes the network on the given parameter # server. class TrainerNet(nn.Module): def __init__(self, num_gpus=0): super().__init__() self.num_gpus = num_gpus self.param_server_rref = rpc.remote( "parameter_server", get_parameter_server, args=(num_gpus,)) def get_global_param_rrefs(self): remote_params = remote_method( ParameterServer.get_param_rrefs, self.param_server_rref) return remote_params def forward(self, x): model_output = remote_method( ParameterServer.forward, self.param_server_rref, x) return model_output def run_training_loop(rank, num_gpus, train_loader, test_loader): # Runs the typical neural network forward + backward + optimizer step, but # in a distributed fashion. net = TrainerNet(num_gpus=num_gpus) # Build DistributedOptimizer. param_rrefs = net.get_global_param_rrefs() opt = DistributedOptimizer(optim.SGD, param_rrefs, lr=0.03) for i, (data, target) in enumerate(train_loader): with dist_autograd.context() as cid: model_output = net(data) target = target.to(model_output.device) loss = F.nll_loss(model_output, target) if i % 5 == 0: print(f"Rank {rank} training batch {i} loss {loss.item()}") dist_autograd.backward(cid, [loss]) # Ensure that dist autograd ran successfully and gradients were # returned. assert remote_method( ParameterServer.get_dist_gradients, net.param_server_rref, cid) != {} opt.step(cid) print("Training complete!") print("Getting accuracy....") get_accuracy(test_loader, net) def get_accuracy(test_loader, model): model.eval() correct_sum = 0 # Use GPU to evaluate if possible device = torch.device("cuda:0" if model.num_gpus > 0 and torch.cuda.is_available() else "cpu") with torch.no_grad(): for i, (data, target) in enumerate(test_loader): out = model(data) pred = out.argmax(dim=1, keepdim=True) pred, target = pred.to(device), target.to(device) correct = pred.eq(target.view_as(pred)).sum().item() correct_sum += correct print(f"Accuracy {correct_sum / len(test_loader.dataset)}") # Main loop for trainers. def run_worker(rank, world_size, num_gpus, train_loader, test_loader): print(f"Worker rank {rank} initializing RPC") rpc.init_rpc( name=f"trainer_{rank}", rank=rank, world_size=world_size) print(f"Worker {rank} done initializing RPC") run_training_loop(rank, num_gpus, train_loader, test_loader) rpc.shutdown() # --------- Launcher -------------------- if __name__ == '__main__': parser = argparse.ArgumentParser( description="Parameter-Server RPC based training") parser.add_argument( "--world_size", type=int, default=4, help="""Total number of participating processes. Should be the sum of master node and all training nodes.""") parser.add_argument( "--rank", type=int, default=None, help="Global rank of this process. Pass in 0 for master.") parser.add_argument( "--num_gpus", type=int, default=0, help="""Number of GPUs to use for training, currently supports between 0 and 2 GPUs. Note that this argument will be passed to the parameter servers.""") parser.add_argument( "--master_addr", type=str, default="localhost", help="""Address of master, will default to localhost if not provided. Master must be able to accept network traffic on the address + port.""") parser.add_argument( "--master_port", type=str, default="29500", help="""Port that master is listening on, will default to 29500 if not provided. Master must be able to accept network traffic on the host and port.""") args = parser.parse_args() assert args.rank is not None, "must provide rank argument." assert args.num_gpus <= 3, f"Only 0-2 GPUs currently supported (got {args.num_gpus})." os.environ['MASTER_ADDR'] = args.master_addr os.environ['MASTER_PORT'] = args.master_port processes = [] world_size = args.world_size # Note that Linux uses "fork" by default, which may cause deadlock. # Besides, cuda doesn't support "fork" and Windows only supports "spawn" mp.set_start_method("spawn") if args.rank == 0: p = mp.Process(target=run_parameter_server, args=(0, world_size)) p.start() processes.append(p) else: # Get data to train on train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=32, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=32, shuffle=True) # start training worker on this node p = mp.Process( target=run_worker, args=( args.rank, world_size, args.num_gpus, train_loader, test_loader)) p.start() processes.append(p) for p in processes: p.join()
import argparse import gymnasium as gym import numpy as np import os from itertools import count import torch import torch.distributed.rpc as rpc import torch.multiprocessing as mp import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributed.rpc import RRef, rpc_sync, rpc_async, remote from torch.distributions import Categorical TOTAL_EPISODE_STEP = 5000 AGENT_NAME = "agent" OBSERVER_NAME = "observer{}" parser = argparse.ArgumentParser(description='PyTorch RPC RL example') parser.add_argument('--world-size', type=int, default=2, metavar='W', help='world size for RPC, rank 0 is the agent, others are observers') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor (default: 0.99)') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='interval between training status logs (default: 10)') args = parser.parse_args() torch.manual_seed(args.seed) def _call_method(method, rref, *args, **kwargs): r""" a helper function to call a method on the given RRef """ return method(rref.local_value(), *args, **kwargs) def _remote_method(method, rref, *args, **kwargs): r""" a helper function to run method on the owner of rref and fetch back the result using RPC """ args = [method, rref] + list(args) return rpc_sync(rref.owner(), _call_method, args=args, kwargs=kwargs) class Policy(nn.Module): r""" Borrowing the ``Policy`` class from the Reinforcement Learning example. Copying the code to make these two examples independent. See https://github.com/pytorch/examples/tree/main/reinforcement_learning """ def __init__(self): super(Policy, self).__init__() self.affine1 = nn.Linear(4, 128) self.dropout = nn.Dropout(p=0.6) self.affine2 = nn.Linear(128, 2) self.saved_log_probs = [] self.rewards = [] def forward(self, x): x = self.affine1(x) x = self.dropout(x) x = F.relu(x) action_scores = self.affine2(x) return F.softmax(action_scores, dim=1) class Observer: r""" An observer has exclusive access to its own environment. Each observer captures the state from its environment, and send the state to the agent to select an action. Then, the observer applies the action to its environment and reports the reward to the agent. It is true that CartPole-v1 is a relatively inexpensive environment, and it might be an overkill to use RPC to connect observers and trainers in this specific use case. However, the main goal of this tutorial to how to build an application using the RPC API. Developers can extend the similar idea to other applications with much more expensive environment. """ def __init__(self): self.id = rpc.get_worker_info().id self.env = gym.make('CartPole-v1') self.env.reset(seed=args.seed) def run_episode(self, agent_rref, n_steps): r""" Run one episode of n_steps. Args: agent_rref (RRef): an RRef referencing the agent object. n_steps (int): number of steps in this episode """ state, ep_reward = self.env.reset()[0], 0 for step in range(n_steps): # send the state to the agent to get an action action = _remote_method(Agent.select_action, agent_rref, self.id, state) # apply the action to the environment, and get the reward state, reward, terminated, truncated, _ = self.env.step(action) # report the reward to the agent for training purpose _remote_method(Agent.report_reward, agent_rref, self.id, reward) if terminated or truncated: break class Agent: def __init__(self, world_size): self.ob_rrefs = [] self.agent_rref = RRef(self) self.rewards = {} self.saved_log_probs = {} self.policy = Policy() self.optimizer = optim.Adam(self.policy.parameters(), lr=1e-2) self.eps = np.finfo(np.float32).eps.item() self.running_reward = 0 self.reward_threshold = gym.make('CartPole-v1').spec.reward_threshold for ob_rank in range(1, world_size): ob_info = rpc.get_worker_info(OBSERVER_NAME.format(ob_rank)) self.ob_rrefs.append(remote(ob_info, Observer)) self.rewards[ob_info.id] = [] self.saved_log_probs[ob_info.id] = [] def select_action(self, ob_id, state): r""" This function is mostly borrowed from the Reinforcement Learning example. See https://github.com/pytorch/examples/tree/main/reinforcement_learning The main difference is that instead of keeping all probs in one list, the agent keeps probs in a dictionary, one key per observer. NB: no need to enforce thread-safety here as GIL will serialize executions. """ state = torch.from_numpy(state).float().unsqueeze(0) probs = self.policy(state) m = Categorical(probs) action = m.sample() self.saved_log_probs[ob_id].append(m.log_prob(action)) return action.item() def report_reward(self, ob_id, reward): r""" Observers call this function to report rewards. """ self.rewards[ob_id].append(reward) def run_episode(self, n_steps=0): r""" Run one episode. The agent will tell each oberser to run n_steps. """ futs = [] for ob_rref in self.ob_rrefs: # make async RPC to kick off an episode on all observers futs.append( rpc_async( ob_rref.owner(), _call_method, args=(Observer.run_episode, ob_rref, self.agent_rref, n_steps) ) ) # wait until all obervers have finished this episode for fut in futs: fut.wait() def finish_episode(self): r""" This function is mostly borrowed from the Reinforcement Learning example. See https://github.com/pytorch/examples/tree/main/reinforcement_learning The main difference is that it joins all probs and rewards from different observers into one list, and uses the minimum observer rewards as the reward of the current episode. """ # joins probs and rewards from different observers into lists R, probs, rewards = 0, [], [] for ob_id in self.rewards: probs.extend(self.saved_log_probs[ob_id]) rewards.extend(self.rewards[ob_id]) # use the minimum observer reward to calculate the running reward min_reward = min([sum(self.rewards[ob_id]) for ob_id in self.rewards]) self.running_reward = 0.05 * min_reward + (1 - 0.05) * self.running_reward # clear saved probs and rewards for ob_id in self.rewards: self.rewards[ob_id] = [] self.saved_log_probs[ob_id] = [] policy_loss, returns = [], [] for r in rewards[::-1]: R = r + args.gamma * R returns.insert(0, R) returns = torch.tensor(returns) returns = (returns - returns.mean()) / (returns.std() + self.eps) for log_prob, R in zip(probs, returns): policy_loss.append(-log_prob * R) self.optimizer.zero_grad() policy_loss = torch.cat(policy_loss).sum() policy_loss.backward() self.optimizer.step() return min_reward def run_worker(rank, world_size): r""" This is the entry point for all processes. The rank 0 is the agent. All other ranks are observers. """ os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '29500' if rank == 0: # rank0 is the agent rpc.init_rpc(AGENT_NAME, rank=rank, world_size=world_size) agent = Agent(world_size) for i_episode in count(1): n_steps = int(TOTAL_EPISODE_STEP / (args.world_size - 1)) agent.run_episode(n_steps=n_steps) last_reward = agent.finish_episode() if i_episode % args.log_interval == 0: print('Episode {}\tLast reward: {:.2f}\tAverage reward: {:.2f}'.format( i_episode, last_reward, agent.running_reward)) if agent.running_reward > agent.reward_threshold: print("Solved! Running reward is now {}!".format(agent.running_reward)) break else: # other ranks are the observer rpc.init_rpc(OBSERVER_NAME.format(rank), rank=rank, world_size=world_size) # observers passively waiting for instructions from agents rpc.shutdown() def main(): mp.spawn( run_worker, args=(args.world_size, ), nprocs=args.world_size, join=True ) if __name__ == '__main__': main()
