Datasets:
feat: add loading script
Browse files
patfig.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
from datasets import load_dataset, Dataset, Value, Sequence, Features, DatasetInfo, GeneratorBasedBuilder, Image
|
| 3 |
+
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import os
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
_DESCRIPTION = """\ The PatFig Dataset is a curated collection of over 18,000 patent images from more than 7,
|
| 9 |
+
000 European patent applications, spanning the year 2020. It aims to provide a comprehensive resource for research
|
| 10 |
+
and applications in image captioning, abstract reasoning, patent analysis, and automated documentprocessing. The
|
| 11 |
+
overarching goal of this dataset is to advance the research in visually situated language understanding towards more
|
| 12 |
+
hollistic consumption of the visual and textual data.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
_URL = "https://huggingface.co/datasets/lcolonn/patfig/resolve/main/"
|
| 16 |
+
_URLS = {
|
| 17 |
+
"train_images": "train/train_images.tar.gz",
|
| 18 |
+
"test_images": "test/test_images.tar.gz",
|
| 19 |
+
"annotations_train": "train/annotations_train.parquet",
|
| 20 |
+
"annotations_test": "test/annotations_test.parquet",
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class PatFig(GeneratorBasedBuilder):
|
| 25 |
+
"""DatasetBuilder for patfig dataset."""
|
| 26 |
+
|
| 27 |
+
def _info(self):
|
| 28 |
+
return DatasetInfo(
|
| 29 |
+
description=_DESCRIPTION,
|
| 30 |
+
features=Features({
|
| 31 |
+
"image": Image(),
|
| 32 |
+
"image_name": Value("string"),
|
| 33 |
+
"pub_number": Value("string"),
|
| 34 |
+
"title": Value("string"),
|
| 35 |
+
"figs_norm": Sequence(feature=Value("string"), length=-1),
|
| 36 |
+
"short_description": Sequence(feature=Value("string"), length=-1),
|
| 37 |
+
"long_description": Sequence(feature=Value("string"), length=-1),
|
| 38 |
+
"short_description_token_count": Value("int64"),
|
| 39 |
+
"long_description_token_count": Value("int64"),
|
| 40 |
+
"draft_class": Value("string"),
|
| 41 |
+
"cpc_class": Value("string"),
|
| 42 |
+
"relevant_terms": [{'element_identifier': Value("string"), "terms": Sequence(feature=Value("string"), length=-1)}],
|
| 43 |
+
"associated_claims": Value("string"),
|
| 44 |
+
"compound": Value("bool"),
|
| 45 |
+
"references": Sequence(feature=Value(dtype='string'), length=-1),
|
| 46 |
+
}),
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 50 |
+
urls_to_download = {key: _URL + fname for key, fname in _URLS.items()}
|
| 51 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 52 |
+
return [
|
| 53 |
+
datasets.SplitGenerator(
|
| 54 |
+
name=datasets.Split.TRAIN, gen_kwargs={"images_dir": downloaded_files["train_images"], "annotations_dir": downloaded_files["annotations_train"]}
|
| 55 |
+
),
|
| 56 |
+
datasets.SplitGenerator(
|
| 57 |
+
name=datasets.Split.TEST, gen_kwargs={"images_dir": f'{downloaded_files["test_images"]}', "annotations_dir": downloaded_files["annotations_test"]}
|
| 58 |
+
),
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
def _generate_examples(self, images_dir: str, annotations_dir: str):
|
| 62 |
+
df = pd.read_csv(annotations_dir)
|
| 63 |
+
|
| 64 |
+
for idx, row in df.iterrows():
|
| 65 |
+
image_path = os.path.join(images_dir, row["pub_number"], row["image_name"])
|
| 66 |
+
yield idx, {
|
| 67 |
+
"image": image_path,
|
| 68 |
+
**row.to_dict(),
|
| 69 |
+
}
|