lcolonn commited on
Commit
4cb2660
·
unverified ·
1 Parent(s): 82397e4

feat: update loading script for JSON

Browse files
Files changed (1) hide show
  1. patfig.py +33 -32
patfig.py CHANGED
@@ -4,6 +4,7 @@ from datasets import load_dataset, Dataset, Value, Sequence, Features, DatasetIn
4
  from pathlib import Path
5
  import os
6
  import pandas as pd
 
7
 
8
  _DESCRIPTION = """\ The PatFig Dataset is a curated collection of over 18,000 patent images from more than 7,
9
  000 European patent applications, spanning the year 2020. It aims to provide a comprehensive resource for research
@@ -14,18 +15,18 @@ hollistic consumption of the visual and textual data.
14
 
15
  _BASE_URL = "https://huggingface.co/datasets/lcolonn/patfig/resolve/main/"
16
  _METADATA_URLS = {
17
- "annotations_train": "train/annotations_train.parquet",
18
- "annotations_test": "test/annotations_test.parquet"
19
  }
20
  _IMAGES_URLS = {
21
- "images_train": "train/train_images.tar.gz",
22
- "images_test": "test/test_images.tar.gz",
23
  }
24
  _URLS = {
25
  "train_images": "train/train_images.tar.gz",
26
  "test_images": "test/test_images.tar.gz",
27
- "annotations_train": "train/annotations_train.parquet",
28
- "annotations_test": "test/annotations_test.parquet",
29
  }
30
 
31
 
@@ -35,23 +36,23 @@ class PatFig(GeneratorBasedBuilder):
35
  def _info(self):
36
  return DatasetInfo(
37
  description=_DESCRIPTION,
38
- features=Features({
39
- "image": Image(),
40
- "image_name": Value("string"),
41
- "pub_number": Value("string"),
42
- "title": Value("string"),
43
- "figs_norm": Sequence(feature=Value("string"), length=-1),
44
- "short_description": Sequence(feature=Value("string"), length=-1),
45
- "long_description": Sequence(feature=Value("string"), length=-1),
46
- "short_description_token_count": Value("int64"),
47
- "long_description_token_count": Value("int64"),
48
- "draft_class": Value("string"),
49
- "cpc_class": Value("string"),
50
- "relevant_terms": [{'element_identifier': Value("string"), "terms": Sequence(feature=Value("string"), length=-1)}],
51
- "associated_claims": Value("string"),
52
- "compound": Value("bool"),
53
- "references": Sequence(feature=Value(dtype='string'), length=-1),
54
- }),
55
  )
56
 
57
  def _split_generators(self, dl_manager: datasets.DownloadManager):
@@ -62,16 +63,16 @@ class PatFig(GeneratorBasedBuilder):
62
  name=datasets.Split.TRAIN, gen_kwargs={"images_dir": downloaded_files["train_images"], "annotations_dir": downloaded_files["annotations_train"]}
63
  ),
64
  datasets.SplitGenerator(
65
- name=datasets.Split.TEST, gen_kwargs={"images_dir": f'{downloaded_files["test_images"]}', "annotations_dir": downloaded_files["annotations_test"]}
66
  ),
67
  ]
68
 
69
  def _generate_examples(self, images_dir: str, annotations_dir: str):
70
- df = pd.read_csv(annotations_dir)
71
-
72
- for idx, row in df.iterrows():
73
- image_path = os.path.join(images_dir, row["pub_number"], row["image_name"])
74
- yield idx, {
75
- "image": image_path,
76
- **row.to_dict(),
77
- }
 
4
  from pathlib import Path
5
  import os
6
  import pandas as pd
7
+ import json
8
 
9
  _DESCRIPTION = """\ The PatFig Dataset is a curated collection of over 18,000 patent images from more than 7,
10
  000 European patent applications, spanning the year 2020. It aims to provide a comprehensive resource for research
 
15
 
16
  _BASE_URL = "https://huggingface.co/datasets/lcolonn/patfig/resolve/main/"
17
  _METADATA_URLS = {
18
+ "annotations_train": "train/annotations_train.zip",
19
+ "annotations_test": "test/annotations_test.zip"
20
  }
21
  _IMAGES_URLS = {
22
+ "test_images": "train/train_images.tar.gz",
23
+ "train_images": "test/test_images.tar.gz",
24
  }
25
  _URLS = {
26
  "train_images": "train/train_images.tar.gz",
27
  "test_images": "test/test_images.tar.gz",
28
+ "annotations_train": "train/annotations_train.zip",
29
+ "annotations_test": "test/annotations_test.zip",
30
  }
31
 
32
 
 
36
  def _info(self):
37
  return DatasetInfo(
38
  description=_DESCRIPTION,
39
+ # features=Features({
40
+ # "image": Image(),
41
+ # "image_name": Value("string"),
42
+ # "pub_number": Value("string"),
43
+ # "title": Value("string"),
44
+ # "figs_norm": Sequence(feature=Value("string"), length=-1),
45
+ # "short_description": Sequence(feature=Value("string"), length=-1),
46
+ # "long_description": Sequence(feature=Value("string"), length=-1),
47
+ # "short_description_token_count": Value("int64"),
48
+ # "long_description_token_count": Value("int64"),
49
+ # "draft_class": Value("string"),
50
+ # "cpc_class": Value("string"),
51
+ # "relevant_terms": [{'element_identifier': Value("string"), "terms": Sequence(feature=Value("string"), length=-1)}],
52
+ # "associated_claims": Value("string"),
53
+ # "compound": Value("bool"),
54
+ # "references": Sequence(feature=Value(dtype='string'), length=-1),
55
+ # }),
56
  )
57
 
58
  def _split_generators(self, dl_manager: datasets.DownloadManager):
 
63
  name=datasets.Split.TRAIN, gen_kwargs={"images_dir": downloaded_files["train_images"], "annotations_dir": downloaded_files["annotations_train"]}
64
  ),
65
  datasets.SplitGenerator(
66
+ name=datasets.Split.TEST, gen_kwargs={"images_dir": downloaded_files["test_images"], "annotations_dir": downloaded_files["annotations_test"]}
67
  ),
68
  ]
69
 
70
  def _generate_examples(self, images_dir: str, annotations_dir: str):
71
+ with open(annotations_dir, "r") as f:
72
+ data = json.load(f)
73
+ for idx, record in enumerate(data):
74
+ image_path = os.path.join(images_dir, record["pub_number"], record["image_name"])
75
+ yield idx, {
76
+ "image": image_path,
77
+ **record,
78
+ }