import os import torch import torch.distributed.autograd as dist_autograd import torch.distributed.rpc as rpc import torch.multiprocessing as mp import torch.optim as optim from torch.distributed.optim import DistributedOptimizer import rnn def _run_trainer(): r""" The trainer creates a distributed RNNModel and a DistributedOptimizer. Then, it performs training using random input data. """ batch = 5 ntoken = 7 ninp = 2 nhid = 3 nindices = 6 nlayers = 4 hidden = ( torch.randn(nlayers, nindices, nhid), torch.randn(nlayers, nindices, nhid) ) model = rnn.RNNModel('ps', ntoken, ninp, nhid, nlayers) # setup distributed optimizer opt = DistributedOptimizer( optim.SGD, model.parameter_rrefs(), lr=0.05, ) criterion = torch.nn.CrossEntropyLoss() def get_next_batch(): for _ in range(5): data = torch.LongTensor(batch, nindices) % ntoken target = torch.LongTensor(batch, ntoken) % nindices yield data, target # train for 10 iterations for epoch in range(10): # create distributed autograd context for data, target in get_next_batch(): with dist_autograd.context() as context_id: hidden[0].detach_() hidden[1].detach_() output, hidden = model(data, hidden) loss = criterion(output, target) # run distributed backward pass dist_autograd.backward(context_id, [loss]) # run distributed optimizer opt.step(context_id) # not necessary to zero grads as each iteration creates a different # distributed autograd context which hosts different grads print("Training epoch {}".format(epoch)) def run_worker(rank, world_size): r""" A wrapper function that initializes RPC, calls the function, and shuts down RPC. """ os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '29500' if rank == 1: rpc.init_rpc("trainer", rank=rank, world_size=world_size) _run_trainer() else: rpc.init_rpc("ps", rank=rank, world_size=world_size) # parameter server does nothing pass # block until all rpcs finish rpc.shutdown() if __name__ == "__main__": world_size = 2 mp.spawn(run_worker, args=(world_size, ), nprocs=world_size, join=True)
import torch import torch.nn as nn import torch.distributed.rpc as rpc from torch.distributed.rpc import RRef def _call_method(method, rref, *args, **kwargs): r""" a helper function to call a method on the given RRef """ return method(rref.local_value(), *args, **kwargs) def _remote_method(method, rref, *args, **kwargs): r""" a helper function to run method on the owner of rref and fetch back the result using RPC """ return rpc.rpc_sync( rref.owner(), _call_method, args=[method, rref] + list(args), kwargs=kwargs ) def _parameter_rrefs(module): r""" Create one RRef for each parameter in the given local module, and return a list of RRefs. """ param_rrefs = [] for param in module.parameters(): param_rrefs.append(RRef(param)) return param_rrefs class EmbeddingTable(nn.Module): r""" Encoding layers of the RNNModel """ def __init__(self, ntoken, ninp, dropout): super(EmbeddingTable, self).__init__() self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) if torch.cuda.is_available(): self.encoder = self.encoder.cuda() nn.init.uniform_(self.encoder.weight, -0.1, 0.1) def forward(self, input): if torch.cuda.is_available(): input = input.cuda() return self.drop(self.encoder(input)).cpu() class Decoder(nn.Module): r""" Decoding layers of the RNNModel """ def __init__(self, ntoken, nhid, dropout): super(Decoder, self).__init__() self.drop = nn.Dropout(dropout) self.decoder = nn.Linear(nhid, ntoken) nn.init.zeros_(self.decoder.bias) nn.init.uniform_(self.decoder.weight, -0.1, 0.1) def forward(self, output): return self.decoder(self.drop(output)) class RNNModel(nn.Module): r""" A distributed RNN model which puts embedding table and decoder parameters on a remote parameter server, and locally holds parameters for the LSTM module. The structure of the RNN model is borrowed from the word language model example. See https://github.com/pytorch/examples/blob/main/word_language_model/model.py """ def __init__(self, ps, ntoken, ninp, nhid, nlayers, dropout=0.5): super(RNNModel, self).__init__() # setup embedding table remotely self.emb_table_rref = rpc.remote(ps, EmbeddingTable, args=(ntoken, ninp, dropout)) # setup LSTM locally self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout) # setup decoder remotely self.decoder_rref = rpc.remote(ps, Decoder, args=(ntoken, nhid, dropout)) def forward(self, input, hidden): # pass input to the remote embedding table and fetch emb tensor back emb = _remote_method(EmbeddingTable.forward, self.emb_table_rref, input) output, hidden = self.rnn(emb, hidden) # pass output to the remote decoder and get the decoded output back decoded = _remote_method(Decoder.forward, self.decoder_rref, output) return decoded, hidden def parameter_rrefs(self): remote_params = [] # get RRefs of embedding table remote_params.extend(_remote_method(_parameter_rrefs, self.emb_table_rref)) # create RRefs for local parameters remote_params.extend(_parameter_rrefs(self.rnn)) # get RRefs of decoder remote_params.extend(_remote_method(_parameter_rrefs, self.decoder_rref)) return remote_params
import torch from torch.fx import symbolic_trace, replace_pattern ''' How to Use the FX Subgraph Rewriter For easy subgraph rewriting, FX exposes the utility function: replace_pattern(gm : GraphModule, pattern : Callable, replacement : Callable) -> None `replace_pattern` matches all possible non-overlapping sets of operators and their data dependencies (`pattern`) in the Graph of a GraphModule (`gm`), then replaces each of these matched subgraphs with another subgraph (`replacement). The docstring for `replace_pattern` (located in `subgraph_rewriter.py`) gives an in-depth explanation as to how `pattern` and `replacement` should be specified, what happens during pattern matching, and other important technical details. This tutorial, therefore, is only meant to give an overview as to the FX Subgraph Rewriter's basic functionality. Let's go rewrite a Graph! ''' # Sample module class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, w1, w2): val1 = torch.neg(w1) m1 = torch.cat([val1, w2]).sum() val2 = torch.neg(w1) m2 = torch.cat([val2, w2]).sum() return x + torch.max(m1) + torch.max(m2) # Symbolically trace an instance of `M` traced = symbolic_trace(M()) # Define the pattern. The FX Subgraph Rewriter will match all # non-overlapping instances of the pattern in the larger graph. # Note that Pattern-matching is done based on data dependencies, # not Node names. Even though we're operating on Nodes named `a1` and # `a2` instead of `w1` and `w2`, the pattern is still a valid match # for the two instances of `torch.cat([w1, w2]).sum()` above. Only # operations that contribute to the single output value of the pattern # are considered def pattern(a1, a2): val1 = torch.neg(a1) return torch.cat([val1, a2]).sum() # Define the replacement (same rules as the pattern) def replacement(w1, w2): return torch.stack([w1, w2]) # Replace `pattern` with `replacement` in `traced` replace_pattern(traced, pattern, replacement) # After calling `replace_pattern`, the generated code is: ''' def forward(self, x, w1, w2): stack = torch.stack([w1, w2]) max_1 = torch.max(stack); stack = None add = x + max_1; x = max_1 = None stack_1 = torch.stack([w1, w2]); w1 = w2 = None max_2 = torch.max(stack_1); stack_1 = None add_1 = add + max_2; add = max_2 = None return add_1 '''
import torch from torch.fx import symbolic_trace, Tracer, Graph, GraphModule, Node from typing import Any, Callable, Dict, Optional, Tuple, Union """ How to Create and Use Custom Tracers `Tracer`--the class that implements the symbolic tracing functionality of `torch.fx.symbolic_trace`--can be subclassed to override various behaviors of the tracing process. In this tutorial, we'll demonstrate how to customize the symbolic tracing process using some handwritten Tracers. Each example will show that, by simply overriding a few methods in the `Tracer` class, you can alter the Graph produced by symbolic tracing. For a complete description of the methods that can be changed, refer to the docstrings of the methods in the Tracer class. Information can be found at: https://pytorch.org/docs/master/fx.html#torch.fx.Tracer If you want a real-world example of a custom tracer, check out FX's AST Rewriter in `rewriter.py`. `RewritingTracer` inherits from Tracer but overrides the `trace` function so that we can rewrite all calls to `assert` to the more FX-friendly `torch.assert`. Note that a call to `symbolic_trace(m)` is equivalent to `GraphModule(m, Tracer().trace(m))`. (`Tracer` is the default implementation of Tracer as defined in `symbolic_trace.py`.) """ """ Custom Tracer #1: Trace Through All `torch.nn.ReLU` Submodules During symbolic tracing, some submodules are traced through and their constituent ops are recorded; other submodules appear as an atomic "call_module" Node in the IR. A module in this latter category is called a "leaf module". By default, all modules in the PyTorch standard library (`torch.nn`) are leaf modules. We can change this by creating a custom Tracer and overriding `is_leaf_module`. In this case, we'll keep the default behavior for all `torch.nn` Modules except for `ReLU`. """ class M1(torch.nn.Module): def __init__(self): super().__init__() self.relu = torch.nn.ReLU() def forward(self, x): return self.relu(x) default_traced: GraphModule = symbolic_trace(M1()) """ Tracing with the default tracer and calling `print_tabular` produces: opcode name target args kwargs ----------- ------ -------- --------- -------- placeholder x x () {} call_module relu_1 relu (x,) {} output output output (relu_1,) {} """ default_traced.graph.print_tabular() class LowerReluTracer(Tracer): def is_leaf_module(self, m : torch.nn.Module, qualname : str): if isinstance(m, torch.nn.ReLU): return False return super().is_leaf_module(m, qualname) """ Tracing with our custom tracer and calling `print_tabular` produces: opcode name target args kwargs ------------- ------ --------------------------------- --------- ------------------ placeholder x x () {} call_function relu_1 <function relu at 0x7f66f7170b80> (x,) {'inplace': False} output output output (relu_1,) {} """ lower_relu_tracer = LowerReluTracer() custom_traced_graph: Graph = lower_relu_tracer.trace(M1()) custom_traced_graph.print_tabular() """ Custom Tracer #2: Add an Extra Attribute to Each Node Here, we'll override `create_node` so that we can add a new attribute to each Node during its creation """ class M2(torch.nn.Module): def forward(self, a, b): return a + b class TaggingTracer(Tracer): def create_node(self, kind : str, target : Union[str, Callable], args : Tuple[Any], kwargs : Dict[str, Any], name : Optional[str] = None, type_expr : Optional[Any] = None) -> Node: n = super().create_node(kind, target, args, kwargs, name) n.tag = "foo" return n custom_traced_graph: Graph = TaggingTracer().trace(M2()) def assert_all_nodes_have_tags(g: Graph) -> bool: for n in g.nodes: if not hasattr(n, "tag") or not n.tag == "foo": return False return True # Prints "True" print(assert_all_nodes_have_tags(custom_traced_graph))
import torch from torch.fx import symbolic_trace import operator """ How to Replace One Op With Another 1. Iterate through all Nodes in your GraphModule's Graph. 2. Determine if the current Node should be replaced. (Suggested: match on the Node's ``target`` attribute). 3. Create a replacement Node and add it to the Graph. 4. Use the FX built-in ``replace_all_uses_with`` to replace all uses of the current Node with the replacement. 5. Delete the old Node from the graph. 6. Call ``recompile`` on the GraphModule. This updates the generated Python code to reflect the new Graph state. Currently, FX does not provide any way to guarantee that replaced operators are syntactically valid. It's up to the user to confirm that any new operators will work with the existing operands. The following code demonstrates an example of replacing any instance of addition with a bitwise AND. To examine how the Graph evolves during op replacement, add the statement `print(traced.graph)` after the line you want to inspect. Alternatively, call `traced.graph.print_tabular()` to see the IR in a tabular format. """ # Sample module class M(torch.nn.Module): def forward(self, x, y): return x + y, torch.add(x, y), x.add(y) # Symbolically trace an instance of the module traced = symbolic_trace(M()) # As demonstrated in the above example, there are several different ways # to denote addition. The possible cases are: # 1. `x + y` - A `call_function` Node with target `operator.add`. # We can match for equality on that `operator.add` directly. # 2. `torch.add(x, y)` - A `call_function` Node withΒ target # `torch.add`. Similarly, we can match this function directly. # 3. `x.add(y)` - The Tensor method call, whose target we can match # as a string. patterns = set([operator.add, torch.add, "add"]) # Go through all the nodes in the Graph for n in traced.graph.nodes: # If the target matches one of the patterns if any(n.target == pattern for pattern in patterns): # Set the insert point, add the new node, and replace all uses # of `n` with the new node with traced.graph.inserting_after(n): new_node = traced.graph.call_function(torch.bitwise_and, n.args, n.kwargs) n.replace_all_uses_with(new_node) # Remove the old node from the graph traced.graph.erase_node(n) # Don't forget to recompile! traced.recompile()
from enum import Enum, auto import torch from torch.fx import GraphModule, Node, Proxy, symbolic_trace ''' Wrap Graph Output Dynamically The following code demonstrates how change an existing Graph based on parameters specified at runtime. We'll let the user specify an activation function from a predefined Enum list, then we'll symbolically trace it. Next, we'll create a Proxy from the last operation in the Graph. We'll call our traced activation function with this Proxy and insert the ``output`` Node from that call into our Graph. (This final step will automatically inline the entire traced function.) ''' # Sample module class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): y = torch.cat([x, y]) return y # Symbolically trace an instance of `M` traced = symbolic_trace(M()) # Selected activation functions class ActivationFunction(Enum): RELU = auto() LEAKY_RELU = auto() PRELU = auto() # Map activation function names to their implementation activation_functions = { ActivationFunction.RELU: torch.nn.ReLU(), ActivationFunction.LEAKY_RELU: torch.nn.LeakyReLU(), ActivationFunction.PRELU: torch.nn.PReLU(), } def wrap_in_activation_function(m: GraphModule, fn: ActivationFunction) -> GraphModule: # Get output node output_node: Optional[Node] = None for n in reversed(m.graph.nodes): if n.op == "output": output_node = n break assert output_node # Get the actual output (the "input" of the output node). This is # the Node we want to wrap in a user-specified activation function assert len(output_node.all_input_nodes) == 1 wrap_node = output_node.all_input_nodes[0] # Wrap the actual output in a Proxy wrap_proxy = Proxy(wrap_node) # Get the implementation of the specified activation function and # symbolically trace it fn_impl = activation_functions[fn] fn_impl_traced = symbolic_trace(fn_impl) # Call the specified activation function using the Proxy wrapper for # `output_op`. The result of this call is another Proxy, which we # can hook into our existing Graph. with traced.graph.inserting_after(wrap_node): fn_impl_output_node = fn_impl_traced(wrap_proxy) new_args = (fn_impl_output_node.node,) output_node.args = new_args m.recompile() # Example call x, y = torch.randn(5, 3), torch.randn(5, 3) orig_output = traced(x, y) wrap_in_activation_function(traced, ActivationFunction.LEAKY_RELU) new_output = traced(x, y) torch.testing.assert_close(new_output, torch.nn.LeakyReLU()(orig_output))
""" This file demonstrates using a custom FX Tracer to override the behavior of `torch.autograd.profiler.record_function` and make profiler ranges appear in FX-traced code. This is done with Python dynamic patching magic, allowing us to explicitly emit calls to `torch.ops.profiler._record_function_enter/_record_function_exit`. Please note that before https://github.com/pytorch/pytorch/pull/65180 lands, these ranges may be elimineated by `Graph.eliminate_dead_code` """ import torch import torch.fx # Setup: a module with `record_function` class Foo(torch.nn.Module): def forward(self, x): with torch.profiler.record_function('foo'): return torch.relu(x) f = Foo() x = torch.randn(5, 3, 2) with torch.autograd.profiler.profile() as prof: f(x) print(prof) # "foo" range is correctly recorded with normal execution """ ------------------- ------------ ------------ ------------ ------------ ------------ ------------ Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls ------------------- ------------ ------------ ------------ ------------ ------------ ------------ aten::zeros 6.10% 10.298us 10.04% 16.943us 16.943us 1 aten::empty 2.88% 4.857us 2.88% 4.857us 4.857us 1 aten::zero_ 1.06% 1.788us 1.06% 1.788us 1.788us 1 foo 21.28% 35.925us 89.96% 151.888us 151.888us 1 aten::empty 11.59% 19.572us 11.59% 19.572us 19.572us 1 aten::relu 23.81% 40.203us 57.09% 96.391us 96.391us 1 aten::clamp_min 3.87% 6.539us 33.28% 56.188us 56.188us 1 aten::empty 1.09% 1.847us 1.09% 1.847us 1.847us 1 aten::clamp_min 28.31% 47.802us 28.31% 47.802us 47.802us 1 ------------------- ------------ ------------ ------------ ------------ ------------ ------------ Self CPU time total: 168.831us """ traced = torch.fx.symbolic_trace(f) with torch.autograd.profiler.profile() as prof: traced(x) print(prof) # "foo" range is not recorded with FX tracing """ ------------------- ------------ ------------ ------------ ------------ ------------ ------------ Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls ------------------- ------------ ------------ ------------ ------------ ------------ ------------ aten::relu 23.50% 10.618us 100.00% 45.186us 45.186us 1 aten::clamp_min 18.05% 8.154us 76.50% 34.568us 34.568us 1 aten::empty 11.77% 5.317us 11.77% 5.317us 5.317us 1 aten::clamp_min 46.69% 21.097us 46.69% 21.097us 21.097us 1 ------------------- ------------ ------------ ------------ ------------ ------------ ------------ Self CPU time total: 45.186us """ class ProfilerTracer(torch.fx.Tracer): def trace(self, root, concrete_args=None): orig_record_function_enter = torch.autograd.profiler.record_function.__enter__ orig_record_function_exit = torch.autograd.profiler.record_function.__exit__ def fake_profiler_enter(_self): nonlocal self handle_proxy = self.create_proxy( kind='call_function', target=torch.ops.profiler._record_function_enter, args=(_self.name,), kwargs={}) assert getattr(_self, '_fx_profiler_ctx', None) is None setattr(_self, '_fx_profiler_ctx', handle_proxy) return handle_proxy def fake_profiler_exit(_self, exc_type, exc_value, traceback): assert hasattr(_self, '_fx_profiler_ctx') handle_proxy = _self._fx_profiler_ctx torch.ops.profiler._record_function_exit(handle_proxy) setattr(_self, '_fx_profiler_ctx', None) torch.autograd.profiler.record_function.__enter__ = fake_profiler_enter torch.autograd.profiler.record_function.__exit__ = fake_profiler_exit try: return super().trace(root, concrete_args) finally: torch.autograd.profiler.record_function.__enter__ = orig_record_function_enter torch.autograd.profiler.record_function.__exit__ = orig_record_function_exit pt = ProfilerTracer() graph_with_profiler = pt.trace(f) traced_with_profiler = torch.fx.GraphModule(pt.root, graph_with_profiler) with torch.autograd.profiler.profile() as prof: traced_with_profiler(x) print(prof) # "foo" range is recorded with special tracer behavior """ ------------------- ------------ ------------ ------------ ------------ ------------ ------------ Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls ------------------- ------------ ------------ ------------ ------------ ------------ ------------ foo 19.76% 39.928us 100.00% 202.055us 202.055us 1 aten::empty 3.93% 7.950us 3.93% 7.950us 7.950us 1 aten::relu 33.79% 68.282us 76.30% 154.177us 154.177us 1 aten::clamp_min 27.32% 55.198us 42.51% 85.895us 85.895us 1 aten::empty 1.28% 2.585us 1.28% 2.585us 2.585us 1 aten::clamp_min 13.91% 28.112us 13.91% 28.112us 28.112us 1 ------------------- ------------ ------------ ------------ ------------ ------------ ------------ Self CPU time total: 202.055us """
""" Recording Module Hierarchy With a Custom Tracer In this example, we are going to define a custom `fx.Tracer` instance that-- for each recorded operation--also notes down the qualified name of the module from which that operation originated. The _qualified name_ is the path to the Module from the root module. More information about this concept can be found in the documentation for `Module.get_submodule`: https://github.com/pytorch/pytorch/blob/9f2aea7b88f69fc74ad90b1418663802f80c1863/torch/nn/modules/module.py#L385 """ import torch import torch.fx from typing import Any, Callable, Dict, Optional, Tuple class ModulePathTracer(torch.fx.Tracer): """ ModulePathTracer is an FX tracer that--for each operation--also records the qualified name of the Module from which the operation originated. """ # The current qualified name of the Module being traced. The top-level # module is signified by empty string. This is updated when entering # call_module and restored when exiting call_module current_module_qualified_name : str = '' # A map from FX Node to the qualname of the Module from which it # originated. This is recorded by `create_proxy` when recording an # operation node_to_originating_module : Dict[torch.fx.Node, str] = {} def call_module(self, m: torch.nn.Module, forward: Callable[..., Any], args : Tuple[Any, ...], kwargs : Dict[str, Any]) -> Any: """ Override of Tracer.call_module (see https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer.call_module). This override: 1) Stores away the qualified name of the caller for restoration later 2) Installs the qualified name of the caller in `current_module_qualified_name` for retrieval by `create_proxy` 3) Delegates into the normal Tracer.call_module method 4) Restores the caller's qualified name into current_module_qualified_name """ old_qualname = self.current_module_qualified_name try: self.current_module_qualified_name = self.path_of_module(m) return super().call_module(m, forward, args, kwargs) finally: self.current_module_qualified_name = old_qualname def create_proxy(self, kind: str, target: torch.fx.node.Target, args: Tuple[Any, ...], kwargs: Dict[str, Any], name: Optional[str] = None, type_expr: Optional[Any] = None): """ Override of `Tracer.create_proxy`. This override intercepts the recording of every operation and stores away the current traced module's qualified name in `node_to_originating_module` """ proxy = super().create_proxy(kind, target, args, kwargs, name, type_expr) self.node_to_originating_module[proxy.node] = self.current_module_qualified_name return proxy # Testing: let's see how this works on a torchvision ResNet18 model import torchvision.models as models # Model under test rn18 = models.resnet18() # Instantiate our ModulePathTracer and use that to trace our ResNet18 tracer = ModulePathTracer() traced_rn18 = tracer.trace(rn18) # Print (node, module qualified name) for every node in the Graph for node in traced_rn18.nodes: module_qualname = tracer.node_to_originating_module.get(node) print('Node', node, 'is from module', module_qualname) """ Node x is from module Node conv1 is from module conv1 Node bn1 is from module bn1 Node relu is from module relu Node maxpool is from module maxpool Node layer1_0_conv1 is from module layer1.0.conv1 Node layer1_0_bn1 is from module layer1.0.bn1 Node layer1_0_relu is from module layer1.0.relu Node layer1_0_conv2 is from module layer1.0.conv2 Node layer1_0_bn2 is from module layer1.0.bn2 Node add is from module layer1.0 Node layer1_0_relu_1 is from module layer1.0.relu Node layer1_1_conv1 is from module layer1.1.conv1 Node layer1_1_bn1 is from module layer1.1.bn1 Node layer1_1_relu is from module layer1.1.relu Node layer1_1_conv2 is from module layer1.1.conv2 Node layer1_1_bn2 is from module layer1.1.bn2 Node add_1 is from module layer1.1 Node layer1_1_relu_1 is from module layer1.1.relu Node layer2_0_conv1 is from module layer2.0.conv1 Node layer2_0_bn1 is from module layer2.0.bn1 Node layer2_0_relu is from module layer2.0.relu Node layer2_0_conv2 is from module layer2.0.conv2 Node layer2_0_bn2 is from module layer2.0.bn2 Node layer2_0_downsample_0 is from module layer2.0.downsample.0 Node layer2_0_downsample_1 is from module layer2.0.downsample.1 Node add_2 is from module layer2.0 Node layer2_0_relu_1 is from module layer2.0.relu Node layer2_1_conv1 is from module layer2.1.conv1 Node layer2_1_bn1 is from module layer2.1.bn1 Node layer2_1_relu is from module layer2.1.relu Node layer2_1_conv2 is from module layer2.1.conv2 Node layer2_1_bn2 is from module layer2.1.bn2 Node add_3 is from module layer2.1 Node layer2_1_relu_1 is from module layer2.1.relu Node layer3_0_conv1 is from module layer3.0.conv1 Node layer3_0_bn1 is from module layer3.0.bn1 Node layer3_0_relu is from module layer3.0.relu Node layer3_0_conv2 is from module layer3.0.conv2 Node layer3_0_bn2 is from module layer3.0.bn2 Node layer3_0_downsample_0 is from module layer3.0.downsample.0 Node layer3_0_downsample_1 is from module layer3.0.downsample.1 Node add_4 is from module layer3.0 Node layer3_0_relu_1 is from module layer3.0.relu Node layer3_1_conv1 is from module layer3.1.conv1 Node layer3_1_bn1 is from module layer3.1.bn1 Node layer3_1_relu is from module layer3.1.relu Node layer3_1_conv2 is from module layer3.1.conv2 Node layer3_1_bn2 is from module layer3.1.bn2 Node add_5 is from module layer3.1 Node layer3_1_relu_1 is from module layer3.1.relu Node layer4_0_conv1 is from module layer4.0.conv1 Node layer4_0_bn1 is from module layer4.0.bn1 Node layer4_0_relu is from module layer4.0.relu Node layer4_0_conv2 is from module layer4.0.conv2 Node layer4_0_bn2 is from module layer4.0.bn2 Node layer4_0_downsample_0 is from module layer4.0.downsample.0 Node layer4_0_downsample_1 is from module layer4.0.downsample.1 Node add_6 is from module layer4.0 Node layer4_0_relu_1 is from module layer4.0.relu Node layer4_1_conv1 is from module layer4.1.conv1 Node layer4_1_bn1 is from module layer4.1.bn1 Node layer4_1_relu is from module layer4.1.relu Node layer4_1_conv2 is from module layer4.1.conv2 Node layer4_1_bn2 is from module layer4.1.bn2 Node add_7 is from module layer4.1 Node layer4_1_relu_1 is from module layer4.1.relu Node avgpool is from module avgpool Node flatten is from module Node fc is from module fc Node output is from module None """
import torch import torch.fx """ In this example we are going do define a library of "composite" operations. Composite operations are those that are defined as callable functions that are composed of several other operations in their implementation. Composite operations allow you to choose at what level of abstraction you want to interpret/manipulate the code. We show that we can provide a function to inline these functions as well as use a custom Tracer to auto- matically inline such functions. Composite operations can be useful for exposing higher- level context to a backend/transform while still maintaining the ability to examine things at a more fine-grained level. """ def sigmoid_lowp(x : torch.Tensor): x = x.float() x = x.sigmoid() return x.half() # wrap() indicates that the passed-in function should always # be recorded as a call_function node rather than being traced # through. Later, we will see how we can: # a. Inline the implementation of such a function and # b. Define a tracer that automatically traces through such a function torch.fx.wrap(sigmoid_lowp) def add_lowp(a : torch.Tensor, b : torch.Tensor): a, b = a.float(), b.float() c = a + b return c.half() torch.fx.wrap(add_lowp) # Let's see what happens when we symbolically trace through some code # that uses these functions class Foo(torch.nn.Module): def forward(self, x, y): x = sigmoid_lowp(x) y = sigmoid_lowp(y) return add_lowp(x, y) traced = torch.fx.symbolic_trace(Foo()) print(traced.code) """ def forward(self, x, y): sigmoid_lowp = __main___sigmoid_lowp(x); x = None sigmoid_lowp_1 = __main___sigmoid_lowp(y); y = None add_lowp = __main___add_lowp(sigmoid_lowp, sigmoid_lowp_1); sigmoid_lowp = sigmoid_lowp_1 = None return add_lowp """ # Notice that the calls to `sigmoid_lowp` and `add_lowp` # appear literally in the trace; they are not traced through # ***** Inlining calls ***** # Now let's define a function that allows for inlining these calls # during graph manipulation. def inline_lowp_func(n : torch.fx.Node): # If we find a call to a function in our "lowp" module, inline it if n.op == 'call_function' and n.target.__module__ == inline_lowp_func.__module__: # We want to insert the operations comprising the implementation of the # function before the function itself. Then, we can swap the output value # of the function call with the output value for its implementation nodes tracer = torch.fx.proxy.GraphAppendingTracer(n.graph) with n.graph.inserting_before(n): # We can inline code by using `fx.Proxy` instances. # map_arg traverses all aggregate types and applies the given function # to Node instances in the data structure. In this case, we are applying # the fx.Proxy constructor. proxy_args = torch.fx.node.map_arg(n.args, lambda x: torch.fx.Proxy(x, tracer)) proxy_kwargs = torch.fx.node.map_arg(n.kwargs, lambda x: torch.fx.Proxy(x, tracer)) # Call the function itself with proxy arguments. This will emit # nodes in the graph corresponding to the operations in the im- # plementation of the function output_proxy = n.target(*proxy_args, **proxy_kwargs) # Now replace the original node's uses with the output node of # the implementation. node.replace_all_uses_with(output_proxy.node) # Delete the old node node.graph.erase_node(node) for node in traced.graph.nodes: if node.op == 'call_function' and node.target is sigmoid_lowp: inline_lowp_func(node) # Don't forget to recompile after graph manipulation traced.recompile() print(traced.code) """ def forward(self, x, y): float_1 = x.float(); x = None sigmoid = float_1.sigmoid(); float_1 = None half = sigmoid.half(); sigmoid = None float_2 = y.float(); y = None sigmoid_1 = float_2.sigmoid(); float_2 = None half_1 = sigmoid_1.half(); sigmoid_1 = None add_lowp = __main___add_lowp(half, half_1); half = half_1 = None return add_lowp """ # At this point, the implementation of `sigmoid_lowp` has been substituted # in for all of the calls to that function. # ***** Inlining calls during tracing ***** # Now we are going to define a custom tracer that can selectively inline # calls to certain composite operations on-the-fly. # New instance of our module f = Foo() class InliningTracer(torch.fx.Tracer): FNS_TO_INLINE = [add_lowp] def create_node(self, kind, target, args, kwargs, name=None, type_expr=None): if kind == 'call_function' and target in self.FNS_TO_INLINE: tracer = torch.fx.proxy.GraphAppendingTracer(self.graph) # Trace through the implementation of the function rather than # create a node proxy_args = torch.fx.node.map_arg(args, lambda x: torch.fx.Proxy(x, tracer)) proxy_kwargs = torch.fx.node.map_arg(kwargs, lambda x: torch.fx.Proxy(x, tracer)) return target(*proxy_args, **proxy_kwargs).node else: return super().create_node(kind, target, args, kwargs, name, type_expr) tracer = InliningTracer() graph = tracer.trace(f) module = torch.fx.GraphModule(f, graph) print(module.code) """ def forward(self, x, y): sigmoid_lowp = __main___sigmoid_lowp(x); x = None sigmoid_lowp_1 = __main___sigmoid_lowp(y); y = None float_1 = sigmoid_lowp.float(); sigmoid_lowp = None float_2 = sigmoid_lowp_1.float(); sigmoid_lowp_1 = None add = float_1 + float_2; float_1 = float_2 = None half = add.half(); add = None return half """ # As you can see, the implementation for `add_lowp` has been # inlined in the course of tracing with our InliningTracer. # Such functionality can be used to, for example, implement # a backend that wants to see the lowered form of some operations # but the high-level form of another. # ***** Future direction ***** # # We may define an API, such as `Tracer.is_leaf_function`, that # Tracer implementers can use to more easily specify the inlining # behavior implemented in InliningTracer. Such a method would return # True by default, but a Tracer can override it and return `False` for # functions the Tracer wants to be traced through.
import torch import torch.fx as fx # An inverse mapping is one that takes a function f(x) and returns a function g # such that f(g(x)) == x. For example,since log(exp(x)) == x, exp and log are # inverses. invert_mapping = {} def add_inverse(a, b): invert_mapping[a] = b invert_mapping[b] = a inverses = [ (torch.sin, torch.arcsin), (torch.cos, torch.arccos), (torch.tan, torch.arctan), (torch.exp, torch.log), ] for a, b in inverses: add_inverse(a, b) # The general strategy is that we walk the graph backwards, transforming each # node into its inverse. To do so, we swap the outputs and inputs of the # functions, and then we look up its inverse in `invert_mapping`. Note that # this transform assumes that all operations take in only one input and return # one output. def invert(model: torch.nn.Module) -> torch.nn.Module: fx_model = fx.symbolic_trace(model) new_graph = fx.Graph() # As we're building up a new graph env = {} for node in reversed(fx_model.graph.nodes): if node.op == 'call_function': # This creates a node in the new graph with the inverse function, # and passes `env[node.name]` (i.e. the previous output node) as # input. new_node = new_graph.call_function(invert_mapping[node.target], (env[node.name],)) env[node.args[0].name] = new_node elif node.op == 'output': # We turn the output into an input placeholder new_node = new_graph.placeholder(node.name) env[node.args[0].name] = new_node elif node.op == 'placeholder': # We turn the input placeholder into an output new_graph.output(env[node.name]) else: raise RuntimeError("Not implemented") new_graph.lint() return fx.GraphModule(fx_model, new_graph) def f(x): return torch.exp(torch.tan(x)) res = invert(f) print(res.code) """ def forward(self, output): log_1 = torch.log(output); output = None arctan_1 = torch.arctan(log_1); log_1 = None return arctan_1 """ print(f(res((torch.arange(5) + 1)))) # [1., 2., 3., 4, 5.]
import torch from torch.fx import Proxy, Graph, GraphModule ''' How to Create a Graph Using Proxy Objects Instead of Tracing It's possible to directly create a Proxy object around a raw Node. This can be used to create a Graph independently of symbolic tracing. The following code demonstrates how to use Proxy with a raw Node to append operations to a fresh Graph. We'll create two parameters (``x`` and ``y``), perform some operations on those parameters, then add everything we created to the new Graph. We'll then wrap that Graph in a GraphModule. Doing so creates a runnable instance of ``nn.Module`` where previously-created operations are represented in the Module's ``forward`` function. By the end of the tutorial, we'll have added the following method to an empty ``nn.Module`` class. .. code-block:: python def forward(self, x, y): cat_1 = torch.cat([x, y]); x = y = None tanh_1 = torch.tanh(cat_1); cat_1 = None neg_1 = torch.neg(tanh_1); tanh_1 = None return neg_1 ''' # Create a graph independently of symbolic tracing graph = Graph() tracer = torch.fx.proxy.GraphAppendingTracer(graph) # Create raw Nodes raw1 = graph.placeholder('x') raw2 = graph.placeholder('y') # Initialize Proxies using the raw Nodes and graph's default tracer y = Proxy(raw1, tracer) z = Proxy(raw2, tracer) # y = Proxy(raw1) # z = Proxy(raw2) # Create other operations using the Proxies `y` and `z` a = torch.cat([y, z]) b = torch.tanh(a) c = torch.neg(b) # By using the graph's own appending tracer to create Proxies, # notice we can now use n-ary operators on operations without # multiple tracers being created at run-time (line 52) which leads # to errors # To try this out for yourself, replace lines 42, 43 # with 44, 45 z = torch.add(b, c) # Create a new output Node and add it to the Graph. By doing this, the # Graph will contain all the Nodes we just created (since they're all # linked to the output Node) graph.output(c.node) # Wrap our created Graph in a GraphModule to get a final, runnable # `nn.Module` instance mod = GraphModule(torch.nn.Module(), graph)
import torch from torch.fx import Proxy, symbolic_trace from torch.fx.node import map_arg ''' How to Inline a Function Into an Existing Graph One reason you might want to inline a function is to get around FX's default tracing behavior. For example, unless you've defined a custom Tracer, the out-of-the-box implementation of ``symbolic_trace`` causes references to ``torch.nn`` module instances to appear as ``call_module`` calls rather than being traced through. Let's say this behavior is almost what you need; the only problem is that there's a single module call that you want to replace with an inlined trace of the function. Creating a custom Tracer would be too much. Instead, you can accomplish this using Proxies. The following code demonstrates how to trace a module and inline it into an existing Graph using Proxy. We'll trace our Graph, then iterate through its Nodes until we find the right place to swap out the ``call_module`` Node with an inlined trace. At that point, we'll create Proxies from the Node's args and kwargs. Finally, we'll call the function we want to replace with those Proxies--which will, in essence, "trace" that function. Finally, we'll insert the result of that call into our Graph. (This last step will automatically inline the function.) ''' # Sample module class M(torch.nn.Module): def __init__(self): super().__init__() self.relu = torch.nn.ReLU() def forward(self, x): return self.relu(x) + 1.0 # Symbolically trace an instance of `M`. After tracing, `self.relu` is # represented as a `call_module` Node. The full operation in the # generated `forward` function's code will appear as `self.relu(x)` m = symbolic_trace(M()) # Insert nodes from the ReLU graph in place of the original call to # `self.relu` # create a graph-appending tracer pointing to the original graph tracer = torch.fx.proxy.GraphAppendingTracer(m.graph) for node in m.graph.nodes: # Find `call_module` Node in `m` that corresponds to `self.relu`. # This is the Node we want to swap out for an inlined version of the # same call if (node.op, node.target) == ("call_module", "relu"): with m.graph.inserting_before(node): # Create a Proxy from each Node in the current Node's # args/kwargs proxy_args = map_arg(node.args, lambda n: Proxy(n, tracer)) proxy_kwargs = map_arg(node.kwargs, lambda n: Proxy(n, tracer)) # Call `m.relu` with the newly-created Proxy arguments. # `m.relu` is the generic version of the function; by # calling it with Proxies created from Nodes in `m`, we're # emitting Nodes that reference exiting values in the IR. # The result of this call is another Proxy, which we can # hook into our existing Graph to complete the function # inlining. proxy_output = m.relu(*proxy_args, **proxy_kwargs) # Replace the relu `call_module` node with the inlined # version of the function node.replace_all_uses_with(proxy_output.node) # Make sure that the old relu Node is erased m.graph.erase_node(node)
import torch import torch.fx import operator # Does this path not exist? Check that you've done the following: # 1) Read README.md and follow the instructions to build libinterpreter. # 2) If this file still does not exist after you've followed those instructions, # check if it is under a different extension (e.g. `dylib` on mac or `dll` on # windows). torch.classes.load_library('build/libinterpreter.so') # This is what a lowering pass should look like: a function that takes # a valid nn.Module, symbolically traces it, lowers the Module to some # representation, and wraps that representation up into another # nn.Module instance that handles dispatch to the compiled/lowered code. # This will ensure that this lowering transformation still fits into the # PyTorch programming model and enables features like composing with other # transformations and TorchScript compilation. def lower_to_elementwise_interpreter(orig_mod : torch.nn.Module) -> torch.nn.Module: # ===== Stage 1: Symbolic trace the module ===== mod = torch.fx.symbolic_trace(orig_mod) # ===== Stage 2: Lower GraphModule representation to the C++ # interpreter's instruction format ====== instructions = [] constant_idx = 0 constants = {} fn_input_names = [] target_to_name = { operator.add : "add", operator.mul : "mul" } output_node : Optional[torch.fx.Node] = None # For each instruction, create a triple # (instruction_name : str, inputs : List[str], output : str) # to feed into the C++ interpreter for n in mod.graph.nodes: target, args, out_name = n.target, n.args, n.name assert len(n.kwargs) == 0, "kwargs currently not supported" if n.op == 'placeholder': # Placeholders specify function argument names. Save these # for later when we generate the wrapper GraphModule fn_input_names.append(target) elif n.op == 'call_function': assert target in target_to_name, "Unsupported call target " + target arg_names = [] for arg in args: if not isinstance(arg, torch.fx.Node): # Pull out constants. These constants will later be # fed to the interpreter C++ object via add_constant() arg_name = f'constant_{constant_idx}' constants[arg_name] = torch.Tensor( [arg] if isinstance(arg, numbers.Number) else arg) arg_names.append(arg_name) constant_idx += 1 else: arg_names.append(arg.name) instructions.append((target_to_name[target], arg_names, out_name)) elif n.op == 'output': if output_node is not None: raise RuntimeError('Multiple output nodes!') output_node = n else: raise RuntimeError('Unsupported opcode ' + n.op) interpreter = torch.classes.NativeInterpretation.ElementwiseInterpreter() # Load constants for k, v in constants.items(): interpreter.add_constant(k, v) # Specify names for positional input arguments interpreter.set_input_names(fn_input_names) # Load instructions interpreter.set_instructions(instructions) # Specify name for single output assert isinstance(output_node.args[0], torch.fx.Node) interpreter.set_output_name(output_node.args[0].name) # ===== Stage 3: Create a wrapper GraphModule around the interpreter ===== class WrapperModule(torch.nn.Module): def __init__(self, interpreter): super().__init__() self.interpreter = interpreter wrapper = WrapperModule(interpreter) # Create a forward() function that is compatible with TorchScript compilation. # Create a graph that: 1) Takes function arguments 2) Invokes the interpreter # 3) Returns the specified return value graph = torch.fx.Graph() # Add placeholders for fn inputs placeholder_nodes = [] for name in fn_input_names: placeholder_nodes.append(graph.create_node('placeholder', name)) # Get the interpreter object interpreter_node = graph.create_node('get_attr', 'interpreter') # Add a node to call the interpreter instance output_node = graph.create_node( op='call_method', target='__call__', args=(interpreter_node, placeholder_nodes)) # Register output graph.output(output_node) graph.lint(wrapper) # Return final GraphModule!!! return torch.fx.GraphModule(wrapper, graph) class MyElementwiseModule(torch.nn.Module): def forward(self, x, y): return x * y + y mem = MyElementwiseModule() lowered = lower_to_elementwise_interpreter(mem) print(lowered.code) # The lowered module can also be compiled into TorchScript scripted = torch.jit.script(lowered) print(scripted.graph) # Stress test correctness for _ in range(50): x, y = torch.randn(10, 20, 30), torch.randn(10, 20, 30) torch.testing.assert_allclose(lowered(x, y), mem(x, y)) torch.testing.assert_allclose(scripted(x, y), mem(x, y))
import torch import torch.nn as nn import torch.nn.init as init class Net(nn.Module): def __init__(self, upscale_factor): super(Net, self).__init__() self.relu = nn.ReLU() self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1)) self.pixel_shuffle = nn.PixelShuffle(upscale_factor) self._initialize_weights() def forward(self, x): x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.relu(self.conv3(x)) x = self.pixel_shuffle(self.conv4(x)) return x def _initialize_weights(self): init.orthogonal_(self.conv1.weight, init.calculate_gain('relu')) init.orthogonal_(self.conv2.weight, init.calculate_gain('relu')) init.orthogonal_(self.conv3.weight, init.calculate_gain('relu')) init.orthogonal_(self.conv4.weight)
import torch.utils.data as data from os import listdir from os.path import join from PIL import Image def is_image_file(filename): return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg"]) def load_img(filepath): img = Image.open(filepath).convert('YCbCr') y, _, _ = img.split() return y class DatasetFromFolder(data.Dataset): def __init__(self, image_dir, input_transform=None, target_transform=None): super(DatasetFromFolder, self).__init__() self.image_filenames = [join(image_dir, x) for x in listdir(image_dir) if is_image_file(x)] self.input_transform = input_transform self.target_transform = target_transform def __getitem__(self, index): input = load_img(self.image_filenames[index]) target = input.copy() if self.input_transform: input = self.input_transform(input) if self.target_transform: target = self.target_transform(target) return input, target def __len__(self): return len(self.image_filenames)
from __future__ import print_function import argparse from math import log10 import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from model import Net from data import get_training_set, get_test_set # Training settings parser = argparse.ArgumentParser(description='PyTorch Super Res Example') parser.add_argument('--upscale_factor', type=int, required=True, help="super resolution upscale factor") parser.add_argument('--batchSize', type=int, default=64, help='training batch size') parser.add_argument('--testBatchSize', type=int, default=10, help='testing batch size') parser.add_argument('--nEpochs', type=int, default=2, help='number of epochs to train for') parser.add_argument('--lr', type=float, default=0.01, help='Learning Rate. Default=0.01') parser.add_argument('--cuda', action='store_true', help='use cuda?') parser.add_argument('--mps', action='store_true', default=False, help='enables macOS GPU training') parser.add_argument('--threads', type=int, default=4, help='number of threads for data loader to use') parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123') opt = parser.parse_args() print(opt) if opt.cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run without --cuda") if not opt.mps and torch.backends.mps.is_available(): raise Exception("Found mps device, please run with --mps to enable macOS GPU") torch.manual_seed(opt.seed) use_mps = opt.mps and torch.backends.mps.is_available() if opt.cuda: device = torch.device("cuda") elif use_mps: device = torch.device("mps") else: device = torch.device("cpu") print('===> Loading datasets') train_set = get_training_set(opt.upscale_factor) test_set = get_test_set(opt.upscale_factor) training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True) testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False) print('===> Building model') model = Net(upscale_factor=opt.upscale_factor).to(device) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=opt.lr) def train(epoch): epoch_loss = 0 for iteration, batch in enumerate(training_data_loader, 1): input, target = batch[0].to(device), batch[1].to(device) optimizer.zero_grad() loss = criterion(model(input), target) epoch_loss += loss.item() loss.backward() optimizer.step() print("===> Epoch[{}]({}/{}): Loss: {:.4f}".format(epoch, iteration, len(training_data_loader), loss.item())) print("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(training_data_loader))) def test(): avg_psnr = 0 with torch.no_grad(): for batch in testing_data_loader: input, target = batch[0].to(device), batch[1].to(device) prediction = model(input) mse = criterion(prediction, target) psnr = 10 * log10(1 / mse.item()) avg_psnr += psnr print("===> Avg. PSNR: {:.4f} dB".format(avg_psnr / len(testing_data_loader))) def checkpoint(epoch): model_out_path = "model_epoch_{}.pth".format(epoch) torch.save(model, model_out_path) print("Checkpoint saved to {}".format(model_out_path)) for epoch in range(1, opt.nEpochs + 1): train(epoch) test() checkpoint(epoch)
from os.path import exists, join, basename from os import makedirs, remove from six.moves import urllib import tarfile from torchvision.transforms import Compose, CenterCrop, ToTensor, Resize from dataset import DatasetFromFolder def download_bsd300(dest="dataset"): output_image_dir = join(dest, "BSDS300/images") if not exists(output_image_dir): makedirs(dest) url = "http://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300-images.tgz" print("downloading url ", url) data = urllib.request.urlopen(url) file_path = join(dest, basename(url)) with open(file_path, 'wb') as f: f.write(data.read()) print("Extracting data") with tarfile.open(file_path) as tar: for item in tar: tar.extract(item, dest) remove(file_path) return output_image_dir def calculate_valid_crop_size(crop_size, upscale_factor): return crop_size - (crop_size % upscale_factor) def input_transform(crop_size, upscale_factor): return Compose([ CenterCrop(crop_size), Resize(crop_size // upscale_factor), ToTensor(), ]) def target_transform(crop_size): return Compose([ CenterCrop(crop_size), ToTensor(), ]) def get_training_set(upscale_factor): root_dir = download_bsd300() train_dir = join(root_dir, "train") crop_size = calculate_valid_crop_size(256, upscale_factor) return DatasetFromFolder(train_dir, input_transform=input_transform(crop_size, upscale_factor), target_transform=target_transform(crop_size)) def get_test_set(upscale_factor): root_dir = download_bsd300() test_dir = join(root_dir, "test") crop_size = calculate_valid_crop_size(256, upscale_factor) return DatasetFromFolder(test_dir, input_transform=input_transform(crop_size, upscale_factor), target_transform=target_transform(crop_size))
from __future__ import print_function import argparse import torch from PIL import Image from torchvision.transforms import ToTensor import numpy as np # Training settings parser = argparse.ArgumentParser(description='PyTorch Super Res Example') parser.add_argument('--input_image', type=str, required=True, help='input image to use') parser.add_argument('--model', type=str, required=True, help='model file to use') parser.add_argument('--output_filename', type=str, help='where to save the output image') parser.add_argument('--cuda', action='store_true', help='use cuda') opt = parser.parse_args() print(opt) img = Image.open(opt.input_image).convert('YCbCr') y, cb, cr = img.split() model = torch.load(opt.model) img_to_tensor = ToTensor() input = img_to_tensor(y).view(1, -1, y.size[1], y.size[0]) if opt.cuda: model = model.cuda() input = input.cuda() out = model(input) out = out.cpu() out_img_y = out[0].detach().numpy() out_img_y *= 255.0 out_img_y = out_img_y.clip(0, 255) out_img_y = Image.fromarray(np.uint8(out_img_y[0]), mode='L') out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC) out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC) out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB') out_img.save(opt.output_filename) print('output image saved to ', opt.output_filename)
from __future__ import print_function import argparse import os import random import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils parser = argparse.ArgumentParser() parser.add_argument('--dataset', required=True, help='cifar10 | lsun | mnist |imagenet | folder | lfw | fake') parser.add_argument('--dataroot', required=False, help='path to dataset') parser.add_argument('--workers', type=int, help='number of data loading workers', default=2) parser.add_argument('--batchSize', type=int, default=64, help='input batch size') parser.add_argument('--imageSize', type=int, default=64, help='the height / width of the input image to network') parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector') parser.add_argument('--ngf', type=int, default=64) parser.add_argument('--ndf', type=int, default=64) parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for') parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') parser.add_argument('--cuda', action='store_true', default=False, help='enables cuda') parser.add_argument('--dry-run', action='store_true', help='check a single training cycle works') parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') parser.add_argument('--netG', default='', help="path to netG (to continue training)") parser.add_argument('--netD', default='', help="path to netD (to continue training)") parser.add_argument('--outf', default='.', help='folder to output images and model checkpoints') parser.add_argument('--manualSeed', type=int, help='manual seed') parser.add_argument('--classes', default='bedroom', help='comma separated list of classes for the lsun data set') parser.add_argument('--mps', action='store_true', default=False, help='enables macOS GPU training') opt = parser.parse_args() print(opt) try: os.makedirs(opt.outf) except OSError: pass if opt.manualSeed is None: opt.manualSeed = random.randint(1, 10000) print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) cudnn.benchmark = True if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") if torch.backends.mps.is_available() and not opt.mps: print("WARNING: You have mps device, to enable macOS GPU run with --mps") if opt.dataroot is None and str(opt.dataset).lower() != 'fake': raise ValueError("`dataroot` parameter is required for dataset \"%s\"" % opt.dataset) if opt.dataset in ['imagenet', 'folder', 'lfw']: # folder dataset dataset = dset.ImageFolder(root=opt.dataroot, transform=transforms.Compose([ transforms.Resize(opt.imageSize), transforms.CenterCrop(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) nc=3 elif opt.dataset == 'lsun': classes = [ c + '_train' for c in opt.classes.split(',')] dataset = dset.LSUN(root=opt.dataroot, classes=classes, transform=transforms.Compose([ transforms.Resize(opt.imageSize), transforms.CenterCrop(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) nc=3 elif opt.dataset == 'cifar10': dataset = dset.CIFAR10(root=opt.dataroot, download=True, transform=transforms.Compose([ transforms.Resize(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) nc=3 elif opt.dataset == 'mnist': dataset = dset.MNIST(root=opt.dataroot, download=True, transform=transforms.Compose([ transforms.Resize(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)), ])) nc=1 elif opt.dataset == 'fake': dataset = dset.FakeData(image_size=(3, opt.imageSize, opt.imageSize), transform=transforms.ToTensor()) nc=3 assert dataset dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) use_mps = opt.mps and torch.backends.mps.is_available() if opt.cuda: device = torch.device("cuda:0") elif use_mps: device = torch.device("mps") else: device = torch.device("cpu") ngpu = int(opt.ngpu) nz = int(opt.nz) ngf = int(opt.ngf) ndf = int(opt.ndf) # custom weights initialization called on netG and netD def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: torch.nn.init.normal_(m.weight, 0.0, 0.02) elif classname.find('BatchNorm') != -1: torch.nn.init.normal_(m.weight, 1.0, 0.02) torch.nn.init.zeros_(m.bias) class Generator(nn.Module): def __init__(self, ngpu): super(Generator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), # state size. (ngf*8) x 4 x 4 nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), # state size. (ngf*4) x 8 x 8 nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), # state size. (ngf*2) x 16 x 16 nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), # state size. (ngf) x 32 x 32 nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False), nn.Tanh() # state size. (nc) x 64 x 64 ) def forward(self, input): if input.is_cuda and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output netG = Generator(ngpu).to(device) netG.apply(weights_init) if opt.netG != '': netG.load_state_dict(torch.load(opt.netG)) print(netG) class Discriminator(nn.Module): def __init__(self, ngpu): super(Discriminator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( # input is (nc) x 64 x 64 nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf) x 32 x 32 nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*2) x 16 x 16 nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*4) x 8 x 8 nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*8) x 4 x 4 nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): if input.is_cuda and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output.view(-1, 1).squeeze(1) netD = Discriminator(ngpu).to(device) netD.apply(weights_init) if opt.netD != '': netD.load_state_dict(torch.load(opt.netD)) print(netD) criterion = nn.BCELoss() fixed_noise = torch.randn(opt.batchSize, nz, 1, 1, device=device) real_label = 1 fake_label = 0 # setup optimizer optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) if opt.dry_run: opt.niter = 1 for epoch in range(opt.niter): for i, data in enumerate(dataloader, 0): ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### # train with real netD.zero_grad() real_cpu = data[0].to(device) batch_size = real_cpu.size(0) label = torch.full((batch_size,), real_label, dtype=real_cpu.dtype, device=device) output = netD(real_cpu) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() # train with fake noise = torch.randn(batch_size, nz, 1, 1, device=device) fake = netG(noise) label.fill_(fake_label) output = netD(fake.detach()) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() ############################ # (2) Update G network: maximize log(D(G(z))) ########################### netG.zero_grad() label.fill_(real_label) # fake labels are real for generator cost output = netD(fake) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f' % (epoch, opt.niter, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) if i % 100 == 0: vutils.save_image(real_cpu, '%s/real_samples.png' % opt.outf, normalize=True) fake = netG(fixed_noise) vutils.save_image(fake.detach(), '%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch), normalize=True) if opt.dry_run: break # do checkpointing torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (opt.outf, epoch)) torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (opt.outf, epoch))
import os from argparse import ArgumentParser def makedirs(name): """helper function for python 2 and 3 to call os.makedirs() avoiding an error if the directory to be created already exists""" import os, errno try: os.makedirs(name) except OSError as ex: if ex.errno == errno.EEXIST and os.path.isdir(name): # ignore existing directory pass else: # a different error happened raise def get_args(): parser = ArgumentParser(description='PyTorch/torchtext SNLI example') parser.add_argument('--epochs', type=int, default=50, help='the number of total epochs to run.') parser.add_argument('--batch_size', type=int, default=128, help='batch size. (default: 128)') parser.add_argument('--d_embed', type=int, default=100, help='the size of each embedding vector.') parser.add_argument('--d_proj', type=int, default=300, help='the size of each projection layer.') parser.add_argument('--d_hidden', type=int, default=300, help='the number of features in the hidden state.') parser.add_argument('--n_layers', type=int, default=1, help='the number of recurrent layers. (default: 50)') parser.add_argument('--log_every', type=int, default=50, help='iteration period to output log.') parser.add_argument('--lr',type=float, default=.001, help='initial learning rate.') parser.add_argument('--dev_every', type=int, default=1000, help='log period of validation results.') parser.add_argument('--save_every', type=int, default=1000, help='model checkpoint period.') parser.add_argument('--dp_ratio', type=int, default=0.2, help='probability of an element to be zeroed.') parser.add_argument('--no-bidirectional', action='store_false', dest='birnn', help='disable bidirectional LSTM.') parser.add_argument('--preserve-case', action='store_false', dest='lower', help='case-sensitivity.') parser.add_argument('--no-projection', action='store_false', dest='projection', help='disable projection layer.') parser.add_argument('--train_embed', action='store_false', dest='fix_emb', help='enable embedding word training.') parser.add_argument('--gpu', type=int, default=0, help='gpu id to use. (default: 0)') parser.add_argument('--save_path', type=str, default='results', help='save path of results.') parser.add_argument('--vector_cache', type=str, default=os.path.join(os.getcwd(), '.vector_cache/input_vectors.pt'), help='name of vector cache directory, which saved input word-vectors.') parser.add_argument('--word_vectors', type=str, default='glove.6B.100d', help='one of or a list containing instantiations of the GloVe, CharNGram, or Vectors classes.' 'Alternatively, one of or a list of available pretrained vectors: ' 'charngram.100d fasttext.en.300d fasttext.simple.300d' 'glove.42B.300d glove.840B.300d glove.twitter.27B.25d' 'glove.twitter.27B.50d glove.twitter.27B.100d glove.twitter.27B.200d' 'glove.6B.50d glove.6B.100d glove.6B.200d glove.6B.300d') parser.add_argument('--resume_snapshot', type=str, default='', help='model snapshot to resume.') parser.add_argument('--dry-run', action='store_true', help='run only a few iterations') args = parser.parse_args() return args
import torch import torch.nn as nn class Bottle(nn.Module): def forward(self, input): if len(input.size()) <= 2: return super(Bottle, self).forward(input) size = input.size()[:2] out = super(Bottle, self).forward(input.view(size[0]*size[1], -1)) return out.view(size[0], size[1], -1) class Linear(Bottle, nn.Linear): pass class Encoder(nn.Module): def __init__(self, config): super(Encoder, self).__init__() self.config = config input_size = config.d_proj if config.projection else config.d_embed dropout = 0 if config.n_layers == 1 else config.dp_ratio self.rnn = nn.LSTM(input_size=input_size, hidden_size=config.d_hidden, num_layers=config.n_layers, dropout=dropout, bidirectional=config.birnn) def forward(self, inputs): batch_size = inputs.size()[1] state_shape = self.config.n_cells, batch_size, self.config.d_hidden h0 = c0 = inputs.new_zeros(state_shape) outputs, (ht, ct) = self.rnn(inputs, (h0, c0)) return ht[-1] if not self.config.birnn else ht[-2:].transpose(0, 1).contiguous().view(batch_size, -1) class SNLIClassifier(nn.Module): def __init__(self, config): super(SNLIClassifier, self).__init__() self.config = config self.embed = nn.Embedding(config.n_embed, config.d_embed) self.projection = Linear(config.d_embed, config.d_proj) self.encoder = Encoder(config) self.dropout = nn.Dropout(p=config.dp_ratio) self.relu = nn.ReLU() seq_in_size = 2*config.d_hidden if self.config.birnn: seq_in_size *= 2 lin_config = [seq_in_size]*2 self.out = nn.Sequential( Linear(*lin_config), self.relu, self.dropout, Linear(*lin_config), self.relu, self.dropout, Linear(*lin_config), self.relu, self.dropout, Linear(seq_in_size, config.d_out)) def forward(self, batch): prem_embed = self.embed(batch.premise) hypo_embed = self.embed(batch.hypothesis) if self.config.fix_emb: prem_embed = prem_embed.detach() hypo_embed = hypo_embed.detach() if self.config.projection: prem_embed = self.relu(self.projection(prem_embed)) hypo_embed = self.relu(self.projection(hypo_embed)) premise = self.encoder(prem_embed) hypothesis = self.encoder(hypo_embed) scores = self.out(torch.cat([premise, hypothesis], 1)) return scores
import os import time import glob import torch import torch.optim as O import torch.nn as nn from torchtext.legacy import data from torchtext.legacy import datasets from model import SNLIClassifier from util import get_args, makedirs args = get_args() if torch.cuda.is_available(): torch.cuda.set_device(args.gpu) device = torch.device('cuda:{}'.format(args.gpu)) elif torch.backends.mps.is_available(): device = torch.device('mps') else: device = torch.device('cpu') inputs = data.Field(lower=args.lower, tokenize='spacy') answers = data.Field(sequential=False) train, dev, test = datasets.SNLI.splits(inputs, answers) inputs.build_vocab(train, dev, test) if args.word_vectors: if os.path.isfile(args.vector_cache): inputs.vocab.vectors = torch.load(args.vector_cache) else: inputs.vocab.load_vectors(args.word_vectors) makedirs(os.path.dirname(args.vector_cache)) torch.save(inputs.vocab.vectors, args.vector_cache) answers.build_vocab(train) train_iter, dev_iter, test_iter = data.BucketIterator.splits( (train, dev, test), batch_size=args.batch_size, device=device) config = args config.n_embed = len(inputs.vocab) config.d_out = len(answers.vocab) config.n_cells = config.n_layers # double the number of cells for bidirectional networks if config.birnn: config.n_cells *= 2 if args.resume_snapshot: model = torch.load(args.resume_snapshot, map_location=device) else: model = SNLIClassifier(config) if args.word_vectors: model.embed.weight.data.copy_(inputs.vocab.vectors) model.to(device) criterion = nn.CrossEntropyLoss() opt = O.Adam(model.parameters(), lr=args.lr) iterations = 0 start = time.time() best_dev_acc = -1 header = ' Time Epoch Iteration Progress (%Epoch) Loss Dev/Loss Accuracy Dev/Accuracy' dev_log_template = ' '.join('{:>6.0f},{:>5.0f},{:>9.0f},{:>5.0f}/{:<5.0f} {:>7.0f}%,{:>8.6f},{:8.6f},{:12.4f},{:12.4f}'.split(',')) log_template = ' '.join('{:>6.0f},{:>5.0f},{:>9.0f},{:>5.0f}/{:<5.0f} {:>7.0f}%,{:>8.6f},{},{:12.4f},{}'.split(',')) makedirs(args.save_path) print(header) for epoch in range(args.epochs): train_iter.init_epoch() n_correct, n_total = 0, 0 for batch_idx, batch in enumerate(train_iter): # switch model to training mode, clear gradient accumulators model.train(); opt.zero_grad() iterations += 1 # forward pass answer = model(batch) # calculate accuracy of predictions in the current batch n_correct += (torch.max(answer, 1)[1].view(batch.label.size()) == batch.label).sum().item() n_total += batch.batch_size train_acc = 100. * n_correct/n_total # calculate loss of the network output with respect to training labels loss = criterion(answer, batch.label) # backpropagate and update optimizer learning rate loss.backward(); opt.step() # checkpoint model periodically if iterations % args.save_every == 0: snapshot_prefix = os.path.join(args.save_path, 'snapshot') snapshot_path = snapshot_prefix + '_acc_{:.4f}_loss_{:.6f}_iter_{}_model.pt'.format(train_acc, loss.item(), iterations) torch.save(model, snapshot_path) for f in glob.glob(snapshot_prefix + '*'): if f != snapshot_path: os.remove(f) # evaluate performance on validation set periodically if iterations % args.dev_every == 0: # switch model to evaluation mode model.eval(); dev_iter.init_epoch() # calculate accuracy on validation set n_dev_correct, dev_loss = 0, 0 with torch.no_grad(): for dev_batch_idx, dev_batch in enumerate(dev_iter): answer = model(dev_batch) n_dev_correct += (torch.max(answer, 1)[1].view(dev_batch.label.size()) == dev_batch.label).sum().item() dev_loss = criterion(answer, dev_batch.label) dev_acc = 100. * n_dev_correct / len(dev) print(dev_log_template.format(time.time()-start, epoch, iterations, 1+batch_idx, len(train_iter), 100. * (1+batch_idx) / len(train_iter), loss.item(), dev_loss.item(), train_acc, dev_acc)) # update best validation set accuracy if dev_acc > best_dev_acc: # found a model with better validation set accuracy best_dev_acc = dev_acc snapshot_prefix = os.path.join(args.save_path, 'best_snapshot') snapshot_path = snapshot_prefix + '_devacc_{}_devloss_{}__iter_{}_model.pt'.format(dev_acc, dev_loss.item(), iterations) # save model, delete previous 'best_snapshot' files torch.save(model, snapshot_path) for f in glob.glob(snapshot_prefix + '*'): if f != snapshot_path: os.remove(f) elif iterations % args.log_every == 0: # print progress message print(log_template.format(time.time()-start, epoch, iterations, 1+batch_idx, len(train_iter), 100. * (1+batch_idx) / len(train_iter), loss.item(), ' '*8, n_correct/n_total*100, ' '*12)) if args.dry_run: break
import argparse import gym import numpy as np from itertools import count from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Categorical # Cart Pole parser = argparse.ArgumentParser(description='PyTorch actor-critic example') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor (default: 0.99)') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='interval between training status logs (default: 10)') args = parser.parse_args() env = gym.make('CartPole-v1') env.reset(seed=args.seed) torch.manual_seed(args.seed) SavedAction = namedtuple('SavedAction', ['log_prob', 'value']) class Policy(nn.Module): """ implements both actor and critic in one model """ def __init__(self): super(Policy, self).__init__() self.affine1 = nn.Linear(4, 128) # actor's layer self.action_head = nn.Linear(128, 2) # critic's layer self.value_head = nn.Linear(128, 1) # action & reward buffer self.saved_actions = [] self.rewards = [] def forward(self, x): """ forward of both actor and critic """ x = F.relu(self.affine1(x)) # actor: choses action to take from state s_t # by returning probability of each action action_prob = F.softmax(self.action_head(x), dim=-1) # critic: evaluates being in the state s_t state_values = self.value_head(x) # return values for both actor and critic as a tuple of 2 values: # 1. a list with the probability of each action over the action space # 2. the value from state s_t return action_prob, state_values model = Policy() optimizer = optim.Adam(model.parameters(), lr=3e-2) eps = np.finfo(np.float32).eps.item() def select_action(state): state = torch.from_numpy(state).float() probs, state_value = model(state) # create a categorical distribution over the list of probabilities of actions m = Categorical(probs) # and sample an action using the distribution action = m.sample() # save to action buffer model.saved_actions.append(SavedAction(m.log_prob(action), state_value)) # the action to take (left or right) return action.item() def finish_episode(): """ Training code. Calculates actor and critic loss and performs backprop. """ R = 0 saved_actions = model.saved_actions policy_losses = [] # list to save actor (policy) loss value_losses = [] # list to save critic (value) loss returns = [] # list to save the true values # calculate the true value using rewards returned from the environment for r in model.rewards[::-1]: # calculate the discounted value R = r + args.gamma * R returns.insert(0, R) returns = torch.tensor(returns) returns = (returns - returns.mean()) / (returns.std() + eps) for (log_prob, value), R in zip(saved_actions, returns): advantage = R - value.item() # calculate actor (policy) loss policy_losses.append(-log_prob * advantage) # calculate critic (value) loss using L1 smooth loss value_losses.append(F.smooth_l1_loss(value, torch.tensor([R]))) # reset gradients optimizer.zero_grad() # sum up all the values of policy_losses and value_losses loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum() # perform backprop loss.backward() optimizer.step() # reset rewards and action buffer del model.rewards[:] del model.saved_actions[:] def main(): running_reward = 10 # run infinitely many episodes for i_episode in count(1): # reset environment and episode reward state, _ = env.reset() ep_reward = 0 # for each episode, only run 9999 steps so that we don't # infinite loop while learning for t in range(1, 10000): # select action from policy action = select_action(state) # take the action state, reward, done, _, _ = env.step(action) if args.render: env.render() model.rewards.append(reward) ep_reward += reward if done: break # update cumulative reward running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward # perform backprop finish_episode() # log results if i_episode % args.log_interval == 0: print('Episode {}\tLast reward: {:.2f}\tAverage reward: {:.2f}'.format( i_episode, ep_reward, running_reward)) # check if we have "solved" the cart pole problem if running_reward > env.spec.reward_threshold: print("Solved! Running reward is now {} and " "the last episode runs to {} time steps!".format(running_reward, t)) break if __name__ == '__main__': main()
import argparse import gym import numpy as np from itertools import count from collections import deque import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Categorical parser = argparse.ArgumentParser(description='PyTorch REINFORCE example') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor (default: 0.99)') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='interval between training status logs (default: 10)') args = parser.parse_args() env = gym.make('CartPole-v1') env.reset(seed=args.seed) torch.manual_seed(args.seed) class Policy(nn.Module): def __init__(self): super(Policy, self).__init__() self.affine1 = nn.Linear(4, 128) self.dropout = nn.Dropout(p=0.6) self.affine2 = nn.Linear(128, 2) self.saved_log_probs = [] self.rewards = [] def forward(self, x): x = self.affine1(x) x = self.dropout(x) x = F.relu(x) action_scores = self.affine2(x) return F.softmax(action_scores, dim=1) policy = Policy() optimizer = optim.Adam(policy.parameters(), lr=1e-2) eps = np.finfo(np.float32).eps.item() def select_action(state): state = torch.from_numpy(state).float().unsqueeze(0) probs = policy(state) m = Categorical(probs) action = m.sample() policy.saved_log_probs.append(m.log_prob(action)) return action.item() def finish_episode(): R = 0 policy_loss = [] returns = deque() for r in policy.rewards[::-1]: R = r + args.gamma * R returns.appendleft(R) returns = torch.tensor(returns) returns = (returns - returns.mean()) / (returns.std() + eps) for log_prob, R in zip(policy.saved_log_probs, returns): policy_loss.append(-log_prob * R) optimizer.zero_grad() policy_loss = torch.cat(policy_loss).sum() policy_loss.backward() optimizer.step() del policy.rewards[:] del policy.saved_log_probs[:] def main(): running_reward = 10 for i_episode in count(1): state, _ = env.reset() ep_reward = 0 for t in range(1, 10000): # Don't infinite loop while learning action = select_action(state) state, reward, done, _, _ = env.step(action) if args.render: env.render() policy.rewards.append(reward) ep_reward += reward if done: break running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward finish_episode() if i_episode % args.log_interval == 0: print('Episode {}\tLast reward: {:.2f}\tAverage reward: {:.2f}'.format( i_episode, ep_reward, running_reward)) if running_reward > env.spec.reward_threshold: print("Solved! Running reward is now {} and " "the last episode runs to {} time steps!".format(running_reward, t)) break if __name__ == '__main__': main()